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ImmtorLig_DB: repertoire of 
virtually screened small molecules 
against immune receptors to 
bolster host immunity
Deepyan Chatterjee1, Gurkirat Kaur1, Shilpa Muradia1, Balvinder Singh1 & Javed N. Agrewala2

Host directed therapies to boost immunity against infection are gaining considerable impetus following 
the observation that use of antibiotics has become a continuous source for the emergence of drug 
resistant strains of pathogens. Receptors expressed by the cells of immune system play a cardinal role 
in initiating sequence of events necessary to ameliorate many morbid conditions. Although, ligands 
for the immune receptors are available; but their use is limited due to complex structure, synthesis and 
cost-effectiveness. Virtual screening (VS) is an integral part of chemoinformatics and computer-aided 
drug design (CADD) and aims to streamline the process of drug discovery. ImmtorLig_DB is a repertoire 
of 5000 novel small molecules, screened from ZINC database and ranked using structure based virtual 
screening (SBVS) against 25 immune receptors which play a pivotal role in defending and initiating 
the activation of immune system. Consequently, in the current study, small molecules were screened 
by docking on the essential domains present on the receptors expressed by cells of immune system. 
The screened molecules exhibited efficacious binding to immune receptors, and indicated a possibility 
of discovering novel small molecules. Other features of ImmtorLig_DB include information about 
availability, clustering analysis, and estimation of absorption, distribution, metabolism, and excretion 
(ADME) properties of the screened small molecules. Structural comparisons indicate that predicted 
small molecules may be considered novel. Further, this repertoire is available via a searchable graphical 
user interface (GUI) through http://bioinfo.imtech.res.in/bvs/immtor/.

Discovering small molecules that are pharmacologically active due to their ability to allosterically modulate the 
biological function of a protein, qualify the definition of ‘lead compounds’. Further, some of these small molecules 
possessing desirable characteristics of stability, solubility, effective functional groups, non-toxic and devoid of any 
undesirable side effects are successfully termed as molecules that have ‘drug like’ properties1. Among the major 
challenges of drug discovery is the identification of small molecules that satisfy the above criteria. Advancements 
in chemoinformatics and Computer-Aided Drug Designing (CADD) have revolutionized the process of drug 
discovery into a fast, cost effective, and reliable approach. Further, such approaches are reasonably much more 
efficient in terms of screening of small molecules that can act as lead compounds against biological targets2,3. An 
integral part of this computer aided method is the origin of algorithmic approach termed as ‘Virtual Screening’ 
(VS) that dates back to years of 1970, but has become popular in the late 1990’s4,5. Such techniques for identifying 
pharmacologically active molecules have further gained thrust with the emergence of high throughput, freely 
available, user-friendly docking software and databases, and the evolution of in silico approaches6,7. The algorith-
mic approach of virtual screening can be subdivided into two strategies; Ligand-Based Virtual Screening (LBVS) 
and Structure-Based Virtual Screening (SBVS)8–10. During LBVS process, pharmacophore mapping is employed 
on molecules that are known to bind to biological targets for identifying potentially novel pharmacophore hits, 
using similarity searching approach. Such chemical similarity search in terms of identifying molecules with akin 
shape and configuration is performed against a database11,12. On the other hand, SBVS encompasses a modeling 
approach, wherein binding interactions via protein ligand docking of small molecules, housed in a particular 
database is performed on its biological target (receptor protein)13. Both the approaches are followed up using 
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ranking algorithms that employ scoring functions to shortlist potential ligands, and defining their affinity for its 
receptor site14.

Traditionally, G-Protein-Coupled Receptors (GPCRs) have been the target for identifying small molecules 
using combination of high throughput and virtual screening approaches15. Such strategies have been success-
ful in identifying novel compounds or reducing the side effects of drugs by modifying the existing scaffold16,17. 
Interestingly, various methods including computational approaches have been used in identifying novel small 
molecules that target immune receptors, like pattern recognition receptors (PRRs)18–21, intracellular adhesion 
molecules22–24, and cytokines25–28. Relatively economical and high-speed algorithmic approaches like SBVS can 
screen millions of small molecules without the need of their physical existence13. Such algorithmic approaches 
have become an indispensable armamentarium for discovering novel drugs. There are several success stories, 
against GPCRs29,30 of identification of novel molecules by virtual screening. We were inspired by the aforemen-
tioned strategies and therefore screened small molecules for array of immune receptors, which play pivotal role 
during morbid pathological conditions. Furthermore, the available immunomodulatory therapies targeting the 
immune receptors include fusion and recombinant proteins, monoclonal antibodies, adjuvants and immune con-
jugates, vaccines, and gene therapies31. Majority of such biologics targeting immune receptors are more complex 
than small molecules or generic drugs. These involve complex production facilities and high cost of manufacture, 
shorter shelf life and specialized storage requirements. This inevitably results in variable immunogenicity and 
efficacy that may be attributed to product formulation process and host related factors32–36.

