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Abstract

Background: In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as
activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to
record these activity patterns and to gain insight into olfactory information processing in the brain.

Method: We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of
tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach.
Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme
vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations
of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals.

Results: Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data
from the honeybee AL, as well as it can recover implanted source signals from artificial data.

Conclusions: ImageBee enables automated data processing and visualisation for optical imaging data from the
insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where
modules can be rearranged or added depending on the particular application.

Availability: ImageBee can be installed via the KNIME update service. Installation instructions are available at
http://tech.knime.org/imagebee-analysing-imaging-data-from-the-honeybee-brain.

Introduction
Biological background
Optical recordings with calcium-sensitive, fluorescent
dyes can be used to measure insect brain activity. In
particular, we address questions regarding the olfactory
system of honeybees. Across organisms, odours are
encoded by activity patterns [1] in dedicated brain
regions, such as the olfactory bulb in mammals, or the
insect antennal lobe (AL). The AL of the honeybee Apis
mellifera provides a 160-dimensional coding space,
where a particular odour elicits a characteristic response
pattern across the 160 glomeruli, the functional units of

the AL [2]. Figure 1a shows an anatomical model of the
honeybee AL.
Recording many odour response patterns gives rise to

the species’ olfactome, the entire odour coding space
that defines odour similarity and dissimilarity according
to the species’ sensory input (see e.g. [3] for the Droso-
phila olfactome). Apart from recording odour response
patterns, observing the honeybee AL allows us to answer
questions about odour learning and memory. Honeybees
can be conditioned to associate an odour with a (sugar)
reward, and this can lead to changes in the odour
response pattern after learning the association with the
reward [4]. Even in the absence of odour stimulation,
reverberations of past odour response patterns can be
detected [5], suggesting a role in short-term memory.
Glomerular odour response patterns can be recorded by

imaging with calcium-sensitive fluorescent dyes [5][6][4].

* Correspondence: Martin.Strauch@uni-konstanz.de
1Bioinformatics and Information Mining, University of Konstanz, 78457
Konstanz, Germany
Full list of author information is available at the end of the article

Strauch et al. BMC Bioinformatics 2013, 14(Suppl 18):S4
http://www.biomedcentral.com/1471-2105/14/S18/S4

© 2013 Strauch et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://tech.knime.org/imagebee-analysing-imaging-data-from-the-honeybee-brain
mailto:Martin.Strauch@uni-konstanz.de
http://creativecommons.org/licenses/by/2.0


For this work, we used the dye Fura2-dextran to record
from the honeybee AL. After exciting the dye with light at
a frequencies 340 nm and 380 nm, a CCD camera on top
of a confocal microscope recorded sample fluorescence.
Fluorescence changes are proportional to the changes
in intracellular calcium, a proxy signal for neuron firing
rate [7]. For an example, see Figure 1b: The input for data
processing consists of calcium imaging movies of brain
activity recorded with a temporal resolution of 4-5 Hz. In
the movies, a subset of the 160 glomeruli (see Figure 1a)
can be observed.
During the experiments used for this work, several

movies recorded from the same bee were concatentated.
Movies were either recordings of odour responses or
recordings of periods without odour stimulation. As glo-
meruli have characteristic odour responses, stimulation
with different odours decorrelates the glomerular signals.
As glomeruli also have individual spontaneous back-
ground activity in the idle state, also recordings without
odour stimulation contribute to decorrelating glomerular
signals. Correlations between pixels (time series) from the
same glomerulus, and the fact that pixels from different
glomeruli are (in approximation; for long recordings)
uncorrelated, is the basis for detecting glomerular signals
and for extracting them from the imaging movies.

Motivation and outline
Imaging with calcium-sensitive dyes allows us to record
the signals of many glomeruli simultaneously, gaining
access to the glomerular odour response patterns. Before
evaluating the response patterns, the challenge for data

analysis is to detect glomerulus positions in the movies
and to accurately estimate their signals.
In order to provide a solid foundation for data analysis

and to enable automatic processing of imaging movies,
we have developed a plugin, ImageBee, for the data ana-
lysis framework KNIME [8]. The graphical user interface
of KNIME facilitates construction of data pipelines or
workflows, where algorithms are embedded in a chain
of pre- and postprocessing steps. Each step is implemen-
ted by a module (“node”) in the KNIME workflow. Ima-
geBee is a flexible platform for the analysis of imaging
data from the honeybee brain. Due to the modular prin-
ciple of KNIME, it can be easily extended or adapted to
new kinds of data from emerging technologies such as
two-photon microsopy [9].
Analysis of calcium imaging movies has traditionally

been performed semi-automatically, using software to
preprocess data, to visualise correlations between time
series, and then to select regions of interest, that corre-
spond to the glomeruli, by visual inspection [10][6]. In
contrast, we present an algorithm, along with an imple-
mentation for KNIME/ImageBee, that automatically
extracts glomerular signals from calcium imaging
movies of the honeybee AL.
Similar to concepts from remote sensing [11][12], an

