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Abstract: Matrix vesicles are key players in the development of the growth plate during endochondral
bone formation. They are involved in the turnover of the extracellular matrix and its mineralization, as
well as being a vehicle for chondrocyte communication and regulation. These extracellular organelles
are released by the cells and are anchored to the matrix via integrin binding to collagen. The exact
function and makeup of the vesicles are dependent on the zone of the growth plate in which they
are produced. Early studies defined their role as sites of initial calcium phosphate deposition based
on the presence of crystals on the inner leaflet of the membrane and subsequent identification of
enzymes, ion transporters, and phospholipid complexes involved in mineral formation. More recent
studies have shown that they contain small RNAs, including microRNAs, that are distinct from the
parent cell, raising the hypothesis that they are a distinct subset of exosomes. Matrix vesicles are
produced under complex regulatory pathways, which include the action of steroid hormones. Once
in the matrix, their maturation is mediated by the action of secreted hormones. How they convey
information to cells, either through autocrine or paracrine actions, is now being elucidated.

Keywords: exosomes; matrix vesicles; microRNA; 1α,25(OH)2D3; 24R,25(OH)2D3

1. Introduction

Matrix vesicles (MVs) are extracellular organelles ranging in size from 50 to 150 nm
in diameter that are anchored to the extracellular matrix (ECM) of mineralized tissues via
integrin binding to collagen. They were first identified in the 1960s by transmission electron
microscopy of calcifying neoplasms, as well as in calcifying tissues, including the mam-
malian growth plate, the osteoid synthesized during primary bone formation, in dentine
during tooth formation, and in the intima of blood vessels undergoing calcification [1,2].
In all cases, they shared a circular morphology and a bilaminar membrane [3–5]. Because
they were originally identified at sites where the first calcium phosphate crystals were
deposited in the matrix [6], the early publications describing them focused on their role in
mineralization [7–9].

Methods for isolating MVs led to the observation that they were enriched with tissue
non-specific alkaline phosphatase (TNAP), an ecto-enzyme that is anchored to the outer
leaflet of the MV membrane via glycosylphosphatidylinositol [10] and is also present in
the plasma membranes of the parent cells [1]. This observation led to the use of alkaline
phosphatase-specific activity as the defining characteristic of matrix vesicles isolated by
enzymic digestion of the tissue, followed by differential ultracentrifugation of the ECM
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digest. Biochemical analysis of the isolated MVs provided additional information that
explained how they contribute to calcification, first by providing sites for initial calcium
phosphate crystal formation and via enzymes that increase local phosphate ion concentra-
tion. Subsequent studies demonstrated that MVs also contained enzymes that could process
the ECM, facilitating crystal growth, and that MV composition and function were regulated
by systemic hormones, including 1α,25-dyhydroxyvitamin D3 [1α,25(OH)2D3] [8,11–15].

The ability to isolate MVs from cultured chondrocytes and osteoblasts has enabled
investigators to gain a more complete understanding of their composition and the role that
they play in regulating the cells that produce them. The goal of this review is to provide
a synopsis of these studies, using the mammalian growth plate as the primary model
system, given the depth of information that exists in the literature. As our understanding
of extracellular vesicles has increased, the question of whether MVs are a subspecies of
exosomes is important to address, particularly in light of the finding that MVs contain
microRNAs that are also reported to be in exosomes. The mammalian growth plate as a
model system is no less valuable in this regard, as it provides us with a well-defined linear
system for tracking how MVs change as a function of space and time in vivo, and these
relationships are retained in culture.

2. The Mammalian Growth Plate

The model system that has yielded the most information about matrix vesicles is the
mammalian growth plate. Mammalian bone growth is driven by two types of ossification.
Endochondral ossification is responsible for long bone growth, while intramembranous
ossification primarily produces the flat bones found in the skull [16]. Both processes stem
from mesenchymal tissue.

