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Integrative Physiology: Defined Novel Metabolic Roles of 
Osteocalcin

The prevailing model of osteology is that bones constantly undergo a remodeling process, 
and that the differentiation and functions of osteoblasts are partially regulated by leptin 
through different central hypothalamic pathways. The finding that bone remodeling is 
regulated by leptin suggested possible endocrinal effects of bones on energy metabolism. 
Recently, a reciprocal relationship between bones and energy metabolism was determined 
whereby leptin influences osteoblast functions and, in turn, the osteoblast-derived protein 
osteocalcin influences energy metabolism. The metabolic effects of bones are caused by 
the release of osteocalcin into the circulation in an uncarboxylated form due to incomplete 
γ-carboxylation. In this regard, the Esp gene encoding osteotesticular protein tyrosine 
phosphatase is particularly interesting because it may regulate γ-carboxylation of 
osteocalcin. Novel metabolic roles of osteocalcin have been identified, including increased 
insulin secretion and sensitivity, increased energy expenditure, fat mass reduction, and 
mitochondrial proliferation and functional enhancement. To date, only a positive 
correlation between osteocalcin and energy metabolism in humans has been detected, 
leaving causal effects unresolved. Further research topics include: identification of the 
osteocalcin receptor; the nature of osteocalcin regulation in other pathways regulating 
metabolism; crosstalk between nutrition, osteocalcin, and energy metabolism; and potential 
applications in the treatment of metabolic diseases.
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INTRODUCTION 

In the last decade, clinical observations and controlled studies 
have shown that leptin produced by fat tissue regulates bone 
metabolism through a central pathway consisting of the hypo-
thalamus, sympathetic nervous system, and multiple interme-
diary steps. This relationship between fat and bone, initially 
thought to be unilateral, is now considered to be bilateral or re-
ciprocal after the discovery of the role of bone in glucose and fat 
metabolism. This newly identified feedback loop between bone 
and energy metabolism is mediated by osteocalcin (OC), an 
osteoblast-produced protein, and has advanced academic prog-
ress in osteology and endocrinology. Furthermore, studies of 
OC have provided the fundamental basis of therapeutic strate-
gies for metabolic disorders. In this review, we discuss the feed-
back loop between bones and fat, and new discoveries related 
to novel metabolic roles of OC. 

ROLE OF LEPTIN IN REGULATING BONE 
METABOLISM 

The prevailing model in skeletal biology is that bones constant-

ly undergo the physiological process of bone remodeling, which 
comprises two phases: bone resorption by osteoclasts followed 
by bone formation by osteoblasts (1). Imbalance between the 
two phases whereby osteoclast activity surpasses osteoblast ac-
tivity leads to decreased bone mineral density and, in turn, an 
increased risk of osteoporosis. A number of published studies 
have demonstrated that differentiation and functions of these 
bone-specific cells are regulated by leptin, an adipocyte-derived 
hormone that regulates energy intake and expenditure. Numer-
ous other studies have examined the relationship between se-
rum leptin levels and bone anabolism, and have proposed a bi-
modal response in which moderate increases in leptin stimulate 
bone formation whereas higher levels actually inhibit it (2-4). 
This bimodal response is further complicated by the finding that 
adipocytes in both the periphery and in the bone marrow se-
crete leptin, which may induce apoptosis of bone marrow stro-
mal cells and favors bone resorption at high local concentra-
tions (5, 6). It has been proposed that leptin exerts osteogenic 
functions through a peripheral pathway that directly targets a 
leptin-specific receptor on osteoblasts, but the results of relevant 
studies were inconsistent (7, 8). Other researchers have consis-
tently shown that leptin regulates bone formation through a cen-
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tral pathway comprising the hypothalamus and central nervous 
system (9-15). Leptin is known to initiate intracellular signals 
within the hypothalamus through its binding to Ob-Rb, the 
leptin receptor isoform present in hypothalamic nuclei (16).    
At least two different central hypothalamic pathways, through 
which leptin influences bone formation in an antagonistic man-
ner, have been identified (Fig. 1) (9-15). The first, anti-osteogen-
ic, influence of leptin involves up-regulation of receptor activa-
tors of NF-kappa B ligand (RANKL), an osteoclast differentia-
tion factor, through sympathetic signaling via β2-adrenergic re-
ceptors, the only adrenergic receptor present on osteoblasts (12, 
15). Sympathetic signaling on β2-adrenergic receptors induces 
phosphorylation of activating transcription factor 4 (ATF4), a 
cell-specific cAMP response element binding (CREB)-related 
transcription factor that is essential for osteoblast differentiation 
and function (16). The second, more recently defined, osteo-
genic influence of leptin involves modulation of cocaine and 
amphetamine-regulated transcript (CART) (12), a hypothalam-
ic neuropeptide encoded by the CARTPT gene whose expres-
sion is increased by leptin (17). Down-regulation of RANKL ex-
pression by CART is unfavorable to bone resorption and inhib-
its osteoclast differentiation (12, 13). 