imaging movie can be described by a non-negative mix-
ture model. Pixels (time series) are assumed to contain
either pure glomerular signals, or, in regions of contact,
the additive mixture of one or more glomerulus signals.
This is motivation for a convex analysis approach that
aims to select the generating extreme vectors of a con-
vex cone containing the data. These correspond to the
pure glomerulus signals that can be combined, with
non-negative coefficients, to reconstruct also the
mixtures.
In the following, we first review related work and then

introduce the algorithm (Methods), followed by a
description of the ImageBee plugin, and evaluation of
the algorithm on biological, as well as on artificial data
(Results and Discussion).

Relationship to the conference version
This article is an extended journal version of the confer-
ence paper that appeared in the proceedings of ICCABS
2012 [13]. In the conference version, we developed the
main algorithm for processing imaging movies. The
journal version introduces the ImageBee plugin for
KNIME that contains implementations of the methods
described in this work, as well as a variety of tools for
handling, processing and visualising imaging data.
Furthermore, the journal version provides additional
details on the algorithm and points out relationships to
other methods.

Figure 1 Imaging the AL. a) Anatomical model of the honeybee
AL (generated from the average-shape atlas [31]), illustrating the
view on the AL in calcium imaging experiments. Landmark
glomeruli are labelled according to [30]. b) Schematic for a calcium
imaging movie. The image on top of the stack is the ratio of
images recorded with excitation light at wavelengths 340 nm and
380 nm, which is the input signal for the algorithm. For orientation,
positions of the landmark glomeruli are marked by glomerulus
numbers/labels. Constructing glomerular maps, as with the
algorithm described in this work, facilitates identification of the
glomeruli.
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Related work
Data analysis for calcium imaging movies is still domi-
nated by semi-manual methods that involve user inter-
action to identify glomerulus positions (e.g. [5], [6], [4]).
Algorithmic solutions can be classified as synthetic or

analytic. In a synthetic approach, Stetter et al. [14]
defined nonlinear model functions, e.g. functions
describing odour response and dye bleaching. They
reconstructed honeybee imaging data by estimating the
contribution of each of the model functions to time ser-
ies from the movie. This approach does, however, not
separate glomeruli.
Analytic approaches attempt to decompose the movie

matrix into components that correspond to signals or
latent factors underlying the data. Reidl et al. [15] and
Strauch&Galizia [16,17] applied Independent Component
Analysis (ICA) to imaging movies. While ICA is able to
decompose imaging movies into glomerular signals, these
approaches are adaptations of a general paradigm to ima-
ging data. They rely on statistical model assumptions -
independence and non-Gaussianity for all but one of the
source signals, and do not consider non-negativity.
In contrast, we propose a data-specific mixture model

that avoids these strict statistical model assumptions
and incorporates a non-negativity constraint that proves
beneficial with respect to interpretability of the factors.
Based on the non-negative mixture model, we then
develop an algorithm that identifies the pure glomerular
signals as the extreme vectors of a convex cone that
contains the data (see Methods).
The convex analysis approach has previously found

application in remote sensing and the analysis of hyper-
spectral data [18]. In particular, Ifarraguerri&Chang [11]
and Gruninger et al. [12] have proposed related algo-
rithms that also aim at finding a convex cone containing
the data. For remote sensing applications, the goal is to
identify so-called endmembers, the signals of pure mate-
rials or soil types, that can be used to unmix the signal
of a given pixel, decomposing it into contributions by
the pure materials. Our algorithm utilises a convex cone
approach to find and to select the pure glomerular sig-
nals, which are then postprocessed to remove residual
noise. Mixed-signal pixels are not unmixed, but dis-
carded, as only the pure glomerular signals are relevant
features for the analysis of glomerular odour response
patterns. Another strategy to distinguish glomeruli
based on their differential activity would be to select
pixels that are cluster centers. However, clustering algo-
rithms may group pure and mixed-signal pixels from
the same glomerulus into one cluster, or they may result
in overclustering, creating additional clusters for the sig-
nal mixtures. Employing the mixture model and the
convex cone approach is what renders our algorithm
robust against selecting mixed-signal features.

Our algorithm can be seen as a feature selection
approach that selects a subset of pixels (corresponding
to the extreme column vectors). The approach is, how-
ever, unsupervised, and the term “feature selection” is
often used in a supervised context, where features are
sought that improve classification success [19]. Our
algorithm utilises signals selected from the movie matrix
as basis vectors in a matrix factorisation framework. In
this respect, it can be understood as performing a col-
umn-based matrix factorisation of the kind A ≈ CX,
where the m × n matrix A is approximated with a sub-
set of its columns in C (m × c) that are combined by
(non-negative) coefficients in X (c × n). Column-based
matrix factorisation approaches [20,21] focus on select-
ing the most relevant vectors from a matrix to use them
as interpretable basis vectors, as opposed to generating
features by linear combination, such as in PCA and ICA.