Embryologically, the skeletal bone begins as a cartilage template. This template forms
a region of transition in which the chondrocytes align in columns, termed the growth plate.
This process is regulated by a number of factors, including parathyroid-hormone-related
peptide (PTHrP) and Indian hedgehog (Ihh) [17–19]. As the chondrocytes undergo terminal
differentiation, they mineralize their ECM and secrete proteins that recruit osteoclasts to
resorb the calcified cartilage as well as vascular endothelial cells, resulting in capillary
invasion of the tissue [20]. Osteoprogenitor cells then migrate to the sites via the newly
formed vasculature, differentiate into osteoblasts, and form bone [21].

A similar process occurs during post-fetal long bone growth, where the growth plate is
located between epiphysis and metaphysis and at the chondro-occipital junction at the base
of the skull, as well as at the interface of bone and the costochondral cartilage. All of these
sites are characterized by a region containing chondrocytes in a glycosaminoglycan-rich,
type II collagen matrix [22,23]. These cells respond to regulatory signals to align in columns
and undergo terminal differentiation [20]. Growth plates can be divided into different zones
populated by chondrocytes with distinct phenotypical characteristics. Chondrocytes mature
as they move through the growth plate, passing from the proliferating cell zone through
the prehypertrophic and hypertrophic cell zones and finally into the calcified cartilage
zone [20]. The rate and extent of this process are under hormonal control, including
thyroid hormone [24], estrogen and testosterone [25–27], and the vitamin D3 metabolites,
1α,25(OH)2D3 and 24R,25-dyhydroxyvitamin D3 [24R,25(OH)2D3] [28–32].

3. Matrix Vesicles: Extracellular Matrix Microsomes

Matrix vesicles are a distinctive feature of the growth plate ECM. They are produced
by the growth plate chondrocytes and appear to be bud off laterally from the chondrocyte
parent cell, although the exact process by which this occurs remains unclear [5]. Recent work
using osteoblasts implicates Stx4a, a soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) protein, in the release of matrix vesicles into the matrix as Stx4a
conditional knockout mice were observed to contain fewer matrix vesicles [33]. Two other
types of SNARE proteins (Snap23 and Vamp2) were also found to be differentially expressed
though their role in vesicle release was not investigated.
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MVs are anchored within the ECM via integrin binding to type II collagen [3]. They
can be isolated from growth plate cartilage by digesting the ECM with collagenase and
hyaluronidase followed by differential ultracentrifugation and have been shown to be
heterogeneous in content based on electrophoretic mobility and biochemically [34,35]. Their
payload consists of minerals, enzymes, factors, and microRNAs with distinct packaging
dependent on where in the growth plate they are produced [36–38]. While much is known
about the morphology and composition of these extracellular organelles in their role as
initial sites of calcium phosphate formation, we are only now beginning to understand how
they contribute to the overall physiology of the growth plate.

Matrix vesicles possess a unique phospholipid composition, with high levels of car-
diolipin and sphingomyelin compared to the plasma membrane [39]. Phosphatidylserine
and phosphatidylinositol are enriched in the inner leaflet of the phospholipid bilayer [4,40].
Calcium–phosphatidylserine–phosphate annexin complexes, which are found at hydrox-
yapatite nucleation sites, are present in matrix vesicles [41,42] together with a proteolipid
phosphatidylinositol complex capable of mineral deposition in vitro [43]. This suggested
that the primary role of the extracellular organelle was to provide sites for initial crystal
formation in tissues, such as the hypertrophic cell zone of the growth plate, primary bone,
or fracture callus, where there was no pre-existing mineral [1].