As a part of the present study, we are preparing central repertoire; ImmtorLig_DB using online SBVS pipeline 
software to screen a collection of small molecules for an array of receptors that are expressed by the cells of the 
immune system and play a cardinal role in bolstering the immune system against pathogens. As indicated in 
literature13,37,38, we addressed the major requirements for a successful SBVS to ensure quality and quantity of the 
screened small molecules. In the final part of study, we have utilized clustering and binning approach to deter-
mine the structural relatedness of the molecules that bind to a particular immune receptor and estimated ADME 
properties of each screened small molecule. ImmtorLig_DB with 5000 screened small molecules against an array 
of immune receptors can help a community of researchers with little or no background of chemoinformatics in 
exploring potential novel ligands to target immune receptors. Consequently, it will expedite the process of drug 
discovery.

Methodology
Establishing 3D structure of the immune receptor.  Success of SBVS depends upon quality of the tar-
get structure13 and literature studies supported use of crystal structures with resolution less than 3.5 Å, as an 
optimum criteria for algorithms like SBVS38,39. In the present study, high resolution X-ray structures having res-
olution less than 3.5 Å were either obtained for virtual screening or were used as a template for homology mod-
eling from Protein Data Bank (PDB). The databank was screened to shortlist the available crystal structures of 
the following immune receptors of human: (i) innate receptors: toll like receptors (TLR-1/TLR-2, TLR-4/MD-2, 
TLR-2/TLR-6), mincle; (ii) major histocompatibility complex 1 and 2 (MHC-I, MHC-II); (iii) co-stimulatory 
molecules CD28, CD40, CD80, CD86; (iv) co-inhibitory molecules: CTLA-4, PD-L1, Tim-3, decoy receptor, Fas 
ligand, Fas receptor; iv) cytokines: IL-1β, IL-2, IL-4, IL-6, IL-17, IL-23; (v) adhesion molecules: ICAM, VCAM, 
CEACAM1. Further, templates were selected from available crystal structures in PDB to perform homology mod-
eling for predicting 3D structure of immune receptors, whose crystal structures did not meet the above criteria. 
Multi-chain modeling approach was employed for deducing the heterodimer structures and monomeric forms. 
For this, online server, HOMCOS 1.0 (http://homcos.pdbj.org/cgi-bin/index.cgi?LANG=en)40 was employed to 
screen and list the similar PDB templates and then modeling was performed employing Modeller version 9.1741. 
Protein homology modeling web server CPHmodels 3.2 (http://www.cbs.dtu.dk/services/CPHmodels/)42 was 
used to predict structure for some immune receptors. Such receptors whose structures were predicted prior to 
screening of ligands were highlighted in the database. In addition, receptor preparation involving protonation of 
amino acids, optimizing hydrogen bonds, assigning partial charges, relieving steric clashes in the structure were 
performed prior to virtual screening steps13. Structures were visualized using PyMol (http://www.pymol.org).

Delineating or predicting ligand binding site for immune receptors.  Ligand binding sites typically 
have concave cavity on the receptor molecule that has appropriate amino acid residues, where potential drug 
may bind43. Such sites can be the active sites of an enzyme, where receptor is formed with other moieties or the 
essential amino acid residues motifs that are necessary for functioning of the receptor13,43. The present study used 
the information obtained from co-crystallized structures of bound biological or synthetic ligand of the immune 
receptors in identifying structure motifs that are important for carrying out physiological function. This was 
achieved by using PyMol and highlighting and listing the interacting amino acid residues within the 4 Å region of 
the co-crystallized ligand. In past, such an approach in designing novel ligands have been successfully employed 
for GPCRs44. In silico prediction of ligand binding sites was carried out for immune receptors that were not 
co-crystallized with biological or synthetic ligand, using PocketPickker (CLIPPERS) feature available in Blaster 
Dock version 1.6.045 or CASTp46 (Computed Atlas of Surface Topography of proteins) server (http://sts.bioe.uic.
edu/castp/).