Methods
Matrix factorisation framework for imaging movies
An imaging movie can be represented as a m × n matrix
A, where m is the number of time points and n the
number of pixels. The movies used for evaluation in
this paper have 140 × 130 pixels and about 4,000 time
points, where both numbers could be higher in theory.
They depend on the chosen resolution of the recording
and e.g. on the number of odour stimulations.
We can factorise A as follows, using only k factors,

giving rise to the approximated Ak:

Am × n : Ak = Tm × kSk × n =
k∑

r=1

TIr SrJ (1)

While being an approximation, Akshould still be simi-
lar to the original matrix A in the sense that the Frobe-
nius norm error ‖ A − Ak‖Fr is small. In Equation 1,
matrix T has a temporal interpretation as it contains k
time series, and matrix S has a spatial interpretation as
it contains k images.
Regarding notation, AIjis the jth column of A, i.e. the

jth pixel or pixel time series. The rows of S are denoted
as s(r) and the columns of T as t(r).
With respect to minimising ‖ A − Ak‖Fr, the optimal

solution is given by the principal components of A. For
the sake of interpretability, we will introduce further
constraints and demand that T should be restricted to
columns selected from A (or at least to sparse combina-
tions, i.e. averages over a limited number of similar vec-
tors), and that S should be non-negative. The ideal
factorisation should yield the glomerular signals in the
columns of T, and images describing the position of the
glomeruli in the rows of S. As we will deal with both
cases, a principal component solution, and a column-
based solution, we reserve k for the number of principal
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components and denote the principal component solu-
tion as Ak. We use c to refer to the number of columns
selected from A, and Ac for the column-based solution.
In the following, we describe an algorithm for com-

puting a matrix factorisation with the desired properties.
The algorithm can be structured into three main steps:

1. Preprocessing by z-score normalisation and PCA.
2. Convex cone fitting (Algorithm 1).
3. Postprocessing to remove residual noise.

Depending on the nature of the data, additional pre-
processing steps may be added, such as spatial filtering
of the images or correction for animal movement.

Preprocessing with PCA
For each AIj, we computed the mean µj and the standard
deviation sj, and then performed z-score normalisation
as AIj:= (AIj− µj)/sj.
We then performed Principal Component Analysis

(PCA) [22], computing the top-k principal components
of A. In the notation from Equation (1), matrix S con-
tains the k principal component images, and the corre-
sponding loadings are in matrix T. Similarly, computing
PCA on AT would give rise to principal component time
series.
Fixing k and denoting as Pkthe matrix of the top-k

principal components, PCA minimises ‖ PT
k Pk − ATA‖Fr

([22], chap. 3.2). Thus, PCA preserves the covariance
structure in the movie, such as the covariance between
pixels that belong to the same glomerulus. Optimal pre-
servation of the covariance structure and optimal reduc-
tion of the Frobenius norm error ensure a good
approximation to A by PCA. Dimensionality reduction
by PCA allows any subsequent algorithm to be carried
out on a much smaller matrix. The principal component
images in S (Figure 2) illustrate another important
aspect of PCA: Signals are accumulated in the top prin-
cipal components. The (first) principal component is the
variance-maximising projection [22]. Transient signals,
such as glomerular odour responses or spontaneous activ-
ity, contribute to the variance. Glomerular signals are thus
concentrated in the top principal components with high
eigenvalues, allowing to discard components with lower
eigenvalues that contain mostly noise (Figure 2).
Both preprocessing steps, z-score normalisation and

PCA, help to increase the prominence of glomerular sig-
nals in the movies. Due to its optimality properties, PCA
is of general value. Z-score normalisation proved beneficial
on the Fura2-dextran recordings used in this work, but it
may not be as useful for recordings with other dyes that
exhibit stronger bleaching when exposed to light.

Convex cone fitting
The movie matrix A can be described by the following
data model:

A = TS0+ + N (2)