Other data supported this hypothesis. When first formed, matrix vesicles contain
high levels of magnesium and adenosine trisphosphate (ATP), known inhibitors of calcifi-
cation [44,45], as well as carbonic anhydrase [46], and ectonucleotide pyrophosphatase/
phosphodiesterase 1 (ENPP1) [42,47]. High levels of alkaline phosphatase activity are
present along with the mineral octacalcium phosphate. As MVs mature in the matrix, they
become leaky due to the action of phospholipases, which are regulated via 1α,25(OH)2D3
that is secreted by the chondrocytes [48]. Calcium ions are able to diffuse in, and at the same
time, the active transport of Ca++ out of the vesicles is reduced by the action of ATPases on
ATP, generating the calcification inhibitor pyrophosphate and adenosine monophosphate
(AMP) [49]. The Ca++ eventually dilutes the inhibitory effects of Mg on apatite forma-
tion. Ultimately, pyrophosphatase (PPase) acts on pyrophosphate to form free phosphate,
which can then interact with Ca++ to form apatite crystals on the inner leaflet of the mem-
brane [50]. In addition, MVs possess ion transporters, particularly for phosphate, enabling
its enrichment within the microsomes during crystal formation [1,47,51]. Another phos-
phatase present in matrix vesicles is phosphoethanolamine/phosphocholine phosphatase
1 (PHOSPHO1), which acts on phosphocholine and phosphoethanolamine to initiate crystal
formation [47]. As the MV breaks down, these initial crystals can provide sites for epitaxial
growth of apatite crystals within the collagen matrix. Matrix vesicle TNAP participates in
this process by modulating the phosphorylation status of osteopontin in the matrix, thereby
facilitating crystal growth [52] (Figure 1A–E).

A similar process has been studied in osteoblast-derived matrix vesicles, where a
group of membrane transporters and enzymes has been demonstrated to be involved in
the regulation of hydroxyapatite crystal nucleation and growth. ENPP1 found on the outer
leaflet of osteoblast matrix vesicles is involved in regulating hydroxyapatite crystal growth
by generating the inhibitor pyrophosphate from ATP, while annexin and ankylin protein
(ANK) provide a transmembrane channel for pyrophosphate to enter the extracellular
organelles [53]. TNAP, also located on the outer leaflet, is able to degrade the pyrophosphate
into monophosphate ions required for crystal growth, while two matrix vesicle membrane
transporters, sodium/phosphate co-transporter type III (PiT1) and annexin V, are able
to transport monophosphate ions and Ca++, respectively, into the vesicles. By impacting
the makeup and location of specific ions, these enzymes and transporters can regulate
crystal growth.
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Figure 1. Growth zone matrix vesicle breakdown and hydroxyapatite crystal formation in response 
to 1α,25(OH)2D3. (A) Annexin V mediated transport of Ca++ maintains homeostasis inside vesicle. 
(B) 1α,25(OH)2D3 binding with PDIA3 on vesicle membrane activates phospholipase A2 (PLA2). 
This results in release of arachidonic acid and the production of lysophospholipid. ATPase activity 
is reduced due to lack of an energy source, so active transport of Ca++ out of the vesicle via annexin 
V is reduced. The action of ATPase produces AMP and pyrophosphate, which is a calcification in-
hibitor. PPase breaks pyrophosphate down into phosphates, and on the outer leaflet of the mem-
brane, TNAP generates free phosphate that is available for transport into the vesicle by PiT1. Inside 
the vesicle, PHOSPHO1 releases phosphate from phosphocholine or phosphoethanolamine. (C) The 
matrix vesicle membrane becomes leaky. The first hydroxyapatite crystals have formed on the in-
side of the matrix vesicle following nucleation via Ca-phosphatidylserine-phosphate complexes; ac-
tive transport of Ca++ via annexin V no longer occurs. (D) There is increased accumulation of calcium 
and phosphate along the surface of the membrane. (E) Membrane integrity is lost, and hydroxyap-
atite crystals grow out into the ECM. 
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Figure 1. Growth zone matrix vesicle breakdown and hydroxyapatite crystal formation in response
to 1α,25(OH)2D3. (A) Annexin V mediated transport of Ca++ maintains homeostasis inside vesicle.
(B) 1α,25(OH)2D3 binding with PDIA3 on vesicle membrane activates phospholipase A2 (PLA2).
This results in release of arachidonic acid and the production of lysophospholipid. ATPase activity is
reduced due to lack of an energy source, so active transport of Ca++ out of the vesicle via annexin V is
reduced. The action of ATPase produces AMP and pyrophosphate, which is a calcification inhibitor.
PPase breaks pyrophosphate down into phosphates, and on the outer leaflet of the membrane, TNAP
generates free phosphate that is available for transport into the vesicle by PiT1. Inside the vesicle,
PHOSPHO1 releases phosphate from phosphocholine or phosphoethanolamine. (C) The matrix
vesicle membrane becomes leaky. The first hydroxyapatite crystals have formed on the inside of
the matrix vesicle following nucleation via Ca-phosphatidylserine-phosphate complexes; active
transport of Ca++ via annexin V no longer occurs. (D) There is increased accumulation of calcium and
phosphate along the surface of the membrane. (E) Membrane integrity is lost, and hydroxyapatite
crystals grow out into the ECM.

