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With the use of highly coherent femtosecond X-ray pulses from a free-electron

laser, it is possible to record protein nanocrystal diffraction patterns with far

more information than is present in conventional crystallographic diffraction

data. It has been suggested that diffraction phases may be retrieved from

such data via iterative algorithms, without the use of a priori information and

without restrictions on resolution. Here, we investigate the extension of this

approach to nanocrystals with edge terminations that produce partial unit

cells, and hence cannot be described by a common repeating unit cell. In this

situation, the phase problem described in previous work must be reformulated.

We demonstrate an approximate solution to this phase problem for crystals

with random edge terminations.
1. Introduction
The availability of brief, intense and coherent X-ray pulses produced by X-ray

free-electron lasers (XFELs) has created the potential for major advancements in

macromolecular crystallography [1,2]. Serial femtosecond crystallography (SFX)

[3] is among the most successful new paradigms to emerge, which involves

directing a stream of randomly oriented protein crystals across the focus of the

XFEL beam. SFX data often consist of hundreds of thousands of diffraction pat-

terns, which can be collected in a matter of hours at current pulse-repetition

rates. These diffraction patterns are largely free from radiation damage [4] because

the timescales of the relevant damage mechanisms are longer than the exposure

time [5,6]. This creates, for example, new possibilities to study irreversible dynamic

systems [7], radiation-sensitive targets [8] and macromolecules that only form

small (approx. 1 mm) crystals and therefore pose difficulties for conventional

synchrotron facilities [9].

As with conventional crystallography, the well-known ‘phase problem’

must be solved in order to reconstruct a real-space electron density map from

the measured SFX intensities. Following data processing and reduction [10],

some conventional macromolecular crystallography techniques can be readily

applied to SFX data. For example, initial phase estimates have been obtained

from SFX intensities by molecular replacement, which is effective when a simi-

lar known structure is available. On the other hand, ab initio phasing methods

such as (multiple) isomorphous replacement or multi/single-wavelength

anomalous dispersion are under development for XFEL sources [11].

Although a range of effective crystallographic phasing methods exist, there

remains a general need for ab initio methods that apply to large molecules at

medium or low resolution and do not require similar known structures, isomor-

phous derivatives or resonant diffraction [12]. It was recently suggested that

coherently illuminated nanocrystals can provide sufficient information for ab
initio phasing [13]. The method likely requires diffraction patterns from hundreds

of thousands of individual sub-micrometre crystals, which may be obtained via

the SFX technique. In the following sections, we consider complications with

this approach that arise when the crystals considered in the ensemble do not
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terminate exactlyat the nominal unit cell boundaries, a consider-

able problem that was not addressed in previous work. Whereas

crystal size and shape distributions are of relatively little conse-

quence, we show that the presence of molecular vacancies at

the crystal boundaries obscure the notion of the crystal unit

cell and necessitates a reformulation of the problem. In this

manuscript, we suggest an approximate means of solving

this problem, which we demonstrate through simulations.
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2. Phasing methods for coherently illuminated
nanocrystals

Among the most striking observations made during the first

SFX experiments in 2009 were the distinct intensity distributions

observed around Bragg peaks, attributed to the finite lattice of

the crystal. These so-called finite-lattice transforms arise when

the coherence length of the illumination spans the full width

of a finite crystal [3]. The presence of finite-lattice transforms

suggests the application of a key idea by Sayre, who suggested

that diffraction patterns can be phased ab initio if the intensities

are sampled between Bragg reflections, according to Shannon’s

sampling theorem [14]. Attempts to extract continuous intensity

maps (‘molecular transforms’) without a highly coherent source

were first made by Perutz and others near the time of Sayre’s

paper [15], though this approach, which requires physical

modification of the crystal, has not seen significant use.

The problem of phasing diffraction data from coherently

illuminated nanocrystals with varying size and shape has

been considered recently, in light of the possibility to collect

relevant diffraction data from XFEL sources [13,16–20]. These

investigations, which aim to determine the contents of the crys-

tal’s unit cell, differ from related work aimed at mesoscopic

observations such as strain fields [21–23]. They also differ

from previous work that has focused on careful analysis of dif-

fraction data from individual crystals with high signal-to-noise

ratio (e.g. [24,25]).