IMPLICATIONS OF A RECIPROCAL RELATIONSHIP 
BETWEEN BONE AND ENERGY METABOLISM

The concept of hormonal regulation in which hormones are 
regulated by a feedback loop, the facts that osteoblasts and adi-
pocytes develop from a common precursor cell, the mesenchy-
mal stem cell (15), and that bone remodeling is regulated by an 
adipocyte-derived hormone, leptin, have all aroused interest 
among integrative physiologists regarding the possible endo-

crinal effects of bone on energy metabolism (18). Moreover, an 
unexpected result of investigations on osteocalcin, a non-col-
lagenous protein that is produced by osteoblasts and is involved 
in mineralization and calcium homeostasis, showed that osteo-
calcin gene knockout (OC-/-) animal models had an abnormal 
amount of visceral fat, thus providing the first evidence of a feed-
back loop between the skeleton and energy metabolism (19). 
This has led some researchers to conduct investigations to de-
termine whether bone should be considered a ductless endo-
crine organ in addition to its classic functions of providing a 
framework to support the body and calcium homeostasis. 

NOVEL METABOLIC ROLES OF OSTEOCALCIN

In 2007, a revolutionary reciprocal relationship between bones 
of the skeleton and energy metabolism was proposed, whereby 
leptin influences osteoblast functions and bone remodeling and 
OC in turn influences energy metabolism (20). The fact that only 
a limited number of osteoblast-specific genes encode function-
al molecules made it easy to examine whether transgenic con-
structs or deletion of these genes resulted in alterations in ener-
gy metabolism. Among these genes, the Esp gene encoding pro-
tein tyrosine phosphatase (OST-PTP) was of particular interest. 
Previous studies showed that the Esp gene is up-regulated fol-
lowing differentiation and matrix formation of primary osteo-
blasts and down-regulated in mineralizing osteoblasts (21-23). 
Deletion of the Esp gene in mice (Esp-/-) resulted in a high neo-
natal death rate from severe hypoglycemia associated with hy-
perinsulinemia and enhanced insulin sensitivity mediated by 
increased adiponectin production from adipocytes (20). This 
finding fostered the new hypothesis that osteoblast-specific 
OST-PTP may play a critical role in regulating glucose homeo-
stasis. 
  What makes the Esp gene and OST-PTP particularly interest-
ing with respect to the relationship between bones and energy 
metabolism? In order to answer this question, a thorough un-
derstanding of the biophysical and biochemical properties of 
OC is required. OC is a vitamin K-dependent protein present in 
bones, and contains three glutamic acid residues that are post-
translationally modified by γ-glutamyl carboxylase (24, 25). This 
γ-carboxylation is essential for the protein to have a high affinity 
for mineral ions and enables the OC protein to attract calcium 
ions and incorporate these into hydroxyapatite crystals, which 
make up approximately 70% of bones (24). However, not all of 
the three glutamic acid residues in OC are fully carboxylated 
and incorporated into hydroxyapatite crystals, and the degree 
of carboxylation may vary. Uncarboxylated or undercarboxylat-
ed glutamic acid residues make OC susceptible to release from 
osteoblasts into the circulation (26). Hinoi et al. (27) demon-
strated that leptin induces up-regulation of Esp expression on 
osteoblasts through sympathetic signaling without affecting over-
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Fig. 1. Bimodal effects of leptin on osteoclast differentiation through hypothalamic 
sympathetic signaling and CART.  
CART, Cocaine Amphetamine Regulated Transcript; RANKL, Receptor Activator for 
Nuclear Factor κB Ligand; ATF4, Activating Transcription Factor 4; β Adrb2, Beta 
Adrenergic receptor 2.