Matrix vesicles can be isolated from tissues such as growth plate cartilage through
a one-step purification process. Their isolation requires initial digestion of the ECM via
collagenase and/or hyaluronidase, followed by careful removal of the intact cells via
centrifugation and differential centrifugation of the supernatant to pellet large organelles
such as mitochondria, nuclei, endoplasmic reticulum, endosomes, and plasma membrane
(PM). The remaining supernatant is centrifuged at high speed to pellet the matrix vesicles.
Because the MVs are not lysed during isolation, their native conformation remains intact;
thus, they remain right side out, with the ectoenzyme TNAP facing outward. In contrast,
PMs are isolated from lysed cells and may form liposomes with the outer leaflet of the
membrane facing the interior, away from the TNAP substrate in the media. Scientists
have taken advantage of this to define MV purity as having alkaline phosphatase specific
activity that is a minimum of two-fold greater than that of the PM fraction [54]. In addition,
their relative purity can be readily determined using marker enzymes and proteins, includ-
ing validation that they are not mitochondrial membrane fragments based on their high
cardiolipin content [15,39,55].
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Using these criteria to identify MVs, investigators have been able to address questions
related to MV production, composition, and function. Studies using somatic cell hybrids to
monitor alkaline phosphatase enrichment demonstrated that matrix vesicles are produced
as specific organelles and are not simply membrane debris left in the matrix during ECM
synthesis [56].

This same approach can be used to isolate matrix vesicles from cell cultures, which
has enabled careful cataloging of their contents and how they are regulated. Studies
from a variety of laboratories have shown that they possess annexins 2, 5, and 6 [51],
as well as various enzymes that process the ECM, including matrix metalloproteinases
(MMP2, MMP3) [36,48], a disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTS), and tissue inhibitor of metalloproteinases (TIMP1, TIMP2). Given their size,
50–150 nm diameter, and the complexity of their composition, it is likely that there is
more than one kind of matrix vesicle. Indeed, differential centrifugation of isolated matrix
vesicles shows that there are different populations that vary in density as well as alkaline
phosphatase content [57].

Matrix vesicles have been isolated from soft tissues as well as mineralizing tissues.
They are present in vascular smooth muscle [58], and their content changes at vascular sites
that are becoming mineralized [42]. Similarly, there are distinct differences in matrix vesicles
isolated from the upper growth plate, which does not mineralize, and those isolated from
hypertrophic cartilage, which is becoming calcified during endochondral bone formation.
Matrix vesicles are also present in tissues that do not become calcified, including some
cancers [1,2]. In general, they all contain enzymes associated with matrix modification.

Studies comparing matrix vesicles produced by resting zone growth plate (RC) car-
tilage and those produced by prehypertrophic/upper hypertrophic growth zone (GC)
cartilage show that they differ markedly [59]. They possess a different membrane phos-
pholipid composition; their alkaline phosphatase activity differs, and their MMP content
differs. RC matrix vesicles are enriched in neutral MMPs, whereas GC matrix vesicles
are enriched in acid MMPs [36]. This implies that the production of the microsomes is
under genomic regulation, but once in the matrix, control of their function must involve
non-genomic mechanisms, as they lack the machinery necessary for gene transcription and
protein synthesis.