The ensembles of crystals considered by Spence et al. were

assumed to be constructed by repeated translations of a

common unit cell electron density. Under that assumption,

the averaged diffracted intensity I(q) of many crystals is pro-

portional to the product of a squared unit-cell transform

jF(q)j2, and a mean squared finite-lattice transform kjSn(q)j2l

I(q)/ jF(q)j2kjSn(q)j2ln, (2:1)

where q is the momentum transfer vector and n denotes the

pattern number. As kjSn(q)j2l is a periodic function, it may be

determined by averaging the diffraction intensity profiles

within all Wigner–Seitz cells, which ‘averages out’ the unit-

cell transform and effectively decouples the two terms in

equation (2.1). Dividing equation (2.1) by the finite lattice trans-

form reveals the transform of the common physical unit cell that

repeats throughout the entire crystal, which may be phased via

numerous iterative procedures employed in coherent diffractive

imaging [26].

Challenges associated with noise, particularly in regions far

from the Bragg condition where measured intensity is likely to

be low, have been considered [19]. Possible solutions include

noise filtering [13], selective sampling [16] or iterative algor-

ithms that directly use only Bragg peak intensities and their

associated intensity gradients [18]. Internal crystal disorder

has also been considered, in which case the incorporation
of partial coherence models into phasing algorithms can

effectively improve resolution [17].

Whereas previous work has assumed a common molecular

arrangement for every unit cell, a different situation may arise

for space groups other than P1, in which a nominal unit cell

contains multiple symmetry-related molecules. It is likely

that many such crystals do not assemble in whole-unit-cell

increments; some of the symmetry-related molecules that

make up a nominal unit cell may be absent near the boundary

of the crystal. The phasing methods considered previously do

not apply directly to this situation because a unit cell that is

common throughout the entire crystal does not exist, and

hence equation (2.1) cannot be applied. Below, we show that

in some cases, the data reduction scheme proposed by

Spence et al. may still be used to recover the electron density

of the asymmetric unit that composes the crystal, provided

that the phasing algorithm is modified appropriately.
3. Electron densities of finite crystals
Consider a finite crystal in which the nominal unit cell contains

one molecule and one symmetry-related copy. We define the

electron density of the molecular asymmetric unit as A(r),

and its symmetry mate as B(r). The symmetry mate is related

to the asymmetric unit by a rotation R and a translation t

B(r) ¼ A(Rr � t): (3:1)

In order to define a complete finite crystal, we define

two finite sub-lattices a(r) and b(r) for the asymmetric unit

and its symmetry mate, respectively. We may express the

sub-lattices as

an(r) ¼
X

j

oanjd(r � rj) (3:2)

and

bn(r) ¼
X

j

obnjd(r � rj), (3:3)

which differ only by the molecular occupancies oakj, obkj [ 0, 1

for each lattice point rj. We can build the electron density of

the nth crystal by convolving the sub-lattices with their

respective molecular electron densities

rn(r) ¼ A(r)� an(r)þ B(r)� bn(r), (3:4)

where � denotes a convolution.

In this framework, we note that one can choose a different

nominal unit cell by translating B(r) by integer multiples of the

three crystal lattice vectors a, b and c. In other words, we are

free to replace B(r) with B(r þ d), where d ¼ naa þ nbb þ ncc

and na are integers. This has no consequence at the Bragg con-

dition since translations d produce integer multiples of 2p

phase shifts at those points in reciprocal space. However,

when considering intensities from finite crystals that do not lie

at the Bragg condition, care must be taken to make correspond-

ing changes to the occupancies obkj whenever the nominal unit

cell (i.e. the vector d) is re-defined. The physical unit cell of the

crystal, if one exists, should be distinguished from this nominal

unit cell. A physical unit cell can be defined only if one can

choose a vector d such that oanj ¼ obnj for all j. In other words, a

physical unit cell can be assigned to a finite crystal only if the

crystal can be assembled purely from a common unit cell that

spans the entire volume of the crystal.



type (i)

type (ii)

type (iii)
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Figure 1. Illustration of four unique types of truncated one-dimensional
crystals with two molecules per unit cell. The two unit cell conventions
are indicated by the dashed red boxes. Crystal type (ii) is generated from
type (i) by switching the first molecule with the second. Types (iii) and
(iv) are generated from types (i) and (ii), respectively, by removing the
first molecule. (Online version in colour.)
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4. The average finite-crystal diffraction intensity
Under the Born approximation, the far-field diffraction

amplitude is proportional to the Fourier transform (F ) of rn(r)