A set of time series in the columns of T can be com-
bined with non-negative coefficients in S0+ to recon-
struct A up to the residual noise N. Each time series
from A is either represented by one of the basis time
series in T, or it can be modelled as a combination of
several time series in T with non-negative coefficients.
The model assumption is that we can observe pure sig-
nal sources in the middle of the glomeruli, whereas at
the fringes of the glomeruli light scatter from neigh-
bouring glomeruli can lead to additive signal mixtures.
Ideally, the pure signal sources should be selected into
T, and mixtures can then be modelled with the help of
the coefficients in S0+.
For the moment, we omit the noise term N, which is

dealt with in postprocessing (see next section). We
assume that the pure signal sources are present in A,
and we will use concepts from convex analysis to find
them.
We first introduce definitions: A set of vectors V is

called a convex cone if a1v1 + a2v2 Î V, where a1, a2

are non-negative and v1, v2 Î V. Linear combinations
with non-negative coefficients are also called “conic
combinations”. By definition, the extreme vectors of a
convex cone are those that cannot be reconstructed by
conic combination. However, perfect reconstruction of
all other vectors in V is possible by conic combination
of the extreme vectors[23][24].
Returning to Equation 2, the columns of matrix T

span a convex cone that is pointed at the origin. The
cone encloses a part of A that can be reconstructed per-
fectly by conic combination of the columns of T, and
the remaining data points are reconstructed (with an
error) by projection to the closest point on the bound-
ary of the cone. Thus, if we choose the set of extreme
vectors of A into T, the cone defined by T encloses all
data points and we achieve perfect reconstruction. Inter-
estingly, the extreme vectors do not only guarantee us
perfect reconstruction, but they also identify the pure
signal sources, as, by the definition, the extreme vectors
cannot be reconstructed by conic combination.
We thus propose Cone_fitting (Algorithm 1) as a

heuristic to find extreme vectors. The strategy is a
greedy forward heuristic, selecting at each iteration the
column that is least explained by conic combination of
the columns selected so far. Thereby, we make a locally
optimal choice with respect to selecting an extreme
vector.
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During c iterations, r = 0, . . . , c − 1 columns t(r) are
selected into T, and the current version of matrix A, A{r},
is downdated by removing the influence of t(r). In parti-
cular, we compute the corresponding spatial mapping

s(r) = ATt(r) and then compute s0+
(r) by projecting negative

entries in s(r) to zero. Then, we downdate A by setting
A{r+1} = A{r} − t(r)s0+

(r). The next column is chosen as the

column with the highest Euclidean norm in A{r+1}. This
stepwise removal of the chosen column, and everything
that can explained by it with conic combinations, works
towards selecting a non-redundant set of vectors. As the
iteration proceeds, the norm of mixed signal columns is
reduced by the downdating, rendering them less likely to
stand out as the highest norm column that is the candi-
date for the next extreme vector. The first vector t(0)

needs to be initialised. For example, we could choose the
vector with the largest Euclidean norm in A. For this
work, we chose the column with the largest distance to a
randomly selected column in order to obtain a vector
from the hull, more explicitly avoiding to start the itera-
tion with a mixed-signal column.
Figure 3 visualises the results of applying Algorithm 1

to the calcium imaging movie from the PCA example
(Figure 2). The images in Figure 3 are visualisations of
the row vectors of matrix S. They contain the spatial
mapping of the selected (glomerular) time series and
indicate the position of the respective glomeruli (or other
signal sources) in the image plane. Summarising matrix
S, we compute the clustering induced by S: Figure 4a.
Here, each pixel is assigned a colour depending on in

which row (image) of S it has the highest coefficient. The
induced clustering shows that clusters of pixels with
similar signals exist, the glomeruli.

Postprocessing to remove N
So far, we have not yet dealt with the noise term N
(Equation 2). Furthermore, the induced clustering does
not yet distinguish pure signals from mixed signals in
regions of contact with other glomeruli. In Figure 4a,
mixed signal pixels are discretised to the source signal
with the strongest contribution. We employ a postpro-
cessing step (Figure 4b) to remove the residual noise, as
well as the mixed signals. This
Algorithm 1 [T, S]= Cone_fitting (A(m × n), c)

for r = 0 to c − 1 do
if (r == 0) then

initialisation of p: see main text
end if
t(r) = A{r}

Ip / ‖ A{r}
Ip ‖

s(r) = A{r}T
t(r)

s0+
(r) = negative to zero

(
s(r)

)
TIr = t(r); SrJ = s0+

(r)

A{r+1} = A{r} − t(r)s0+
(r) //form residual matrix

p = arg maxp||A{r+1}
Ip || //index of next column

end for
leads to refined signals, and, with respect to the

induced clustering, to a map of pure glomerular signals
(“glomerular map”, Figure 4c).
Algorithm 1 selects time series from the movie matrix,

that are (in approximation) pure source signals and not

Figure 2 Principal Components of an Imaging Movie. Selected principal component images of a calcium imaging movie. Principal
components are sorted by eigenvalue (highest to lowest). For each image, the colour scale is min-max, i.e. white corresponds to negative
values, and black to positive values.
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mixed with other source signals. The residual noise N
can be averaged out. The more time series from the
same glomerulus we can use for averaging, the better.
However, we should avoid to include time series that
are more similar to another source signal.
We project A onto T and then average over all time

series that are closer to a given t(r) Î T than to any
other column of T. This is visualised in Figure 4b: A is
projected onto the first two column vectors t(0) and
t(1) Î T. Each dot corresponds to one time series, where
t(0) and t(1) end up at the extremes of the two “arms”.
The postprocessing step consists of averaging over the
coloured dots, those that are closer to t(0) or t(1), respec-
tively, than to any of the other t(r) Î T. The averaged
signals are denoted as t̂

(0) and t̂
(1) , respectively.