4. Regulation of Matrix Vesicle Function

Production of matrix vesicles is under genomic regulation. Not surprisingly, knockout
mice lacking expression of key components such as TNAP, PPase, or PHOSPHO1 [50],
produce matrix vesicles that lack these proteins and whose function is altered as a result.
Direct evidence of genomic regulation by steroid hormones supports this. The vitamin D
metabolites 1α,25(OH)2D3 and 24R,25(OH)2D3 regulate costochondral growth plate chon-
drocytes via mechanisms that are specific to the cell maturation zone from which the cells
were isolated. 1α,25(OH)2D3 regulates GC chondrocytes both through the nuclear vitamin
D receptor (VDR) and through a membrane-associated receptor, protein disulfide isomerase
A3 (PDIA3), which mediates its effects via a protein kinase C (PKC) signal transduction
pathway. PKC-alpha (PKCα) is increased via a phosphatidylinositol-specific phospholipase
C (PLC)-dependent mechanism, as well as through the stimulation of phospholipase A2
(PLA2) activity. Arachidonic acid and its downstream metabolite prostaglandin E2 (PGE2)
also modulate cell response to 1α,25(OH)2D3. In contrast, 24R,25(OH)2D3 exerts its effects
on RC chondrocytes through a separate, membrane-associated receptor that also involves
PKC pathways. However, PKCα is increased via a phospholipase D (PLD)-mediated
mechanism, as well as through inhibition of the PLA2 pathway [60,61].

Matrix vesicle production is also regulated in a zone-specific manner. Studies using
matrix vesicles produced by RC and GC chondrocytes in culture show that 24R,25(OH)2D3
stimulates the production of RC matrix vesicles by RC cells, including the incorporation of
neutral MMPs and increased TNAP. However, it does not affect matrix vesicle production
by GC cells. In contrast, 1α,25(OH)2D3 increases the activity of acid MMP and TNAP
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in matrix vesicles produced by GC chondrocytes, but it does not modify the RC matrix
vesicle composition. These observations have been confirmed in vivo using vitamin D
deficient/phosphate deficient rats as a model. The rachitic animals were treated with
25(OH)D3, 1α,25(OH)2D3, or 24R,25(OH)2D3; at harvest, matrix vesicles isolated from the
growth plate were examined, and their MMP activities were compared. The results showed
that the composition of the extracellular microsomes was comparable to those obtained
using matrix vesicles isolated from cell culture [62].

Additional evidence that matrix vesicle composition is controlled genomically involves
the incorporation of PKCα and PKC-zeta (PKCζ) following treatment with the vitamin D
metabolites. After 24 h of exposure to the hormones, plasma membranes isolated from
cell lysates contained primarily PKCα, but matrix vesicles contained primarily PKCζ. This
differential enrichment of PKCζ is regulated by 24R,25(OH)2D3 in RC matrix vesicles and
by 1α,25(OH)2D3 in GC matrix vesicles [48].

Matrix vesicles are also regulated once in the matrix via non-genomic mechanisms.
Chondrocytes possess the ability to generate vitamin D metabolites locally [63]. Moreover,
they secrete them at high levels and under regulation by hormones and growth factors [63].
In vitro, treatment of isolated naïve matrix vesicles with 1α,25(OH)2D3 or 24R,25(OH)2D3
produced an intriguing finding. Whereas 24R,25(OH)2D3 stimulated TNAP and PKCα, it
inhibited PLA2 and PKCζ activity in matrix vesicles produced by RC cells [13,64,65]. In
contrast, 1α,25(OH)2D3 stimulated TNAP, PKCα, and PLA2 and inhibited PKCζ in matrix
vesicles from GC cells. Moreover, 1α,25(OH)2D3 activated PKCα and PLA2 in RC matrix
vesicles, but its effect was much less robust than in GC matrix vesicles.