F {rn(r)} ¼ ~rn(q) ¼ ~A(q) ~an(q)þ ~B(q) ~bn(q), (4:1)

where

~B(q) ¼ ~A(RTq)e�iq�t, (4:2)

~an (q) ¼
X

j

oanje
iq�rj (4:3)

and ~bn(q) ¼
X

j

obnje
iq�rj : (4:4)

The diffracted intensity is proportional to

In(q) ¼ ~rn(q)~r�n(q) (4:5)

¼ j ~A(q)j2j~an(q)j2 þ j~B(q)j2j~bn(q)j2

þ 2Re{ ~A(q)~B
�
(q) ~an(q) ~b

�
n(q)}, (4:6)

and the average diffracted intensity, arising from a distribution

of many crystals with variable occupancies oanj and obnj, is

kIn(q)ln ¼ j ~A(q)j2kj~an(q)j2ln þ j~B(q)j2kj ~bn (q)j2ln

þ 2Re{ ~A(q) ~B
�
(q)k ~an(q) ~b

�
n(q)ln}: (4:7)

In the special case oanj ¼ obnj, in which the crystal has an unam-

biguous physical unit cell, equation (4.7) may be simplified to

the form described in previous work

kIn(q)ln ¼ j ~A(q)þ ~B(q)j2kj~an(q)j2ln: (4:8)

A more realistic model is one in which the crystals are fully

occupied up to some boundary, outside of which the occu-

pancies oanj and obnj are equal to zero. The statistical properties

of oanj and obnj, in particular the correlations between them,

should be in correspondence with the nature of the crystal

growth kinetics, which may vary considerably between differ-

ent crystal types. In the following sections, we will only

consider a simple case in which the free energy associated

with the adhesion of a molecule to the crystal surface is

identical for all surface molecules.
5. Finite one-dimensional crystals
For illustrative purposes, consider a one-dimensional crystal

with two molecules per unit cell, and a unit cell length of a.

We will consider an equal mixture of crystals having all poss-

ible edge terminations, including those that leave incomplete

unit cells at the crystal boundaries. Schematically, the four

possible crystal types are shown in figure 1.

We can see that types (i) and (ii) are ideal crystals that

differ only by their physical unit cell; we may produce type

(ii) from type (i) by re-defining the symmetry mate as

B0(r) ¼ B(rþ a): (5:1)

For brevity, we drop the explicit q dependence and write

the average diffraction intensity from these two types as

kInli,ii
n ¼

1

2
[kInli

n þ kInlii
n], (5:2)

where k � li represents the average over crystals with unit cell

(i), and k � li,ii represents the average over crystals with both

unit cell definitions (i) and (ii). Thus, if the method prescribed

by Spence et al. is applied to the averaged intensity arising
from these two types of ideal crystals, the average over the

two different unit-cell transforms will be obtained.

Types (iii) and (iv) do not have a well-defined unit cell.

They can be understood as follows. Firstly, we see that type

(iii) may be formed by removing the first molecule from

type (i). Mathematically, this operation may be performed

by making the change1 ~an ! ~an � 1 in equation (4.7),

which produces the average diffraction intensity

kInliii
n ¼ kInli

n � p (5:3)

and p ¼ 2Re{j ~Aj2 k ~an lnþ ~A~B
�
k ~a�nln}� j~Aj2: (5:4)

Similarly, the average crystal type (iv) can be produced from

type (ii) by making the change ~bn ! ~bn�1

kInliv
n ¼ kInlii

n � p0 (5:5)

and p0 ¼ 2Re{j~Bj2k~anln þ ~A~B
0�

k~anln}� j~Bj2: (5:6)

Finally, the combined average over all four crystal types is

kInln ¼ kInli,ii
n �

1

2
[pþ p0]: (5:7)

We can see that the average crystal diffraction contains a promi-

nent term equal to the average over two possible unit cell

definitions. The additional terms p and p0 arise from the interfer-

ence of idealized crystals with a single ‘missing’ molecule at the

boundary of the crystal. In the following sections, we consider

the feasibility of phasing the averaged diffraction intensities

from an ensemble of randomly terminated crystals based on

the conjecture that these interference terms may be neglected.
6. Finite two-dimensional crystals
As the enumeration of two-dimensional crystal types is consider-

ably more complicated than for one-dimensional crystals, we

will proceed with simulations. For simplicity, we will assume a

square lattice defined by the vectors a ¼ [a, 0] and b¼ [0, a].