Identification of small molecules for the target receptor by DOCK Blaster.  An important prereq-
uisite for a virtual screening algorithm is its ability to access a database of drug like compounds. The cataloging 
and number of entries in such databases are major benchmarks that dictate the performance and subsequent 
outcome of VS algorithms, both in terms of quality and quantity10,37. Screening process was initiated by docking 
over 30 million small molecules from ZINC database on a specified flexible ligand binding sites of respective 
targets. The small molecule sampling scheme has been set to “finer” that uses 55 “hots spots” and narrower bins 
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along with “normal” scoring scheme utilizing standard AMBER 94 partial atomic charges on protein. The ranking 
score for each conformation is a combination of Van der waals forces (Vdw) and Electrostatic interaction (ES), 
corrected by partial ligand desolvation (Desolv) to obtain the free energy of binding (∆G). Based on the values 
of ∆G, top 200 small molecules were identified for each immune target and these were subjected to 100 steps 
simplex rigid body minimization47.

The above stated screening process was performed using the automated interface of DOCK Blaster version 
1.6.0 (http://blaster.docking.org/)47 that has a pipeline of six modules, namely parser, scrutinizer, preparer, cali-
brator, docker, and assessor modules. These include identifying the receptor, resolving disorders, protonation and 
scoring grid assignment, computing scoring parameters, screening specified ZINC database subset over multiple 
CPUs, and preparation of results.

Clustering analysis of array of small molecules that binds to immune receptors.  Small molecules 
screened for each immune receptor were clustered in bins and then distributed over a scatter plot. The intent 
was to establish the structural relatedness of the molecules by finding a common molecular scaffold across the 
screened small molecules using ChemMine Tool (http://chemmine.ucr.edu/)48. The simplified molecular-input 
line-entry system (SMILES) for each small molecule was imported into the workbench of ChemMine Tool fol-
lowed by binning into the cluster and 3D multidimensional scaling (MDS). The cutoff similarity score was defined 
at 0.4 (Tanimoto coefficient) for both of these.

Establishing basic ADME properties for screened small molecules.  Computational approaches 
are among the fastest methods for evaluating efficacy of the potential drugs49. SwissADME (http://www.swis-
sadme.ch) computed ADME properties of the small molecules, by providing SMILES as the input. Following 
ADME parameters were computed: (i) physicochemical properties viz; molecular weight, number of heavy atoms, 
aromatic heavy atoms, fraction Csp3, rotatable bonds, hydrogen bond acceptors, hydrogen bond donor, molar 
refractivity, and Topological Polar Surface Area (TPSA); (ii) lipophilicity is computed using five different pre-
dictive models based on partition coefficient between n-octanol and water (log Po/w). A consensus log Po/w 
computed using arithmetic mean of the five models is also provided; (iii) water solubility is computed using three 
different models viz; ESOL, Ali, and SILICOS-IT; (iv) pharmacokinetics parameters such as GI absorption, BBB 
permeability, Pgp (permeability glycoprotein) substrate, inhibitor of five isoforms of cytochromes P450 (CYP) 
[CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4], and skin permeation; (v) drug-likeness is predicted using 
filters like Lipinski, Ghose, Veber, Egan, Muegge, and bioavailability score calculation; (vi) medicinal chemistry, 
including structural alerts like PAINS and Brenk alert, leadlikeness, and synthetic accessibility analysis of the 
ligands49.

Cataloging top 200 small molecules for each target protein into a database.  The collected data 
of virtually screened small molecules were ranked according to their binding affinity, empirically measured in 
terms of free energy of binding (∆G) against the immune receptors. Further, for each small molecule screened, 
availability information, clustering analysis and the predicted ADME properties were accordingly cataloged in 
the form of a searchable database. The Entity Relationship (ER) diagram, depicting the flow of information among 
fields of ImmtorLig_DB was also created.

Structural comparison of virtually screened small molecules.  In silico screen ligands of TLR-4/MD-2  
and ICAM were subjected to structural molecular similarity comparison with the experimentally tested ligands 
of the same receptors. A list of these tested ligands was retrieved from PubChem50. This structural comparison of 
screened small molecules was performed using the text based biophysical properties and intermolecular similari-
ties comparison protocol proposed by Vidal et al.,51. Also, all the small molecules screened were compared among 
themselves based on values of Tanimoto coefficient. The coefficient values were in the range from 0 to 1, with 1 
depicting complete identity and 0 indicating no similarity.