For the row vectors ŝ(r) (images), this means that all
pixel coefficients are set to zero that do not contribute

to the average t̂
(r) . The effects of the postprocessing

step can then be visualised by the new induced cluster-
ing in Figure 4c. White pixels do not participate in any
average: They contain mixed signals that are not close
enough to any of the pure signal sources. The coloured
areas indicate the pixels which contribute to the average
signal of the respective glomerulus. Spatially contiguous
clusters appear as a property of the data: Neighbouring
pixels from the same glomerulus are correlated over
time. However, at no point does spatial contiguity enter
as a criterion into the algorithm.

Comparison to other methods
Manual approaches to process imaging data (see e.g.
[10]) rely on the evaluation of correlations between time
series: Correlations between neighbouring pixels (time
series) are visualised, and then feature selection is

Figure 3 Applying Algorithm 1 to a calcium imaging movie (same movie as in Figure 2): The images show the top-10 rows of matrix S.

Figure 4 Clustering and Postprocessing. a) Induced clustering, where each pixel is assigned to the row of S (see Figure 3) where it has the
highest coefficient. b) Visualisation of the signal refinement procedure in postprocessing. The movie matrix is projected onto the top-two
signals, t(0), t(1) Î T. Every black dot corresponds to a time series (pixel), and all time series that have been selected into T are shown as red dots.
After averaging over the time series in the coloured areas, signals are shifted from t(0) to the mean t̂

(0) and from t(1) to the mean t̂
(1)

c) Glomerular map: Induced clustering based on Ŝ , i.e. after postprocessing. Pixels that do not participate in any mean signal are set to white.
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performed manually after inspection of these visualisa-
tions. Our method automatically extracts pure signal
vectors, that are typically found in the middle of the glo-
meruli, and the corresponding images in matrix X
(Figure 3) can be interpreted as the spatial distribution
of correlation with the basis signals in T. While PCA
preserves the correlation structure in the data, different
glomerular signals are not split up into different princi-
pal components, as it is accomplished by Algorithm 1.
When using PCA to factorise the movie A, the images
in S (Figure 2) are dense, with many non-zero pixels,
whereas the convex cone fitting in Algorithm 1 results in
sparse images with only few non-zero pixels (Figure 3).
This illustrates the different concepts behind the two
approaches: Principal components are means (in a sub-
space), whereas we select extreme vectors. While PCA is
optimal with respect to reducing the Frobenius norm
error, it can be argued that the extreme vector solution is
more interpretable: The time series vectors correspond-
ing to the images in Figure 3 can be interpreted as the
signals of individual glomeruli, whereas this is not the
case for the PCA solution (Figure 2).

Implementation for KNIME
The central part of our method is the Cone_fitting pro-
cedure (Algorithm 1) that selects glomerular time series
from an imaging movie. Yet, image analysis often
requires that data be channelled through a pipeline of
consecutive processing steps. In this work, we employ
z-score normalisation as a preprocessing step and PCA
for denoising and dimensionality reduction before per-
forming Cone_fitting. Then, different steps may be
taken: The user might wish to view a glomerulus map,
the glomerular time series or a low-rank reconstruction
of the movie matrix. Ultimately, novel methods might
be developed that improve a certain part of the pipeline,
or a preprocessing step that proved beneficial for the
data at hand might not be as useful for other data types,
e.g. when a different recording technique is employed.
Providing a user interface that is as flexible as it is easy

to operate, we implemented our method for the open-
access platform KNIME [8]. In a KNIME workflow, data
processing pipelines can be arranged based on a modular
principle where individual processing steps, such as PCA,
are available as a nodes. Each node contains a Java pro-
gram and individual nodes can be connected to create a
data pipeline (Figure 5). For implementation, we relied on
the libraries provided by KNIME, as well as on the Image
Processing Plugin (http://tech.knime.org/community/
image-processing) for handling image data within KNIME.
Matrix operations were implemented using the CERN
Colt (http://acs.lbl.gov/software/colt/) and Parallel Colt
[25] libraries.

