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Abstract

Comprehensive testing schemes, followed by adequate contact tracing and isolation, repre-

sent the best public health interventions we can employ to reduce the impact of an ongoing

epidemic when no or limited vaccine supplies are available and the implications of a full lock-

down are to be avoided. However, the process of tracing can prove feckless for highly-con-

tagious viruses such as SARS-CoV-2. The interview-based approaches often miss contacts

and involve significant delays, while digital solutions can suffer from insufficient adoption

rates or inadequate usage patterns. Here we present a novel way of modelling different con-

tact tracing strategies, using a generalized multi-site mean-field model, which can naturally

assess the impact of manual and digital approaches alike. Our methodology can readily be

applied to any compartmental formulation, thus enabling the study of more complex patho-

gen dynamics. We use this technique to simulate a newly-defined epidemiological model,

SEIR-T, and show that, given the right conditions, tracing in a COVID-19 epidemic can be

effective even when digital uptakes are sub-optimal or interviewers miss a fair proportion of

the contacts.

1 Introduction

1.1 Problem overview

The epidemic started in Wuhan, China by the SARS-CoV-2 virus has uncontrollably spread

through communities from all around the world, rapidly becoming a major global threat,

which was responsible for more than 237 million infections and 4.8 million deaths by October

2021 [1]. Prompted by the scale of this epidemic, cross-disciplinary teams started working

against the clock to develop reliable pathogen spreading models that could be used to assess

the effectiveness of different public health interventions. Since imposing a general lockdown

has proven economically unbearable for most countries, the attention significantly shifted to

less restrictive yet partially successful measures, such as educating the public to socially dis-

tance, deploying large-scale testing and quarantining contacts through various tracing
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mechanisms [2]. The latter proved rather challenging for the traditional interview-based

approaches, mostly due to significant delays, staffing issues and a generally poor recollection

exhibited by the interviewees. As a result, digital alternatives were quickly sought after by sev-

eral governments. These were or are currently being deployed in many states, most of them

being reliant on either a Bluetooth solution, such as the Exposure Notification (GAEN) system

[3], or a geolocation-based software, similar to the Integrated Disease Surveillance Programme

in India [4]. That being said, the efficiency of these strategies remains largely dependent on the

application adoption rates and the behavioral patterns of their userbase (i.e. self-isolation com-

pliance, respecting the usage guidance, keeping the tracing device turned on etc.). Although

some have suggested an application uptake of at least 50% would be needed at the population

level to contain the epidemic [5], others showed via simulations that 60% would be enough to

stop the spread without requiring further interventions [6]. That being said, the adoption levels

generally quoted in the literature as “sufficient” remain mostly unattainable due to privacy

concerns and internet access limitations. The picture gets even more intricate when the afore-

mentioned behavioral issues are widespread in the users’ communities or if inadequate testing

regimes and manual tracing procedures are employed.

Motivated by the limited evidence we have of the efficacy exhibited by contact tracing

methods in the face of such challenges, we developed a multi-site mean-field model that can

simulate the joint effects of these variables on the evolution of an epidemic, and used it to

study COVID-19 via a new disease-specific compartmental formulation—SEIR-T. Our meth-

odology draws inspiration from the work of [7], but it enables the simulation of more varied

scenarios involving digital tracing at different uptake levels r, manual tracing with various net-

work overlaps Γ, or both procedures combined. Additionally, we propose separating the

“traced” status from the infection states, thus allowing for a node to get isolated at all times

(unless it has reached an end state, i.e. recovered or dead), while also ensuring self-isolation

can end due to non-compliance or term expiration, all without impacting an individual’s stan-

dard disease progression. This feature also makes our approach directly compatible with any

other compartmental model. As is customary, all our code was made publicly available (see

S1 File).

The experiments we conducted confirm that the potency of contact tracing not only

depends on the accuracy of the tracing network, but also on several other variables (i.e. test-

ing rates, tracing reliability, staffing and delays, public-health communiqués, isolation con-

formity etc.), an optimal configuration of these given a country’s epidemiological situation

being essential for a swift viral containment. Even when lower uptakes are registered

(r< 0.4) or the interviewing process misses many contacts (Γ� 0.5), our simulations suggest

that significant reductions in the peak of infections and the total number of deaths can still be

achieved given small tracing delays and the appropriate levels of testing and self-isolation

compliance. What is more, the combined effects of manual and digital tracing can drive the

effective reproduction number R below 1 even when neither is very efficient. We validate our

results on numerous parameter configurations and several classic network topologies, includ-

ing random Erdős–Rényi [8], scale-free [9–11], small-world [11–13], and a real social net-

work [14].