Results
Selection of high resolution structure of immune receptors.  High resolution crystal structures 
of human immune receptors were obtained from PDB for the following: TLR-1/TLR-2, TLR-4/MD-2, MHC-
I, MHC-II, CD28, CD40, CD80, CD86, CTLA-4, PD-L1, decoy receptor, Fas ligand, IL-1β, IL-2, IL-4, IL-6, 
IL-17, IL-23, ICAM, VCAM and CEACAM1. Further, templates from PDBIDs- 3A79, 3WH2, 5DZL, and 3TJE 
were selected for performing homology modeling of immune receptors viz; TLR-2/TLR-6, mincle, Tim-3, and 
Fas receptor. A template of PDBID 3A79 was used for modeling the heterodimeric structure of TLR-2/TLR-6, 
employing a crystal structure of mus musculus TLR-2/TLR-6. Homology modeling using Modeller version 9.17 
was used to predict the heterodimeric structure of TLR-2/TLR-6, and monomeric form of Fas receptor. Similarly, 
CPH models server was used for modeling the structure of mincle and Tim-3. The crystal or predicted structures, 
along with their resolution for the immune receptor are presented in Fig. 1.

Further, following PDB crystal structures 2Z7X, 3FXI, 4ZRV, 3UPR, 1FV1, 5DMJ, 3BIK, 5L36, 1M48, 4YDY, 
4CNI, 4QHU, and 3D85 were available as co-crystals with their respective biological or synthetic ligand. This ena-
bled identifying putative ligand binding sites in the immune receptors viz; TLR-1/TLR-2, TLR-4/MD2, MHC-I, 
MHC-II, CD40, PD-LI, decoy, Fas ligand, IL-2, IL-4, IL-6, IL-17, and IL-23. Also, the structures of templates with 
PDB IDs, 3A79, 3WH2, and 3TJE used for modeling TLR-2/TLR-6, mincle, and Fas receptor were available in 
complex with their biological or synthetic ligands, assisting in identifying the amino acid residues in the ligand 
binding cavity (Fig. 2).

Virtual screening for small molecules was performed on essential binding motifs of the receptors.  
The ligand binding sites for selected immune receptors were directly obtained from the co-crystallized structure 
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of biological or synthetic ligands and their receptors. In addition, services of in silico servers, PocketPickker 
(CLIPPERS) or CASTp were utilized to identify the largest binding pocket present on the surface of immune 
receptors in case information about the ligand binding site could not be acquired from the available crystal 
structures. PocketPickker (CLIPPERS) was utilized to identify the largest binding groove on PDB IDs- 1YJD, 
3BX7, 1IAM, 1VCA, and 5DLZ that were of immune receptors CD28, CTLA-4, ICAM, VCAM, and CECAM, 
respectively. Similarly, CASTp was used for CD80, CD86 and IL-1β, having the PDB IDs- 1DRN, 1NCN, 2NVN 
respectively, in addition to identifying the binding groove of predicted structure of Tim-3. Figures 1 and 2 depicts 
PDB ID for specifying the immune receptors and also contains the information about ligand binding sites where 
virtually screened small molecules were docked. Amino acid residues in the ligand binding sites of the immune 
receptors are indicated in the Supplementary Table 1.

Two hundred high affinity small molecules were screened for each immune receptor.  The 
screening of small molecules present in ZINC database was achieved by ranking the docking scores, obtained 