We implemented KNIME nodes for all the preproces-
sing steps described in this paper and the Cone_fitting
algorithm, along with several other nodes for data visua-
lisation, e.g. for creating a low-rank reconstruction of
the original movie matrix and for visualising it using a
false-colour scale. The modular architecture of KNIME
ensures that the toolkit can be easily extended.
At any step in the pipeline, data can be written to files

or taken over by other nodes available for KNIME that
also features connections to ImageJ [26] and R [27].
Fixed processing pipelines can be summarised in meta
nodes and loop nodes allow for repeated execution of
the pipeline, e.g. by iterating over a list of files. We have
bundled our KNIME nodes in a plugin, ImageBee, that
is available online. ImageBee extends KNIME by the fol-
lowing nodes (details are available on the node descrip-
tion pages within KNIME).
• VWSReader: Reader for the TILL Vision format.
• Stabiliser: Correction for animal movement/

shifts between movies by cross correlation.
• Normalisation: Zscore, FoldChange, Histo-

gramNormalisation, ImageArithmetic: sub-
tract/add other movies, e.g. a control measurement
• Filters: SpatialFilter, TemporalFilter
• PCA: SamplingPCA (exact PCA or approximate

PCA by pixel sampling [17]), CCIPCA (incremental
PCA [28])
• ConvexCone: Algorithm 1 from this paper
• Visualisation: ColorTable, ApplyColorTable,

ShowRoom (viewer), OverlayMap (superimposes a glo-
merulus map onto movie)
• Matrix operations: MatrixMultiplication,

BackProject (T := AS), TimeseriesProjector
(S: = T −1A)
• Helper nodes: ImageExtractor, SplitMo-

vies, MergeMovies

Example Pipeline in KNIME
For illustration of the data pipelining concept, refer to
Figure 5, where we show a KNIME pipeline implement-
ing the method described in this paper. Imaging movies
are read by a reader node (TILL Vision container format
“.vws”). As the data is a concatentation of movies
recorded intermittently in the same bee (Figure 1b), the
individual movies might be slightly shifted due to animal
movement or changes in experimental setup. If neces-
sary, the Stabiliser node aligns subsequent movies
optimally by cross correlation.
Then, the data flow is split into two pipelines, where

the upper pipeline computes a glomerular map and the
lower pipeline computes glomerular time series. For
computing time series, the movie is only treated with
FoldChange that is configured to normalise time series
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by subtracting the mean during the interval before odour
stimulation, thus highlighting changes due to the
stimulation.
As Algorithm 1 is performed in PCA space where the

time dimension is reduced to k, the output of Convex-
Cone is the spatial matrix S (see Figure 3), and not the
time series matrix T . For the KNIME implementation
(Figure 5) we thus employ the node BackProject that
computes the full-length matrix T by projecting the
movie matrix A onto S. Time series are then written to
a text file for further analysis, e.g. with a statistics soft-
ware. By default, ConvexCone performs signal refine-
ment to remove residual noise, i.e. the procedure from
the KNIME pipeline in Figure 5 is equivalent to com-
puting matrices T̂ and Ŝ (Figure 4).
In the upper pipeline, a glomerular map is con-

structed as described above by first z-score normalising
the movie (Zscore), applying PCA and Algorithm 1
(ConvexCone). Here, the SamplingPCA node is con-
figured to compute exact PCA. Approximations to
PCA that can lead to considerable speedups are dis-
cussed below.

Availability
The ImageBee plugin for KNIME (http://www.knime.
org) is available online via the update site for KNIME
community contributions: http://tech.knime.org/update/
community-contributions/nightly. Please install Image-
Bee and the KNIME Image Processing plugin (required
for handling image data in KNIME). Detailed installation
instructions, downloadable KNIME pipelines (for glo-
merular maps, time series, low-rank reconstructed
movies), and an example dataset are available at http://
tech.knime.org/imagebee-analysing-imaging-data-from-
the-honeybee-brain.

Results and discussion
Computational complexity
Computational complexity of Algorithm 1 is dominated
by forming the m × n residual matrix c times. After
dimensionality reduction with PCA, the computational
effort for performing Algorithm 1 on a small matrix is
negligible. The computational load of the entire method
depends mainly on preprocessing, and in particular
on PCA.
In our KNIME plugin, we provide three algorithms for

computing PCA. The SamplingPCA node implements
an iterative PCA approach (NIPALS, [29]).
Optionally, a speedup can be achieved by pixel impor-

tance sampling. For example, by sampling 5% of the pixels
based on a biologically motivated importance criterion
[17], running time can be reduced to about 5% of the run-
ning time for exact PCA. We have previously shown [17]
that PCA with pixel sampling leads to high quality approx-
imations to the principal components on imaging data.
Another variant is an incremental PCA approach,

CCIPCA [28]. The CCIPCA algorithm finds an approxi-
mate solution to PCA by incrementally processing a
movie stream. It is a memory-efficient way of computing
PCA, as, at any given time point, only the current image
from the movie stream and the principal components
are kept in memory.
Iterative PCA has a complexity of O(mnki) where

m and n are the movie dimensions, k is the number of
principal components and i the number of iterations
until convergence. The pixel sampling approach can
substantially decrease the number of pixels n and
thereby complexity of iterative PCA. Incremental PCA
with the CCIPCA algorithm does not reduce n, but it
saves the factor i as no convergence is involved, leading
to a complexity of O(mnk) [28].