1.2 Related work

In recent years, modelling epidemics has mainly been achieved via either of two paradigms:

agent-based (ABM) or equation-based models (EBM). The first represents a bottom-up

approach in which a set of behaviors are attributed to each agent in a topological system. These

behaviors dictate every individual’s action patterns through this topology, and ultimately
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determine the execution of different discrete interaction events (e.g. infection spreading, trac-

ing notification broadcasting etc). ABMs tend to be relatively complex and resource-intensive

to simulate, the involved cost being often justified by their exhibited level of granularity and

their ability to monitor public interventions at the individual level [15]. Government-advising

groups in the UK decided to employ this paradigm early on in the COVID-19 pandemic to

estimate the effects of such interventions [16, 17]. A more recent Oxford study looked at the

combined effects of manual tracing with digital solutions, at various application uptakes, via a

rich yet scalable ABM fitted to mobility data from different counties in Washington [18]. We

consider their findings the strongest modelling evidence to date that digital tracing can be

effective even at low adoption rates.

On the other hand, EBMs define a set of equations that express the evolution of certain con-
tinuous observables over time. These generally represent system states (called compartments)

showing how a disease progresses through a population. The SIR process, a widely-known

EBM, utilizes three ordinary differential equations to model a generic epidemic [19]. Exten-

sions of SIR were subsequently used to simulate the transmission of many pathogens, includ-

ing Zika [20], Ebola [21], and most recently SARS-CoV-2—e.g. SIDARTHE [22], SUQC [23].

The present study employs a variation of the compartmental model designed by the French

National Institute of Health and Medical Research (Inserm) to study the impact of lockdown

exit strategies on the spread of COVID-19 [24].

At the intersection of these two paradigms lies the category of multi-site mean-field models

which combine the mathematical rigour and the superior generalizability of EBMs with the

ability to leverage locality information regarding every individual. Similarly to ABMs, the

infection spreads over a predefined network that can either be random [25] or inferred from

real data [7], yet unlike ABMs, the dynamics are fully characterized by state transition equa-

tions. Huerta and Tsimring first employed this technique for modelling contact tracing in a

generic epidemic [26, 27]. Farrahi et al. took the idea a step further by restricting the tracing

propagation to a subset of the infection network, thus accounting for the inherently noisy

nature of this process [7]. Even though both of these exhibited powerful modelling capabilities,

they were limited by their underlying compartmental formulation (SIRT) which made several

unrealistic assumptions that do not generalize to real viral diseases: inter alia, the recovery

was conditioned on tracing, susceptibles could not be wrongfully isolated, a traced person

remained noninfectious for the full duration of the epidemic. Our modelling approach fixes

these issues by separating the traced/isolated status from the infection state, therefore allowing

for all the “active” nodes (i.e. not hospitalized, recovered or dead) to become traced or exit

self-isolation after a certain amount of time without changing their corresponding disease pro-

gression. Concurrently, this modification enables one to simulate the effects of contact tracing,

independently of the compartmental model used.

For the sake of completeness, we would also like to mention that branching process models

for epidemics have become increasingly popular in the last few years [28, 29]. One such model,

concerned with studying the effects of manual contact identification together with digital trac-

ing solutions at various uptakes on the COVID-19 pandemic, has recently been proposed [30].

Simulations conducted with it show that effective manual tracing needs to be coupled with an

application uptake of at least 75% to achieve containment, although smaller adoption rates can

decrease the reproduction number R if combined with other public health interventions. Our

results are in accordance with the latter observation, but they also show that, given the right

testing and tracing regimes (including good self-isolation compliance), lower and achievable

adoption levels are actually enough to significantly reduce the viral spread, subject to the social

network’s connectivity patterns.
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2 Materials and methods

2.1 Compartmental model outline

Motivated by growing evidence that simple SIR frameworks are inefficient at capturing the

dynamics of SARS-CoV-2 epidemics [31], we developed a new compartmental model that

accounts for many of its particular features. Each state transition represented in Fig 1 model is

labeled with its corresponding time-dependent probability, an end configuration being

reached when all non-susceptible nodes become either recovered (R) or dead (D). A