While the mechanisms by which the vitamin D metabolites act on matrix vesicles once
in the matrix are not yet known, the biological consequences are becoming understood. It is
evident that the primary function of 24R,25(OH)2D3 is to ensure that matrix vesicles remain
structurally stable in the matrix, at least with respect to the integrity of the membrane.
24R,25(OH)2D3 treatment of RC cells results in the production of matrix vesicles with higher
levels of phosphatidylcholine than GC matrix vesicles [55]. Moreover, 24R,25(OH)2D3
inhibits PLA2, thereby limiting the production of lysophospholipids, which has the effect
of stabilizing the phospholipid bilayer. 1α,25(OH)2D3 treatment of GC cells results in
matrix vesicles with a higher percentage of acidic phospholipids, and when GC matrix
vesicles are treated directly with the hormone, PLA2 is stimulated, and production of
lysphophospholipids is increased. The lysophospholipids stimulate PKCα activity [66],
and they destabilize the membrane, contributing to the leakiness associated with uptake of
Ca++ and initial mineral formation.

The destabilized membrane also provides a pathway for the release of MMPs and ag-
grecanases into the ECM (Figure 2). One outcome of this is activation of latent transforming
growth factor-beta (TGFβ), which is stored in the ECM via latent TGFβ-binding protein [67].
The matrix vesicles lack collagenase [36], so the release of the enzymes contributes to the
degradation of the proteoglycan content, thereby removing a major inhibitor of crystal
growth while retaining the collagen matrix to support the calcification process [68,69]. The
importance of these enzymes was demonstrated clearly when matrix vesicles were incu-
bated in a proteoglycan-rich gel containing Ca++ and free phosphate [45]. Only when they
were pretreated with 1α,25(OH)2D3 did they contribute to apatite formation in the gel, in-
dicating that the release of the enzymes and subsequent degradation of glycosaminoglycan
was necessary.
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Figure 2. Growth zone chondrocyte with plasma membrane-associated receptors (VDR and PDIA3)
for 1α,25(OH)2D3 release matrix vesicles into the ECM that contain microRNA and matrix metallo-
proteinases (MMPs). Chondrocyte plasma membrane PDIA3 acts via PKCα. Matrix vesicles contain
the PDIA3 receptor complexed with PKCζ. 1α,25(OH)2D3 binds to matrix vesicle PDIA3, activating
PLA2 to release arachidonic acid and destabilize the vesicle membrane; this releases the contents
into the ECM. MMP released from MVs activates latent TGFβ (LTGFβ) in the extracellular matrix
removing the latent binding protein. MicroRNAs act back on the chondrocytes, but whether the
microRNAs are released into the ECM or are transported to the cells via the matrix vesicles or as
membrane liposomes is not known.

5. Matrix Vesicles as ECM-Linked Exosomes

Are MVs a species of exosome? Growth plate chondrocytes do produce vesicles
typical of exosomes that they release into the culture media [9]. However, they differ
significantly from matrix vesicles. They are not enriched in alkaline phosphatase activity,
their phospholipid content mimics that of the plasma membrane, and they possess different
enzymes than are found in matrix vesicles. Whether they are exosomes is not yet resolved,
although we have reported the presence of microRNA’s [70], as have others [71–73].

Matrix vesicles share physical characteristics with exosomes in terms of size, but
unlike exosomes, they are anchored in the ECM. As noted above, they are structurally and
compositionally distinct from the media vesicles, but are they a unique species of exosomes
that possess small RNAs capable of modulating cell behavior? This is an attractive idea
for a number of reasons. The growth plate is not vascularized, and the chondrocytes are
surrounded by a large ECM, limiting communication among cells. The arrangement of
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cells in the growth plate is linear, with RC cells at the top destined to undergo matura-
tion as GC cells. Studies show that treatment of RC chondrocytes with 24R,25(OH)2D3
ultimately induces a transition to a GC phenotype, complete with a shift in response
from 24R,25(OH)2D3 to 1α,25(OH)2D3 [74]. Under normal bone growth, RC cells undergo
proliferation, and post-proliferative prehypterophic chondrocytes become hypertrophic,
producing a new set of matrix vesicles and undertaking a massive reorganization of the
ECM to accommodate their size as well as facilitate neovascularization and calcification.
This occurs under mechanical load, and cells communicate with each other via the release
of a variety of factors, including cytokines, growth factors, hormones, and other small
molecules. Recent data suggest that matrix vesicles may contribute to this communication
in a manner that is similar to exosomes.