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all production of OC, but causing a decrease in the serum con-
centration of uncarboxylated OC (OCuc). This study confirmed 
the report by Lee et al. (20) demonstrating increased concentra-
tions of circulating OCuc in Esp-/- mouse models, besides pro-
viding further evidence that fat regulates bone metabolism. Al-
though the exact mechanism is unclear, it is assumed that in-
hibiting OST-PTP expression negatively influences γ-car–boxyl-
ation of OC, thus promoting the release of OC into the circula-
tion in the form of OCuc. Serum OCuc has been negatively asso-
ciated with bone mineral density at measured bone sites (28-33). 
Surprisingly, serum OCuc appears to be sufficiently physiologi-
cally active to regulate energy metabolism, allowing bone to func-
tion as an endocrine organ (Fig. 2) (20, 34). Esp-/- mice repre-
senting OCuc-gain-of-function would be appropriate to deter-
mine the beneficial consequences of a high serum concentra-
tion of OCuc ([OCuc]) on energy metabolism. 
  Lee et al. (20) compared the effects of different [OCuc] on en-
ergy metabolism in genetically modified animal models (OC-/- 
and Esp-/-) and found that Esp-/- animals with significantly 
higher [OCuc] appeared to be protected from obesity, as evi-
denced by higher energy expenditure and reduced body weight 
and fat accumulation after being fed a high fat diet compared 
with wild-type (WT) and OC-/- models. Esp-/- models also ex-
hibited lower serum levels of triglyceride and free fatty acids, 
suggesting that OCuc plays a role in lipid metabolism. OCuc also 
improved the insulin secretion capacity of the pancreas as mea-
sured by glucose-stimulated insulin secretion test and insulin 
tolerance test. This was evidenced by increased expression of 
MKI-67 and cyclin D, markers for cellular proliferation, in sam-
ples of pancreatic cells and a subsequent increase in pancreatic 
β-cell mass and area, and by increased secretion of adiponectin, 

an insulin-sensitizing adipocytokine, in Esp-/- animal models. 
OCuc also appeared to improve glucose tolerance determined 
by a glucose tolerance test and glucose infusion rate test. It is 
well known that reduction of mitochondrial content results in 
decreased mitochondrial function and leads to impaired ener-
gy metabolism and insulin resistance (35-37). Molecular and 
morphological analyses of the gastrocnemius muscle of Esp-/- 
animal models by Lee et al. (20) revealed an almost threefold 
increase in mitochondrial area and concurrent increase in the 
level of proteins associated with mitochondrial biogenesis in-
cluding Mcad, PPAR-γ, acyl-CoA, UCP2, PGC1α, and NRF1 (38), 
suggesting that mitochondrial content and function were en-
hanced by OCuc. In contrast, OC-/- models displayed opposite 
characteristics of impaired lipid and glucose metabolism, and 
decreased insulin secretion and sensitivity (20). Thus, the revo-
lutionary finding that OCuc positively regulates energy metabo-
lism through increased fat metabolism, energy expenditure, in-
sulin secretion capacity of pancreas, and release of adiponectin 
from adipocytes, and by inducing mitochondrial proliferation 
and function, established a complex crosstalk between bones 
and adipocytes in energy metabolism. 
  Evidence that OCuc enhances energy metabolism was con-
firmed not only in OC-/- mice exhibiting obesity, hyperglyce-
mia, glucose intolerance, and insulin resistance, but also in WT 
mice (34). Ferron et al. (34) showed that OCuc had similar effects 
on energy metabolism in WT mice fed either a normal diet or a 
diet favoring obesity and type 2 diabetes after administration of 
OCuc. This study is especially notable as it proposes a pharma-
cological therapeutic potential of OCuc for obesity and type 2 di-
abetes. OCuc may also provide a novel treatment for sarcopenia, 
the loss of muscle mass and function with aging, when we con-