Fig 1. The SEIR-T compartmental model for COVID-19. Each node has 2 allocated variables: an infection state and a tracing status. The infection

states from top to bottom are: S—susceptible; E—exposed but not infectious; Ip—infectious, presymptomatic; Ia—infectious, asymptomatic; Is—
infectious, symptomatic; H—hospitalized; R—recovered / removed; D—dead. At any point in time, a node’s tracing status can either be T (traced and

isolated) or N (not traced/isolated or non-compliant). Each state transition has a certain time-dependent probability pS1!S2; the edge labels here

represent both
pS1!S2

Dt , and the λ rate of the corresponding exponential to sample from in the continuous-time simulations.

https://doi.org/10.1371/journal.pone.0259969.g001
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description of the model parameters, together with the values we consider for each of them,

can be consulted in Table 1.

2.2 Network propagation mechanism

Our propagation model consists of a predefined network on which the infection spreads, and

one subnetwork ascribed to each type of contact tracing (manual or digital). This mechanism

allows for simulating either one tracing strategy in isolation (dual topology, example in Fig 2)

or both in tandem (triad topology, Fig 3). Connected vertices in the true infection network are

to be considered “close contacts”, as defined by institutions like the CDC [39].

The tracing graphs are usually subset views of the true contacts network, where missing

edges correspond to application misuse in the digital setting or contacts not recalled in the

manual interviewing process, while isolated vertices are used to represent individuals that

never run a government’s digital solution or are effectively unreachable. Be that as it may, peo-

ple can at times overestimate the number or the duration of their social interactions [40], and

thus it is possible that tracers are occasionally pursuing erroneous links. Even though our

model can simulate “false” contacts, similarly to [7], we consider their occurrence quite rare

during a global pandemic (and thus negligible), since the public health personnel is particu-

larly well-trained and the general public is more attentive. We control the subsetting of the

infection graph via two interlinked parameters: the degree of overlap G ¼ K� Zrem
K and the uptake

rate r ¼ N� Nutn
N , variables which ultimately determine the values of Nutn and Nute (refer to Eq 1).

To be more explicit, the inputted Γ and the infection network’s mean degree K are utilized to

calculate Zrem, the average number of edges per node to get removed from a tracing view. The

Table 1. Compartmental model parameters.

Parameter Value(s) Description

β 0.0791 Transmission rate corresponding to R0 = 3.18. According to maximum likelihood estimation

performed by [24].

KX R Function mapping nodes to the total number/weight of connections to neighboring nodes in

state X 2 {Ip, Ia, Is, T} for a given network.

rI 0.5 Relative infectiousness of Ip and Ia compared to Is. This is still disputed:�0.5 according to

[24, 32], but weak evidence as per [33].

�−1 3.7 Latency period, measured in days. Source: [24].

pa 0.2 / 0.5 Probability of being asymptomatic. This is still disputed: 0.2 used by [24, 34], but 0.5

according to [35, 36].

m� 1
p 1.5 Presymptomatic period, measured in days. Source: [37].

ph 0.1 Probability of being hospitalized for adults (can be considerably different for children/

seniors). Equivalent to pss in [24].

γ−1 2.3 Infectious period considering the mean generation time 6.6 days. Source: [24].

λH−R 0.083 Daily rate of recovery for adults (different for children/seniors). Source: [38].

λH−D 0.0031 Daily rate of deaths for adults (different for children/seniors). Source: [38].

τt [0–0.5] Contact tracing rate. Encompasses multiple related phenomena: the tracing latency/

efficiency due to staffing/server reliability, depending on the type of tracing; the likelihood of

remaining isolated given the number of traced neighbors. Ranges from no tracing (0) to

every 2 days on average (0.5).

τr (0–0.5] Testing / Random tracing rate. Ranges from almost no testing (0.001) to every 2 days on

average (0.5).

rT 0.8 Relative probability for Ia to be tested positive (against Is). Assume testing E and Ip rarely

happens or results in false negatives most of the time.

η 0 /

0.001

Non-compliance / Self-isolation exit rate. Scaled by the time elapsed since beginning the

isolation: tcurrent − ttrace.

https://doi.org/10.1371/journal.pone.0259969.t001
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latter effectively corresponds to marking as untraceable Nute ¼
N�Zrem

2
of the edges in the interac-

tion graph. Similarly, the selected r and the total number of nodes N are used to establish

how many vertices are to be made completely untraceable in a particular tracing subnetwork:

Nutn = N � (1 − r). This work showcases simulations in which the first of these two parameters

describes the accuracy of manual tracing, whereas the second quantifies the adoption of a digi-

tal solution. That being said, our model supports exploring more complex scenarios, where

both the overlap and the uptake can be varied for a single tracing view. A full description of

the network-related variables involved in our modelling procedure can be consulted in

Table 2.