To test this hypothesis, we undertook a careful analysis of matrix vesicle RNA content.
Initial studies demonstrated clearly that a subset of microRNAs was differentially concen-
trated in the MVs isolated from GC chondrocyte cultures compared to the parent cells [70].
(Figure 3A,B) Similarly, four microRNA were unique to RC matrix vesicles compared to
their parent cells: miR-451-5p, miR-223-3p, miR-142-3p, and miR-122-5p; and miR-22-3p
was among the most abundant miRNA. Moreover, when we compared RNAs in MVs
isolated from GC cultures to those isolated from RC cultures, we found distinct cell-specific
differences in microRNA content [59], suggesting that they may play a differential role in
chondrocyte regulation.

Experiments assessing the chondrocyte response to specific microRNAs that are selec-
tively exported in matrix vesicles by GC chondrocytes indicate that they do have direct
effects on the cells [38]. To test this, RC and GC chondrocytes were transfected with
synthetic mimics of MV microRNAs. miR-122 drove both RC and GC cells toward a pro-
liferative phenotype, stabilized the matrix, and inhibited terminal differentiation. Other
MV microRNA also had a regulatory effect on the growth plate chondrocytes. miR-22
increased PTHrP and Ihh production in RC and GC chondrocytes. miR-451 decreased
alkaline phosphatase activity (an important factor in tissue mineralization) in both RC
and GC cells though to a lesser extent than miR-122. In addition, miR-451 increased OPG
production in GC cells [38].
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24R,25(OH)2D3 to 1α,25(OH)2D3 [74]. Under normal bone growth, RC cells undergo pro-
liferation, and post-proliferative prehypterophic chondrocytes become hypertrophic, pro-
ducing a new set of matrix vesicles and undertaking a massive reorganization of the ECM 
to accommodate their size as well as facilitate neovascularization and calcification. This 
occurs under mechanical load, and cells communicate with each other via the release of a 
variety of factors, including cytokines, growth factors, hormones, and other small mole-
cules. Recent data suggest that matrix vesicles may contribute to this communication in a 
manner that is similar to exosomes. 

To test this hypothesis, we undertook a careful analysis of matrix vesicle RNA con-
tent. Initial studies demonstrated clearly that a subset of microRNAs was differentially 
concentrated in the MVs isolated from GC chondrocyte cultures compared to the parent 
cells [70]. (Figure 3A,B) Similarly, four microRNA were unique to RC matrix vesicles com-
pared to their parent cells: miR-451-5p, miR-223-3p, miR-142-3p, and miR-122-5p; and 
miR-22-3p was among the most abundant miRNA. Moreover, when we compared RNAs 
in MVs isolated from GC cultures to those isolated from RC cultures, we found distinct 
cell-specific differences in microRNA content [59], suggesting that they may play a differ-
ential role in chondrocyte regulation. 

 
(A) 

Figure 3. Cont.
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chondrocytes with cells on the left and matrix vesicles on the right (n = 3). 