Fig. 2. Increased [OCuc] in Esp knockout 
mice exerts physiological effects on fat, 
pancreas, and mitochondria to induce 
various metabolic enhancements.
Ost-Ptp, Osteotesticular Protein Tyrosine 
Phosphatase; [OCuc], blood concentration 
of uncarboxylated osteocalcin; Mt, 
Mitochondrial.     
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sider the facts that activation of apoptosis initiated by mitochon-
drial dysfunction contributes to sarcopenia, and that OCuc in-
duces mitochondrial proliferation and functional enhancement 
by increasing expression of proteins associated with mitochon-
drial biogenesis and functions (38, 39).

OSTEOCALCIN AS A POSSIBLE REGULATOR OF 
ENERGY METABOLISM IN HUMANS

Although an association between OC and energy metabolism 
has been demonstrated in mice, it is necessary to address the 
question of whether these metabolic functions of OC also exist 
in humans. Prior to the identification of the novel metabolic 
roles of OCuc in 2007, human studies performed over several 
decades reported markers of low bone turnover, including OC, 
in diabetic patients (40-42). Although OC has been extensively 
investigated in bone biology and related fields, it was not until 
very recently that OCuc was investigated in humans with respect 
to its metabolic functions. Im et al. (43) reported a significant 
reduction in [OC] among type 2 diabetic patients compared with 
normal glucose and impaired fasting glucose groups. These au-
thors also showed significantly decreased fasting glucose and 
HbA1c levels in the highest quartile group for [OC] compared 
with the lowest quartile group in a study involving 339 Korean 
postmenopausal women (43). This inverse relationship was con-
firmed in studies on 1010 elderly Swedish men by Kindblom et 
al. (44) and studies on 380 elderly males and females by Pittas 
et al. (23). Human studies commonly reported an inverse rela-
tion between [OC] and fat mass and plasma glucose level; mul-
tivariate analyses by Im et al. (43) and Kindblom et al. (44) show– 
ed that [OC] is an independent negative predictor of plasma glu-
cose, and Pittas provided the first demonstration that [OC] is 
inversely associated with the homeostasis model assessment for 
insulin resistance (HOMA-IR) in humans (23). Although [OCuc] 
was not measured, such observations suggest a potential meta-
bolic role of OCuc in glycemia and adiposity in humans similar 
to that in the animal studies. It, however, would be premature 
to conclude a causal effect of OCuc on the regulation of energy 
metabolism in humans as the above studies investigated only 
correlations. Furthermore, these studies are limited by the fact 
that [OC] has been reported to vary with multiple factors includ-
ing nutritional status, age, gender, smoking status, physical fit-
ness levels, and season of the study (45, 46).

LIMITING FACTORS FOR SERUM OSTEOCALCIN 
LEVEL

As mentioned above, [OC] varies with multiple factors such as 
nutritional status, age, gender, smoking status, physical fitness 
levels, and season of the study (45, 46). Of these, vitamin K sta-
tus is especially important because vitamin K is a cofactor for 