Nutn ¼ N � ð1 � rÞ Nute ¼
N � Zrem

2
¼

N � K � ð1 � GÞ
2

ð1Þ

Throughout our experiments, we assume a “traced” individual (i.e. in state T) automatically

enters self-isolation, so infecting or getting infected remains impossible until it becomes “non-

Fig 2. Final state of an epidemic simulation over a dual topology. Infection spreads with respect to the neighborhoods of the first network (here a SF

graph); the second network corresponds to digital tracing at uptake r = 0.5.

https://doi.org/10.1371/journal.pone.0259969.g002

Fig 3. Final state of an epidemic simulation over a triad topology. Infection spreads with respect to the neighborhoods of the first network (here a

SW graph); the second network corresponds to digital tracing at uptake r = 0.5, while the third involves manual tracing with overlap Γ = 0.5.

https://doi.org/10.1371/journal.pone.0259969.g003

PLOS ONE Modelling digital and manual contact tracing for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0259969 November 18, 2021 6 / 32

https://doi.org/10.1371/journal.pone.0259969.g002
https://doi.org/10.1371/journal.pone.0259969.g003
https://doi.org/10.1371/journal.pone.0259969


isolating” (N). This can happen either legally (after 14 days) or unlawfully (with a probability

of η scaled by the time elapsed since isolating). In addition, we presume that a node’s probabil-

ity to get infected proportionately increases with the amount of infectious neighbors it has in

the contacts network, while the likelihood of being traced and compliant with self-isolation

recommendations is directly proportional to the number of adjacent T nodes it features in

each tracing subnetwork.

2.3 Simulation overview

The baseline simulations in this study were run over Erdős–Rényi random graphs (ER), featur-

ing different population sizes and average degrees. It is worth mentioning that, although the

epidemiological literature has widely adopted it, this type of graph model tends to be unsuit-

able for capturing the interaction patterns of many real social networks [41]. In spite of this,

Tsimring and Huerta concluded that the SIRT-induced epidemic dynamics stays “qualitatively

similar” between ER and the empirically motivated class of small-world graphs, since the reali-

zations of both these models feature a well-defined epidemic threshold [27]. This result should

also hold for our framework, considering that we model tracing in a fairly analogous fashion.

What is more, the ER’s inherent ability to accommodate the characteristics of randomly mixed

populations [42] makes it an adequate vehicle for studying outbreaks in public places, such as

stores or mass transit conveyances [18]. Random mixing models, in turn, were shown to offer

acceptable estimates of the total epidemic size when the transmission probability is high or the

infectious period is relatively small [43], conditions that are usually satisfied in the case of

COVID-19 breakouts. Nonetheless, several experiments involving more realistic small-world

(SW) and scale-free networks (SF) are the focus of a more detailed exploration in Secton 3.4.

We note here that ABM simulations, mobility or contact tracing datasets could be utilized in

conjunction with the configuration model to obtain even more accurate predictions for partic-

ular lifelike scenarios [44, 45], but these do not offer any generalization guarantee.

It is a known fact that the SARS-CoV-2 virus is an overdispersed infectious agent [46, 47],

and like many other pathogens with a high epidemic potential [48], the disease diffusion is

largely driven by “superspreading” events [49]. As such, SFs like the Barabási-Albert networks

[9] tend to offer a sounder representation of the transmission chain since superspreaders can

be adequately modelled as hubs in a specific social graph [50, 51], while the latter naturally

arise as a result of the preferential attachment process that underpins SFs. On the other hand,

SWs more closely resemble interactions in social networks due to their larger clustering coeffi-

cient, while clusters, in turn, have been shown to be an important catalyst of the COVID-19

pandemic [52]. We believe our modelling technique of preferentially sampling nodes with a

higher traced neighbor count for undergoing quarantine to be similar in nature to the fre-

quency-based contact tracing procedure employed in [51], and thus we expect superspreaders

Table 2. Network-generation parameters.

Parameter Value(s) Description

N N Population size of the infection network.

K 10/20 Average degree of the infection network. We fix this for ER graphs.

m 10 Random edges to add for each new node in Holme-Kim networks [11].

p4 0.2 Probability of completing a triangle after adding a random edge.