Figure 1.  High resolution crystal structures and homology models of the immune receptors. 3D structures of 
following immune receptors; (i) innate receptors: toll like receptors (TLR-1/TLR-2, TLR-4/MD-2, TLR-2/TLR-
6), mincle; (ii) major histocompatibility complex 1 and 2 (MHC-I, MHC-II); (iii) co-stimulatory molecules 
CD28, CD40, CD80, CD86; (iv) co-inhibitory molecules: CTLA-4, PD-L1, Tim-3, decoy receptor, Fas ligand, 
Fas receptor; iv) cytokines: IL-1β, IL-2, IL-4, IL-6, IL-17, IL-23; (v) adhesion molecules: ICAM, VCAM, 
CEACAM1. PDB code of the crystal structures and its resolution are appropriately indicated for the immune 
receptors. Blue colour are indicative of the ligand binding site, around which small molecules were screened. 
Crystal or the predicted structures were visualised using PyMol.
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in terms of free energy of binding (∆G) after performing docking. Subsequently, average docking score of top 
200 screened small molecules revealed high efficacy for selected immune receptors as compared to rest of the 
molecules (Fig. 3). The average free energy of binding, ∆G for the small molecules binding innate receptors viz; 
TLR-1/TLR-2, TLR-4/MD-2, TLR-2/TLR-6, and mincle were −32.822, −47.899, −34.309, and −79.193 kcal/
mol, respectively. For first signal viz; MHC-I and MHC-II, the average ∆G for small molecules was −29.127 and 
−32.562 kcal/mol, respectively. For co-stimulatory molecules viz; CD28, CD40, CD80, and CD86, the average 
∆G for the small molecules was −42.072, −24.312, −35.384, and −47.12 kcal/mol, respectively. For co-inhibitory 
molecules viz; CTLA-4, PD-L1, Tim-3, decoy receptor, Fas-L and Fas-R, average ∆G for the small molecules was 

Figure 2.  Essential domains of immune receptors considered as ligand binding site. PDB code of crystal 
structure or template used in modeling immune receptors are accordingly mentioned. The ligand binding 
sites were defined by the residues located within 4 Å of any atom of ligand in the co-crystal structures. In silico 
prediction server, PocketPickker (CLIPPERS) or CASTp were employed to predict the largest binding groove on 
the immune receptors that were not co-crystallized with any ligand.

Figure 3.  Small molecules that were screened exhibited strong efficacy for their representative receptors. Figure 
depicts average free energy of binding (ΔG value) along with the standard deviation for screened 200 small 
molecules against their respective immune receptors.
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−27.177, −42.854, −41.129, −43.255, −33.977, and −37.761 kcal/mol, respectively. For cytokines viz; IL-1β, 
IL-2, IL-4, IL-6, IL-17, and IL-23, average ∆G for the small molecules was −39.953, −39.198, −46.717, −40.907, 
−63.766, and −29.487 kcal/mol, respectively. For adhesion molecules viz; ICAM, VCAM, and CECAM, average 
∆G of small molecules was −39.442, −36.147, and −24.054 kcal/mol, respectively. Thus, strong efficacies of the 
screened small molecules for the immune receptors are revealed by the negative value of average free energy of 
binding (∆G) obtained via docking process.

Clustering analysis reveals structural resemblance among the small molecules binding an 
immune receptor.  Clustering analysis is a powerful tool for comparing chemical structures of molecules 
that reveals degree of structural similarities by identifying common molecular scaffolds48. Further, such common 
scaffold can be an indicative of bioactive profile of the molecule or its physicochemical properties, consequently 
correlating structural features with biological activities48. The present study performed Multi Dimensional Scaling 
(MDS) and clustering on the entire group of small molecules, binding to a particular immune receptor. The out-
put obtained is in the form of a three dimensional scatter plot where individual dot represents a small molecule 
(Fig. 4). Each dot in the 3D scatter plot represents individual small molecule and the distance among dots reveals 
the degree of similarity among molecules. More packed bunches show more structural relatedness among the 

Figure 4.  Multidimensional scaling suggests structural semblance. Clustering analysis was performed on the 
small molecules to obtain 3D scatter plot. Individual dots represent position of the ligands in a virtual space and 
distance among the dots reveals degree of relatedness. Confined dots in a form of dense bunches indicate the 
high degree of structural similarity among the screened small molecules.
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screened small molecules, and using the cursor of mouse, zinc ID of the corresponding small molecule can be 
viewed on the scatter plot in ImmtorLig_DB. Also, binning of cluster also helped to obtain the structural diversity 
among the collection of small molecules binding a particular immune receptor. We distributed the array of small 
molecules screened for an immune receptor into various similarity groups (or bins), with each bin having varied 
number of small molecules. All individual bins and the group of small molecules along with their zinc IDs for a 
particular immune receptor are available in ImmtorLig_DB. The representative structure from the largest bin, for 
each immune receptor is shown in Fig. 5.