Experiments assessing the chondrocyte response to specific microRNAs that are se-
lectively exported in matrix vesicles by GC chondrocytes indicate that they do have direct 
effects on the cells [38]. To test this, RC and GC chondrocytes were transfected with syn-
thetic mimics of MV microRNAs. miR-122 drove both RC and GC cells toward a prolifer-
ative phenotype, stabilized the matrix, and inhibited terminal differentiation. Other MV 
microRNA also had a regulatory effect on the growth plate chondrocytes. miR-22 in-
creased PTHrP and Ihh production in RC and GC chondrocytes. miR-451 decreased alka-
line phosphatase activity (an important factor in tissue mineralization) in both RC and GC 
cells though to a lesser extent than miR-122. In addition, miR-451 increased OPG produc-
tion in GC cells [38]. 

The MV microRNA has been reported to be present in exosomes produced by other 
cell types. As noted for cancer cells, miR-122 stimulates proliferation [75]. In growth plate 
cells, this has the effect of increasing cell proliferation, decreasing the production of mat-

Figure 3. Examination of chondrocyte and matrix vesicle microRNA populations. (A) Venn diagram
comparing differentially expressed (p-value < 0.05 and absolute log 2-fold change > 1) microRNA
found in growth zone chondrocytes and matrix vesicles with 97 microRNA found only in the
chondrocytes, 103 only in vesicles, and 185 shared between cells and vesicles. (B) Heatmap of the
differentially expressed (p-value < 0.05 and absolute log 2-fold change > 1) microRNA from growth
zone chondrocytes with cells on the left and matrix vesicles on the right (n = 3).

The MV microRNA has been reported to be present in exosomes produced by other
cell types. As noted for cancer cells, miR-122 stimulates proliferation [75]. In growth
plate cells, this has the effect of increasing cell proliferation, decreasing the production
of maturation markers, and producing matrix components characteristic of proliferating
cartilage [38]. Transfecting miR-122 into rat articular chondrocyte cells in an in vitro model
of osteoarthritis results in increased proliferation and inhibition of inflammatory markers.
In contrast, miR-451 stimulates the production of matrix processing enzymes, such as
MMP13, which leads to remodeling of the ECM in preparation for calcification [76,77].
Together with the observation that rapid signaling at the MV membrane by vitamin D
metabolites can modulate the rate and extent of release of factors from matrix vesicles as
well as activate factors such as TGFβ1 and TGFβ2 in the ECM, these new data strongly
support the idea that matrix vesicles act as a method to control events in the ECM as well
as how cells in the growth plate undergo terminal differentiation [48,65,78,79].
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6. Conclusions

Lessons learned from the study of MVs over the last fifty years have shown that
they perform multiple functions in ECM-rich tissues such as cartilage and bone. Our
early understanding that they provide sites of initial mineral formation was first based on
microscopic studies, and biochemical analysis supported the concept that this was their
primary role. As technology has progressed, it has become possible to examine other aspects
of MV biology, showing us that they can function in an exosome-like manner, carrying
microRNAs into the ECM and facilitating the dissemination of information. While this is
similar to exosomes, it is distinctly different, underscoring the need to examine the role of
these extracellular organelles in the context of the cells and tissues that produce them.
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ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs
AMP adenosine monophosphate
ANK annexin and ankylin protein
ATP adenosine triphosphate
ECM extracellular matrix
ENPP1 ectonucleotide pyrophosphatase/phosphodiesterase 1
GC growth zone
Ihh Indian hedgehog
MMP matrix metalloproteinases
MV matrix vesicles
PDIA3 protein disulfide isomerase A3
PGE2 prostaglandin E2
PHOSPHO1 phosphoethanolamine/phosphocholine phosphatase 1
PiT1 sodium/phosphate co-transporter type III
PKC protein kinase C
PKCα PKC-alpha
PKCζ PKC-zeta
PLA2 phospholipase A2
PLC phospholipase C
PLD phospholipase D
PM plasma membrane
PPase pyrophosphatase
PTHrP parathyroid hormone-related peptide
RC resting zone
SNARE soluble N-ethylmaleimide-sensitive factor attachment protein receptor
TGFβ transforming growth factor-beta
TIMP tissue inhibitor of metalloproteinases
TNAP tissue non-specific alkaline phosphatase
VDR vitamin D receptor
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