Figure 5 KNIME Pipeline. Image processing with the ImageBee plugin for KNIME. Movies are read in by the VWSReader node and corrected for
animal movement with the Stabiliser node. The upper pipeline then follows the method described in this paper and computes a glomerular
map that is displayed by the visualisation node ShowRoom. The lower pipeline normalises movies by subtracting the mean activity before odour
stimulation (node FoldChange) and computes glomerular time series in matrix T given matrix S from the ConvexCone node (Algorithm 1) and
the movie A. Time series are written to a CSV file. See main text for details on the individual processing steps.
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Parameter settings
Two parameters need to be set, the number of principal
components k and the number of time series/basis sig-
nals c for Cone_fitting (Algorithm 1). In both cases,
default values (k = c ≈ 50) can be employed for typical
calcium imaging recordings of the honeybee AL (as
used in this work or e.g. in [4,10]).
For very large k we would sacrifice the dimensionality

reduction aspect of PCA, while information would be
lost by choosing a very small k. From the typical dataset
in Figure 2 it is apparent that values of k around 50 are
a good compromise in this respect.
Regarding c it should be noted that Cone_fitting

returns nested basis vectors, i.e. given a fixed starting
point, the nth basis vector remains the same, regardless
of the size of c. This is different from a common beha-
viour for clustering algorithms where cluster centers
move when the number of clusters is changed. As we
know that there are between 20 and 40 glomeruli that
can be visible at the most (see model in Figure 1a), set-
ting c to a value in this range is a reasonable choice.
Choosing a slightly larger c accounts for the presence of
non-glomerular objects in the movies that also have
their own signals.
While, in principle, c is an uncritical parameter, it can

become relevant for signal refinement in postprocessing
(Figure 4). For large c, the distance to the closest basis
signal tends to decrease, simply because there are more
basis signals. This leads to averages over a smaller
amount of time series (coloured dots in Figure 4b) and
thus to smaller clusters (Figure 4c). Thus, especially for
recordings with a small number of glomeruli it can be
helpful to lower c in order to increase cluster size.

Evaluation on artificial data
For evaluation, we constructed artificial datasets with 16
known source signals each. The biological datasets used
in this work contain both recordings of odour responses
and of spontaneous background activity in the idle state.
Generally, odour response recordings have high peak
amplitudes directly after odour presentation, while spon-
taneous activity has lower amplitudes.
To check for possible performance differences

between the data types, we used two artificial datasets,
“odours” and “idle”. For both datasets, source signals
were derived from real measurements (see Figure 6a for
examples), i.e. signals were distinct, but not perfectly
uncorrelated. For both artificial datasets, source signals
(µ = 0, s = 1, shifted to be non-negative) were assigned
to spatially contiguous, partially overlapping clusters
(Figure 6b). In regions of overlap, signals were additive
mixtures. Finally, Gaussian noise (with standard devia-
tion s) was added (Figure 6c).

We then measured how well the implanted source sig-
nals could be recovered from the artificial datasets for
varying noise levels s. Source recovery is expressed by a
correlation score based on the Pearson correlation coef-
ficient r(x, y) between time series vectors x and y. For a

recovered signal �

t
(i) and known source signal u(j), the

correlation score is defined as:

corr =
1
n

n∑
i=1

argmaxj ρ(̂t(i), u(j)) (3)

We performed Algorithm 1 (with peprocessing by
PCA) on both artificial datasets. Across a range of noise
levels from s = 0.1 to s = 1, sources could be success-
fully recovered on both datasets (Figure 6d). A sharp
decline in source recovery occurred for s >1, which,
however, could be remedied by spatial filtering. In order
to reduce noise, we smoothed images with a Gaussian
kernel (width = 7). With the additional spatial filtering,
source recovery was possible even for higher noise levels
up to s = 2.
Figure 6e illustrates source recovery, showing the

induced clusterings. For low noise, all sources are clearly
visible as clusters, whereas mixed signals in regions of
overlap are excluded and set to white. For higher noise
levels, the sources could still be detected, however very
few pixels were sufficiently close to the selected source
signal. This left fewer pixels to average over in the post-
processing step, leading to low correlation scores. Noise
reduction by spatial filtering rendered more pixels suffi-
ciently close to the source signal, which resulted in
smoother clusters and better source recovery due to
averaging over a larger number of pixels.
Source recovery was similar on both data types. For

high noise levels, in particular on spatially filtered data
(Figure 6c), performance was slightly better for the
“odours” dataset than it was for the “idle” dataset. This
can be explained by the clearer signals during odour
responses, as opposed to low amplitude fluctuations in
spontaneous activity that are more susceptible to high
noise levels.