ADME properties reveal drug likeness of the small molecule binding immune receptor.  
Estimation of ADME properties of potential drug leads is suggested prior to performing experimental assays, 
thus reducing the failure rates and saving of resources49. For 5000 screened small molecules, SwissADME ena-
bled the prediction of major physiochemical properties, lipophilicity, water solubility, phyarmacokinetics, drug 
likeness, medicinal chemistry and the obtained results are presented in Supplementary Table 2. ImmtorLig_DB 
provides access to ADME properties for each ligand from database or separately view the entire list of properties 
for the group of ligands binding each type of the immune receptors. Majority of small molecule screened for each 
immune receptor were positive for all five drug likeness filter, as revealed by the maximum number of elements 
existing within the intersection of all 5 sets of filters (Fig. 6).

Figure 5.  Representative structure of small molecules from largest bin for individual immune receptors. 
Binning performed with Tanimoto similarity coefficient cut off of 0.4 on the small molecules resulted in 
multiple bins having varied number of molecules. Representative small molecules from the largest bin for each 
of the 25 immune receptors are shown here.
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Overall architecture of the ImmtorLig_DB.  The cataloguing and schema of ImmtorLig_DB is depicted 
in Fig. 7 and the entity relationship diagram is presented in Supplementary Fig. 1. The database was built on 
Apache HTTP server and MySql server 1.8.3-5. The front-end of ImmtorLig_DB was developed using HTML, 
PHP, and Javascript while MySql was engaged for back-end architecture. GUI based and searchable database is 
freely accessible through http://bioinfo.imtech.res.in/bvs/immtor/.

Asserting the novelty of virtually screened ligands.  To explore the possibility that we obtained novel 
chemical structures among the virtually screened molecules, we have compared these with experimentally known 
and tested ligands of the receptors available in PubChem database50. Figure 8A is a heatmap representation of the 
degree of SMILES fragment based similarity between the prospective ligands obtained from virtual screening and 
the experimentally tested ligands from PubChem for the receptors TLR-4/MD-2 and ICAM. The color range in 
the heatmap is based on the Tanimoto coefficient values ranging from 0 to 1 calculated using the method of Vidal 
et al.,51. Thus, a value towards 1 or the orange/red color shade indicates near identity between SMILES string 
representations of two compounds while a value towards 0 or the yellow/green shade represents low similarity 
between the compared SMILES strings. Figure 8A shows a dominant occurrence of yellow/green shades indicat-
ing that a low similarity value range is observed for virtually screened compounds against PubChem compounds. 
Further, all virtually screened small molecules were structurally compared among themselves based on their 
Tanimoto coefficient and results of this comparison are presented in Fig. 8B. Majority of the small molecules i.e. 

Figure 6.  Five rule based filters reveals drug likness of the screened small molecules. Numbers of small 
molecules belonging to a particular set are shown in Venn diagram. Blue, red, brown, yellow, and green colour 
sets represent Lipinski, Ghose, Veber, Egan and Muegge drug likeness filter, respectively.
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99.8% had Tanimoto coefficient values upto 0.5 and only 0.2% exhibited relatively high structural similar thresh-
old of 0.5 to 1. In other words, the screened molecules themselves represent a structurally diverse repertoire. Thus, 
cataloged virtually screened small molecules in ImmtorLig_DB may be novel, and are structurally different from 
the experimentally tested ligands of the immune receptors.

Discussion
Traditionally, GPCRs have been target for identifying small molecules using the combination of high throughput 
and virtual screening. Such approaches have been successful in identifying novel compounds or reduce the side 
effects of existing drugs by modifying the scaffolds15–17,52. Interestingly, computational approaches have been suc-
cessfully applied in identifying novel molecules against immune receptors like TLR, ICAM, and cytokines18–28,53.

Immune receptors in the present study have been associated with many abnormalities, which range from auto-
immunity, cancer, and developmental disorders. Major implications of identifying small molecules against the 
immune receptors of present study can be summarized in Table 1. The available therapeutic interventions target-
ing these immune receptors include immune adjuvant therapy, antibodies, and synthetic ligand based treatments. 
The demerits of such therapies include high manufacturing cost and specialized storage conditions, which make 
them difficult for mass production thereby leading to non availibility for the masses32–36. Small molecules have 
the ability to influence the activity of their receptor, thus, altering biological activity of the protein. Mechanism 
that explains this intrinsic change in the activity of a protein or receptor is the ability of the molecule to influence 
protein-protein interaction54,55. Therefore, there is an urgent need to identify small molecules that can be utilized 
as therapeutics, which are cheap and easy to manufacture in bulk and requires less stringent storage conditions.