Γ [.1, 1] Degree of overlap between infection network and a tracing subgraph. Used to calculate Zrem,

which in turn gives Nute (number of untraceable links).

r [.1, 1] Uptake rate (between infection network and a tracing subgraph). Used to calculate Nutn
(number of untraceable nodes).

https://doi.org/10.1371/journal.pone.0259969.t002
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inside SFs to get swiftly targeted by our control framework, subject to the strength of the con-

tact tracing rate. Moreover, as we mentioned earlier, the tracing-imbued epidemic dynamics

over SWs is akin to that of ERs, and thus similar levels of tracing efficiency are to be expected

for both these graph models. It is therefore sensible to assume that the modelling mechanism

we employ remains suitable for assessing the effects of tracing over a broader range of network

types (other than ERs).

In contrast to the above, Secton 3.5 investigates the effects of digital and manual tracing in a

viral outbreak simulated over a real social network, representing a tightly-connected commu-

nity of 74 students and graduates from MIT who agreed to have their location and interactions

monitored via WLAN and Bluetooth scans over an entire academic year (detailed exploratory

analyses of the dataset can be examined in [7, 14]). In our simulations, this dynamic network

changes daily over a period of 31 weeks, its links being weighted by the aggregated number of

Bluetooth proximities recorded between their corresponding corner points on each particular

day. In the static settings presented thus far, KX represents a function mapping nodes to the

total number of neighbors in state X 2 {Ip, Ia, Is, T} (see Fig 1). To account for dynamic

weights, however, all KX terms get replaced by a time-dependent function KX
t , given by Eq 2,

where Knorm = 10 is a normalization factor that ensures the average function value remains

above 1, wX
t ðnÞ is the sum of edge weights incoming from those neighbors of node n which are

in state X at time t, while<W> is the overall static average weight. The latter represents an

average over days of the average total weight per node, calculated using Eq 3, where D = 216 is

the number of days within the considered 31-week period, N = 74 is the number of nodes for

which we have contacts data, and wt(n) is the total weighted degree of node n at time t (i.e. irre-

spective of state).

KX
t ðnÞ ¼

Knorm � wX
t ðnÞ

< W >
ð2Þ

< W >¼

PD
t

PN
n wtðnÞ

D � N
ð3Þ

In this work, the time intervals between two state changes of the same kind are assumed to

form an exponential distribution, with the λ rate equal to the corresponding transition label

displayed in Fig 1. Choosing this distribution for timing the infection propagation, in particu-

lar, keeps our approach in line with many previous epidemiological works relying on compart-

mental formulations [7, 53, 54], while also being in accordance with the findings of different

cohort studies involving wearable tracking devices that reported roughly-exponential decays

in their participants’ histogram of interactions [55, 56]. Similar cohort studies found heavier-

tailed distributions based on power laws to be more compatible with the time intervals

between successive interactions, citing the bursty nature of social dynamics as the determining

factor [57, 58], yet the corresponding data fit was often imperfect while extensive comparisons

against exponentials were not performed. In the epidemiological setting, several authors have

argued for a shift towards more realistic and flexible Gamma (more commonly Erlang [59,

60]) or Weibull distributions [61–63] for the infection waiting times, emphasizing the non-

Markovian behavior that epidemics occasionally exhibit. That being said, exponentials have

been shown to provide a particularly good fit to epidemiological data when the mean genera-

tion time is correctly fixed [59] or the mean infection duration is smaller [64]. Both of these

conditions constitute sensible assumptions in our case.

For efficiency, we simulate the COVID-19 outbreaks using Gillespie’s algorithm [65],

which has been shown to be stochastically exact to and faster than the Monte Carlo method
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(MC) for both static and dynamic network-based diffusion processes [66]. Compared to a con-

tinuous-time MC simulation, which entails sampling the next transition for all the possible

state changes, discarding all but the most “recent” event [56], Gillespie’s procedure directly

draws the time elapsed until the next transition and identifies the state change most likely to

have taken place within that period. A detailed pseudocode for event sampling in our work is

provided in Fig 4.

2.4 Metrics under consideration

Aside from scrutinizing the number of individuals in each compartment over time (please also

refer to S1 File for more such evaluations), we assess the efficacy of different contact tracing

strategies (Cy;tt
, under different τt) by looking at their achieved peak suppression (Psup)

throughout all our simulations, thus comparing them against the corresponding no-tracing

scenario (Cθ;τt = 0) in which all parameters θ (but τt) are left unchanged. Mathematically, this

can be expressed through Eq 4, where Imax is a function mapping parameter configurations Cθ

to the average peak of infections recorded across multiple runs.