Evaluation on biological data
Finally we tested the ImageBee plugin on imaging
movies from the honeybee AL (Fura2-dextran stainings)
that contained measurements of both odour responses
and spontaneous background activity. For each imaging
movie, we performed Algorithm 1 with PCA preproces-
sing and followed by spatial filtering. As a result, we
obtained for each movie a time series matrix T̂ , an
image matrix Ŝ , and a glomerular map. Figure 7 shows
low-rank reconstructions of imaging movies, computed
as Ac = T̂Ŝ and displayed in a false-colour scale. This
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visualises the response pattern sequence after odour sti-
mulation. For raw images, see Figure 7a. Low-rank
reconstructed images are shown in Figure 7b (odour:
peppermint oil) and Figure 7c (odour: nonanol). In both
cases, the same odour response has been measured
twice, giving an impression of inter-trial variability.
While there is variability in the glomerular odour
responses, both within and between animals, stable
odour representations can be obtained by averaging over

many responses. In fact, odour responses in the honey-
bee are sufficiently characteristic to speak of a species-
specific olfactory code [2].
Based on the glomerular maps, we could determine

the identity of landmark glomeruli using an anatomical
model of the honeybee AL [30] (s.a. Figure 1). Figure 8a
shows glomerular maps from two different bees. The
number of glomeruli in a map depends on several
experimental parameters, e.g. the focal plane of the

Figure 6 Evaluation: Artifical Data. a) Example sources for the “idle” and “odours” datasets. b) Image from an artificial imaging movie
(no noise added). Artificial glomeruli are circular and overlap. c) Consecutive images from an artificial imaging movie (noise with s = 0.3
added) d) Correlation scores for varying noise levels on the “idle” and “odours” datasets. Left: Correlations scores for data without smoothing
by spatial filtering. Right: Smoothing with a Gauss filter improves correlation scores for high noise levels. e) Glomerular map for the
“idle” dataset. From left to right: Noise level s = 0.7, noise level s = 2 without spatial filtering, noise level s = 2 with additional spatial
filtering.
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recording. Despite experimental and also biological var-
iation in individual bees, AL anatomy is partly conserved
between bees (Figure 8a).
This allows for comparing odour response time series

(matrix T̂ ) for glomeruli that have been identified based
on their position in the glomerular maps. Figure 8b
shows time series for three different glomerulus types in
response to the odour nonanol. Time series in Figure 8b
are pooled data from several animals: Two odour
responses were measured in each of three different bees.
Despite some variability, response amplitude and tem-
poral dynamics of the glomerular odour responses are
conserved, both within and between animals.

Conclusions
We have introduced the ImageBee plugin for KNIME as
a platform for analysing and visualising imaging data

from the insect AL. Previously, data analysis in this field
required manual selection of regions of interest (as e.g.
in [5][6][4]). The ImageBee plugin enables automatic
detection of glomerulus positions in calcium imaging
movies (Figure 8a), it automatically extracts glomerular
time series (Figure 8b), and it can be used to produce
denoised versions of the imaging movies by low-rank
reconstruction (Figure 7). At the core of the image pro-
cessing pipelines that can be constructed with ImageBee
lies an algorithm (Algorithm 1) that is based on a data-
specific mixture model and that leads to a factorisation of
the movie matrix with interpretable basis vectors. These
are either time series selected from the movie matrix, or,
after postprocessing, combinations, with non-negative
coefficients, of a limited number of similar time series
vectors. This interpretability aspect is what distinguishes
our method from more general approaches, such as PCA,

Figure 7 Evaluation: Biological Data. a) Consecutive images (340 nm/380 nm) from a calcium imaging movie of the honeybee AL. b) Low-rank
reconstruction with the method presented in this work. During the interval marked with the black bar, the odour peppermint oil was administered
to the bee. The two rows show two responses to the odour peppermint oil measured in the same bee. The images in the first row ("1st. pep. oil”)
correspond to the raw images in a). Each pixel has been normalised to its mean intensity before odour application. The colour scale is min-max
(blue-red) for each row. c) In another bee, responses to the odour nonanol were measured. Data treatment and colour scale as in b).
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where basis vectors can be linear combinations of a large
number of vectors with mixed-sign coefficients.
While the software has been designed for and tested

on honeybee recordings with Fura2-dextran, a large
number of KNIME nodes for data pre- and postproces-
sing are available, such that it can be adapted to other
kinds of data with similar properties, e.g. imaging
movies from other insect species, recordings that rely
on other calcium dyes or on other techniques, such as
multi-photon microscopy. In all these cases, a so-called
functional segmentation of the image plane can be
achieved, a segmentation into units (glomeruli) with
similar signals over time.
Reproducible results by automated and deterministic

processing, accurate estimation of glomerular time ser-
ies, along with visualisation of the spatial aspect of
odour response patterns by denoised movies, are the
basis for analysing data on the physiology of olfactory
coding, odour learning and memory.
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