Traditional approaches of identifying such novel small molecules from a chemical library, using expensive and 
laborious trial-error experimental assays have shown limited success3. Conversely with advancement in structural 
proteomics, in silico techniques, and high throughput algorithms, computer aided drug design has enabled tai-
loring of molecules against user specified target proteins. An approach like SBVS incorporate an armamentarium 
benefits that include56–58: i) time and cost reduction during the screening process, ii) a much larger chemical space 

Figure 7.  Overall architecture employed for ImmtorLig_DB. The graphical schematic representation of overall 
approach followed for collecting and analyzing the data of 5000 small molecules that were screened for 25 
immune receptors.
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can be virtually screened, thus significantly increasing the chances of finding novel small molecules, iii) more-
over, such libraries need not be physically assessed as the initial approach does not depend on the experimental 
assays, iv) relatively simple in terms of the requirement of resources and manpower, iv) desirable ligands against 
a user specified target receptors can be screened, even if crystal structure of the receptor protein is not available. 
However, during the process of virtual screening of small molecules using algorithms, attrition rates and false 
positives are substantial challenges59.

Empirically, molecules binding a protein in the grooves which contain the catalytically important amino acids 
involved in carrying out the signal transduction process, have been implicated in altering the biological activity 
of that protein60. Therefore, the present study of virtual screening was performed on the ligand binding sites of 
the 25 immune receptors, thus creating a repertoire of 5000 small molecules that exhibits efficacious binding, and 
distinctive drug likeness.

Considering the novelity among virtually screened ligands, the mission of ImmtorLig_DB is to expedite the 
endeavour of scientists working in the field of immunology with the aim of discovering new drugs, as the thera-
peutic intervention for an assortment of morbid diseases. ImmtorLig_DB can serve as a ideal platform for under-
standing drug-target interactions that can be used in a compuational model to predict either small molecules 
or substructure fingerprint information of these. The present study, along with other widely used resources as 
discussed by Chen et al. can assist in developing such learning based computational models61 that shall employ 
neural network, support vector machines etc. for predicting small molecule and their putative immune targets. 
In addition to these techniques, random forest can also be used62 and further deep learning algorithms can make 
such methods more robust and effective for making predictions, as proposed by Wang et al.,63. This database is 
designed in a searchable and user friendly manner that will accelerate researchers across the globe with little or 
no prior knowledge or experience of virtual screening, chemoinformatics, or CADD in analyzing the lead com-
pounds cataloged and to test the efficacy of these drugs. For this, the availability for each ligand mentioned in the 
database is to ensure a hassle free access of the ligands whose Zinc ID has been provided in the database.

Figure 8.  Structure based virtual screening indicates novelty for the small molecules. Based on the Tanimoto 
coefficient values, the structural relatedness among the screened small molecules were computed. The scale 
ranges from 0 to 1, where 0 signifies no similarity and 1 represents complete identity. (A) Heat map depicts 
the structural comparison between experimentally tested ligands available in PubChem and virtually screened 
small molecules for the immune receptors- TLR-4/MD-2 and ICAM. (B) Pie chart represents structural 
similarity among five thousand screened molecules, where 98.2% of small molecules had Tanimoto coefficient 
up to 0.3.
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Conclusion
ImmtorLig_DB is a repository of 5000 small molecules binding to twenty five important immune receptors that 
seminally cortribute to morbidity and mortality of many human diseases. Two hundred small molecules have 
been virtually screened based on free energy of binding (∆G) for each of the immune targets. Majority of these 
small molecules are high affinity binders as revealed by their negative ∆G values. This repertoire includes poten-
tial novel chemical structures against immunological receptors as suggested by low structural similarity of virtu-
ally screened small molecules among themseleves as well as with experimentally tested ligands of TLR-4/MD-2 
and ICAM. Clustering and binning analysis along with estimation of ADME properties of small molecules are 
additional features of this repertoire. In essence, ImmtorLig_DB can serve as an effective resource in the develop-
ment of small molecule based therapeutic intervention for immune receptors.
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Immune Receptor Type

Role in morbid conditions Molecules targeting immune receptorName of the receptor

Class 
of the 
Receptor

Innate receptors

TLR-2/TLR-6

Innate receptor’s play an essential role in multiple 
diseases ranging from immune response during 
infection to establishing cancer immunity. Modulating 
activity of them is being used as therapy for such 
diseases.