We consider the plane group cm [27] with the symmetry mate

defined by the rotation (a reflection in two-dimensional

projection) and translation

R ¼ 0 1
1 0

� �
(6:1)

and

t ¼ [0:5, 0:5] � a: (6:2)



asymmetric unit

symmetry mate

unit cell no. 1 unit cell no. 2

unit cell no. 4unit cell no. 3

Figure 2. The real-space density (upper insets) and diffraction from the asymmetric unit, symmetry mate, and four compact nominal unit cell definitions. Lower
insets show enlarged regions indicated by red boxes. (Online version in colour.)
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The real-space densities and diffraction intensities from the

asymmetric unit, symmetry mate and four different nominal

unit cells are shown in figure 2.

We generated 500 diffraction patterns from random

circle-shaped crystals with a flat distribution of radii equal to

4a+0.5a. We ensured randomized edge terminations by ran-

domly shifting the origin of each crystal lattice and retained

only the lattice points for molecules that fell within the circular

boundary with a fixed origin. The intensities were sampled

such that three measurements lie between adjacent Bragg reflec-

tions, and the maximum Miller index extended out to h, k ¼ 25.

We added random, uniform jitter to the scattering vectors corre-

sponding to each two-dimensional pixel. The addition of jitter

emulates a physical detector, which averages over a finite solid

angle, and avoids aliasing that would otherwise result from

the fine lattice fringes and comparably coarse pixel spacings.

We then divided the average crystal intensity by its average

Wigner–Seitz cell to obtain what we refer to as the demodulated

crystal intensities. The results of this procedure are shown in

figure 3. Remarkably, the demodulated crystal intensities closely

correspond to those of the incoherent sum of the four compact

nominal unit cell transforms shown in figure 2. The resemblance

may be quantified by an R-factor defined as

R ¼
P

m hIj (qm)� Iideal(qm)jP
m Iidealj (qm)j , (6:3)

where h is a scale factor chosen to minimize R. The intensities

I(qm) are the demodulated crystal intensities, Iideal(qm) are

equal to the incoherent sum over the four nominal unit cells

shown in figure 2. In our case, we find convergence to a value

of R¼ 0.07 after 500 patterns. This convergence was largely

insensitive to the size and shape of the crystals, but was somewhat

slower when the width of the size distribution was increased.
7. Phasing intensities from randomly truncated
crystals

An approach to phasing symmetry-averaged diffraction data

has been described previously by Elser & Millane [28]. Here,

we apply a similar approach with a modified intensity con-

straint appropriate to our problem. Specifically, in our case

we assume that the demodulated crystal intensities I(q) are

related to the molecular transform of the asymmetric unit

~r(q) by the approximation

I(q) ¼ 1

4

X4

n¼1

j~r(q)þ ~r(RTq)e�iq�tn j2 , (7:1)

where

t1 ¼ [0:5, 0:5] � a, (7:2)

t2 ¼ t1 � a, (7:3)

t3 ¼ t1 � b (7:4)

and t4 ¼ t1 � a� b: (7:5)

We define two projection operators. The intensity projectionePI has the action of bringing the magnitudes of the current

estimate of the molecular transform, ~ri(q), into correspon-

dence with the measured intensities

ePI ~ri (q) ¼ ~ri(q)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I(q)

1
4

P4
n¼1 j~ri(q)þ ~ri(R

Tq)e�iq�tn j2

s
: (7:6)

The support projection ePS sets the real-space densities to

zero in the regions outside of the support S

ePS ~ri(q) ¼ FPSF�1~ri(q), (7:7)



typical crystal

lattice transform

typical pattern average pattern

average unit cell intensitydemodulated crystal intensity

(b)(a) (c)

(d ) (e) ( f )

Figure 3. (a) A typical crystal, (b) typical diffraction pattern and (c) the average over 500 diffraction patterns. (d ) The average Wigner – Setz cell is divided to obtain
(e) the demodulated crystal intensity map which may be compared with ( f ) the incoherent average over the four compact nominal unit cell definitions shown in
figure 2. Lower insets show enlarged regions indicated by red boxes. (Online version in colour.)
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where F�1 is the inverse Fourier transform and

PSri(q) ¼ ri(r) if r [ S
0 otherwise.