γ-glutamyl carboxylase responsible for γ-carboxylation of OC, 
thus vitamin K reduces the release of OC into the general circu-
lation while increasing calcification of the bone (24, 25, 47). An 
inverse relationship between [OCuc] and vitamin K status has 
been reported in both human and animal studies (45-49), and 
consequently [OCuc] has frequently been used as a sensitive 
marker of vitamin K nutritional status (50). However, a recent 
study by Yoshida et al. (51), observed that high vitamin K1 (phyl-
loquinone) intake is associated with increased insulin sensitivi-
ty and better glycemic status in the fed state. This observation 
further complicates the complex crosstalk between vitamin K, 
[OCuc], and glucose metabolism as it was expected that vitamin 
K would not positively influence glucose metabolism since it 
promotes γ-carboxylation of OC and thus decreases [OCuc]. An-
other vitamin to consider with regard to bone metabolism is vi-
tamin D, which is known to affect osteoblasts. The biologically 
active and most widely used marker of vitamin D status is 1a,25-
dihydroxyvitamin D3 (1a,25-(OH)2D3) (52). It is believed that 
1a,25-(OH)2D3 positively influences differentiation and miner-
alization of osteoblasts via the vitamin D receptor on osteoblasts 
(53, 54). Although this relationship has not been further investi-
gated, previous studies reported that 1a,25-(OH)2D3 increased 
overall OC production and showed an inverse correlation be-
tween [OCuc] and 1a,25-[OH]2D3 (46, 52-55), suggesting that 
1a,25-(OH)2D3 has a bimodal effect on bone health and OCuc-
mediated energy metabolism. Well-controlled studies on the 
crosstalk between vitamins, [OC], [OCuc], and energy metabo-
lism are needed to better understand the relationship between 
bones and energy metabolism.

SUMMARY AND CONCLUSION

The reciprocal relationship between bones and energy metabo-
lism that arose from the recent identification of novel metabolic 
roles of OCuc has excited integrative physiologists, especially 
those in osteology and endocrinology. This review mainly dis-
cusses this reciprocal relationship, or feedback loop, from a hor-
monal regulation perspective, and reviews newly discovered 
metabolic functions of osteocalcin. Leptin exerts antagonistic 
bimodal effects on bone remodeling through two distinct hy-
pothalamic pathways that function via the sympathetic nervous 
system and CART, thereby acting directly on OC-secreting os-
teocytes, or osteoblasts. Conversely, bones participate in energy 
metabolism through hormonal regulation whereby OC within 
the bones is released into the circulation in the form of OCuc to 
increase energy expenditure, increase insulin secretion capaci-
ty by enhancing pancreatic β cell proliferation, increase insulin 
sensitivity by increasing adiponectin secretion, and reduce fat 
mass. This revolutionary discovery inspired Wolf  (18) to propose 
that the large surface of the skeleton represents an excellent site 
of hormone synthesis. It is noteworthy that the osteoblast-spe-
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cific phosphatase encoded by the Esp gene, OST-PTP, plays a 
critical role in this hormonal regulation. The serendipitous find-
ing that mice lacking an osteoblast specific protein are abnor-
mally obese has led to fundamental progress in related fields 
and addressed many research questions; however, many ques-
tions remain. First of all, the role of leptin in bone remodeling 
in humans is not yet clearly defined despite clarity in animal 
studies. The association between obesity and leptin resistance 
(56) explains the paradoxical observations that obese individu-
als generally have a lower prevalence of osteoporosis when com-
pared with non-obese individuals and that leptin secretion is 
proportional to fat mass. However, inconsistent associations 
between serum leptin levels and bone mineral density from 
human studies have been reported (positive [57, 58]; negative 
[59-61]; or no association [62-64]) and the association between 
intracerebral leptin levels and bone mineral density in humans 
has not been investigated yet. Therefore, data obtained to date 
complicates interpretation of the effects of leptin on bone biol-
ogy in humans and emphasizes the necessity for further inves-
tigations. Secondly, while positive influences of the skeleton on 
energy metabolism are causal in animal models, this remains 
unproven in humans although a positive correlation between 
OC and energy homeostasis was reported in very recent human 
studies. With respect to future research topics, Lee and Karsen-
ty proposed identification of the OC receptor, the nature of OC 
regulation, and the interactions between this novel pathway 
and other pathways regulating energy metabolism (65). Other 
research topics include elucidating the crosstalk between nutri-
tional status, OC, and energy metabolism, and investigating the 
contribution of OC in the development of treatments for com-
ponents of metabolic syndrome such as obesity and both type  
I and II diabetes, and sarcopenia. Thorough and objective re-
search on these topics is expected in related scientific fields over 
the following years. 
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