PAM2CSK4, diacyl lipopeptides, lipoteichoic acid, zymosan, 
GPI anchor

TLR-4/MD-2
LPS, mannan, glucuronoxylomannan, 
glycoinositolphospholipids, F protein of respiratory syncytial 
virus (RSV), envelope protein of mouse mammary tumor virus 
(MMTV)

TLR-1/TLR-2 Pam3CSK4, triacyl lipopeptides

Mincle Trehalose-6,6-dibehenate (TDB), β​-glucosylceramide

Major Histo 
compatibility 
Complex

MHC-I
Malignant, infectious, autoimmune Disorders. Bare 
lymphocyte syndrome, transplant rejection

Maslimomab, abacavir, anti-CD8 antibodies

MHC-II
Maslimomab, copaxone, cedelizumab, clenoliximab, ibalizumab, 
keliximab, priliximab, tregalizumab, zanolimumab, Ii-Key 
allosteric ligand

Co-stimulatory 
Molecules

CD28 Autoimmune disease, atopic diseases Theralizumab, CD28-SuperMAB, peptide-based antagonist

CD40 Hyper-IgM immunodeficiency type 3, IBD, 
atherothrombosis, cardiovascular disease

Agonistic mAb (CP-870,893), teneliximab, monoclonal CD40L 
antibody

CD80 (B7-1) B-cell lymphoma, graft versus host disease, 
autoimmune diseases Galiximab, abatacept, belatacept

CD86 (B7-2)
Hodgkin’s lymphoma, thyroid carcinoma, allergic 
sensitization, acts as a receptor for adenovirus subgroup 
B

Anti CD86 blocking monoclonal Ab, abatacept, belatacept

Co-Inhibitory 
Molecules

CTLA-4 Various forms of autoimmune syndromes, cancers and 
infectious diseases. Ipilimumab, ticilimumab

PD-L1 Different types of malignancies, infectious diseases Nivolumab, pembrolizumab, pidilizumab, atezolizumab, 
avelumab, durvalumab

Tim-3 Th1 mediated, and innate immune response during 
viral infection, exhaustion, cancer

Monoclonal antibodies (1G5, 2E2, and 4A4), anti-TIM-3 mAb 
(RMT3-23, ATIK2a)

Decoy Receptor Pleiotropic immunomodulator with role ranging from 
autoimmunity to cancer

Chemosensitization, recombinant TRAIL administration, 
conatumumab, mapatumumab, lexatumumab, tigatuzumab

FAS ligand Inducing apoptosis and killing of target cells, thus 
involved from lymphocyte homeostasis to autoimmune 
syndromes, graft-versus-host disease, and multiform 
of cancer.

Anti-Fas mAb viz; RK-8, h-HFE7A, gene therapy, synthetic 
peptide viz; residues 91-102 of DR5, TRAILmim/DR5FAS receptor

Cytokines

IL-1β​ Autoimmune syndromes, RA, pulmonary disease, 
diabetes Canakinumab, rilonacept, anakinra, gevokizumab

IL-2 Transplant rejection, MS Daclizumab, basiliximab, cergutuzumab amunaleukin (CEA-
IL2v), denileukin diftitox, gusperimus, tacrolimus, inolimomab

IL-4 Asthma and inflammation AMG317, pitrakinra, nuvance, AIR645

IL-6 Types of arthritis and cancer, autoimmune diseases Tocilizumab, sarilumab, siltuximab, clazakizumab, C326, 
olokizumab, elsilimomab

IL-17 Autoimmune diseases, plaque psoriasis, ankylosing 
spondylitis, MS Ixekizumab, secukinumab, brodalumab

IL-23 Psoriasis and psoriatic arthritis Ustekinumab, briakinumab, apilimod

Adhesion 
Molecules

ICAM Various types of cancer, renal disease, Alzheimer’s, IBD Enlimomab pegol, ICAM-IONP

VCAM RA, development and inflammatory diseases Natalizumab, vedolizumab, polyethyleneglycol modified 
immunoliposomes

CEACAM1 Different types of malignancies Anti-CEACAM6-maytansinoid (DM1), L-DOS47

Table 1.  Association of the immune receptors in context with the human diseases and list of available therapies 
in form of biologic drugs that target the immune receptors.
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