�
(7:8)

With the two projection operations ~PI and ~PS, we then apply

the difference-map (DM) algorithm (assuming b ¼ 1) [29]

~riþ1(q) ¼ ~ri(q)þ ~PS (2 ~PI ~ri(q)� ~ri(q))� ~PI ~ri(q), (7:9)

in combination with the error-reduction (ER) algorithm [30]

~riþ1 (q) ¼ ~PS
~PI ~ri (q) : (7:10)

The algorithm switched between the ER and DM algorithms

every 10 iterations, beginning with the DM algorithm. The

support was updated via the shrinkwrap algorithm [31]

every 100 iterations. A successful result, after 2000 iterations

in total, is shown in figure 4. The accuracy of this result

was quantified by an R-factor that compares the demodu-

lated crystal intensities against the average nominal unit

cell transform generated from the electron density estimate

ri(r). Specifically, this R-factor was defined as

Rph ¼
P

m jhIcomp(qm)� I(qm)jP
m jI(qm)j , (7:11)

where

Icomp(qm) ¼
X4

n¼1

j~ri(qm)þ ~ri(R
Tqm)e�iqm�tn j2: (7:12)

This R-factor reduces to a value of Rph ¼ 0.07, nearly the

same value as R mentioned in §6. The near equivalence of

R and Rph suggests that the quality of the reconstruction is

limited by the approximate nature of our intensity constraint.
A more rigorous algorithm than the one demonstrated here

would ideally use equation (4.7) directly in the intensity con-

straint, though this would require the introduction of a more

sophisticated model for the average sub-lattice cross terms

k ~an (q) ~b
�
n (q)ln, the parameters of which must be refined in par-

allel with the phases if the they cannot be determined by other

means. Alternatively, it may be possible to better approximate a

more general crystal by introducing independent weights on

each term of the sum in equation (7.1). These weights must be

solved in parallel with the phases as they must be assumed

unknown at the first iteration. In our demonstration presented

here, we have used the assumption that molecules at the edge

of the crystal are randomly truncated, which ensures equal

weights in our approximation.

Importantly, we note that there are circumstances where

just the integrated Bragg peak intensities are sufficient for

unique phasing, particularly for cases in which the solvent frac-

tion (fraction of densities that are uniformly constant) exceeds

50%. Indeed, the simulated crystals shown in figure 3 had a

solvent fraction of 62% and can likely be phased without inten-

sities that lie away from the Bragg condition (we include these

figures here only for clarity). However, the same algorithm

applied to cases where the solvent fractions were 39 and 16%

also converged to values of Rph ¼ 0.07 or lower, though the

greatest fraction of phasing trials succeeded in the cases of

higher solvent fractions (about 2/3 at 62%, 1/3 at 39% and

1/10 at 16%). We made no attempt to optimize the algorithm

in the cases of higher solvent fractions.

We have not considered the robustness of our algorithm

in the presence of measurement errors. Statistical errors in

our simulations are induced only by the randomized

sampling of crystal sizes and shapes, as well as pixel position

jitter, and are smaller than the systematic errors induced by



(b)(a) (c)demodulated crystal intensity asymmetric unit intensity reconstructed
asymmetric unit

Figure 4. (a) A successful reconstruction of the asymmetric unit after 2000 iterations. (c) The constrained asymmetric unit intensities were projected onto (b) the
demodulated crystal intensity constraint according to equation (7.6).
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our approximate diffraction model. Assessing the impact of

errors should be carried out by implementing the modified

intensity constraint within a noise-tolerant phasing algorithm

(e.g. [32]), which is beyond the scope of this paper.
 30331
8. Conclusion
We have raised the point that finite crystals may not have a

well-defined physical unit cell. While this realization has no

consequence in ‘conventional’ serial femtosecond nanocrys-

tallography, it is of great importance to the development of

phasing algorithms that use intensities that are not restricted

to the Bragg condition. With some approximation, we have

demonstrated that it is possible to determine the structure

of an asymmetric unit via iterative phasing techniques for

crystals with random edge terminations, and only two

molecules per nominal unit cell.
The consequences of our approximations, which neglect

interference terms and assume relatively uncorrelated

crystal edge terminations, is in need of further considera-

tion. Moreover, the extension to space groups with more

than two symmetry-related molecules may give rise to

further complications.
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Endnote
1This expression is correct when the first term of the summation in
equation (4.3) is equal to 1. This may always be accomplished by
choosing an appropriate origin of the entire crystal, which never
affects the diffraction intensity.
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