Psup ¼ ImaxðCy;tt¼0Þ � ImaxðCy;tt
Þ ð4Þ

Since the inception of the COVID-19 pandemic, the majority of the literature on epidemio-

logical modelling and public-health messages alike have scrutinized different nonpharmaceuti-

cal interventions in relation with their impact on R, the effective reproduction number [24,

67]. For the latter more realistic scenarios (i.e. Sections 3.4 and 3.5), we also estimate the R
value after t = 7 days since t0. To do so, we input the recorded exponential growth rate λ to Eq

5, thus following the Wallinga and Lipsitch methodology [68]. The generation time distribu-

tion for our SARS-CoV-2 epidemics is assumed to be Gamma(α = 1.87, β = 0.28) [69], its

moment-generating function being denoted with M(.). To calculate λ from the incidence rate

c(t) recorded within the time window [t0, t0 + t], we use Eq 6 together with the initial number

of infected c(t0).

R ¼
1

Mð� lÞ
¼

1

ð1 � � l

b
Þ
� a ¼ ð1þ

l

b
Þ
a

ð5Þ

cðtÞ ¼ cðt0Þelt ) l ¼
log cðtÞ � log cðt0Þ

t
ð6Þ

3 Results and discussion

3.1 Variation induced by population size

Initial simulations using ER graphs suggested the degree of variability across runs scales with

the number of nodes. In order to verify this hypothesis, we design an experiment in which we

vary the population size: N 2 {200, 500, 1000, 2000, 5000, 10000, 20000}, while keeping the

other parameters fixed at: average degree K = 10, dual network tracing with uptake r = 0.5

(overlap Γ implicitly derived), asymptomatic probability pa = 0.2, contact tracing rate τr = 0.1,

and testing rate τr = 0.1, with one infectious individual set for time t0. We note that, as τr = τt
> β, contact tracing is expected to engulf the infection percolation in the limit. However, by

choosing an uptake value considerably smaller than 1, we ensure our variance analysis remains

significant since many of the randomly-generated tracing views end up producing a much

slower discontinuation of otherwise quickly-contained infection cascades. This results in a

PLOS ONE Modelling digital and manual contact tracing for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0259969 November 18, 2021 9 / 32

https://doi.org/10.1371/journal.pone.0259969


high probability for finite outbreaks to occur during the early stages of the simulations (i.e.

above the epidemic threshold for enough time).

The statistics in Fig 5 size represent averages over several simulations conducted with each

of the 10 different network initializations picked by a random sampler, filtering out those

Fig 4. Pseudocode for event sampling in the SEIR-T model. We adapt Gillespie’s algorithm for our network-based

simulations, thus sampling the minimum event time directly. The list of rates is updated at each iteration only for the

last updated node and its neighbors. The procedure returns an event dictionary which is then used to update the

network states, neighbor counts and running statistics.

https://doi.org/10.1371/journal.pone.0259969.g004
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iterations which registered less than three overall infected (for a total of 80–100 simulations

overall per each value of N). The data confirm the variance in peaks of infection increases as

the network expands, aspect which can be explained by the growing difference between early-

stopped and full-blown outbreaks. In contrast, the uncertainty in estimating the relative per-

centage of these maximal points expectedly decays with the size (� according to 1ffiffiffi
N
p ), a choice

of N = 1000 resulting in a tolerable standard deviation of almost 3%, while N = 10000 leads to

an even smaller variability of<1% across runs. Consequently, we consider these two values

representative for our model’s expressive power given a randomly-mixed population, and, as

such, we use them both in our experiments. We account for the corresponding difference in

variances by simulating 7 different networks with 15 random seeds each for N = 10000, but 50

networks and 15 seeds in the case of N = 1000. We note this result may not hold in the case of

structured populations, yet nevertheless we reproduce the latter of the two setups in the

SF-SW experiment for consistency.

3.2 Tracing overlap in larger populations

Going forward, we want to assess the effect of varying a tracing network’s accuracy (i.e. over-

lap) in an outbreak involving a large community of N = 10000 individuals. To achieve this, we

Fig 5. Uncertainty of simulation results with regard to the infection peak. Values from 80–100 runs plotted for different population sizes, K = 10,

τt = τr = 0.1, pa = 0.2. On top, boxplots with quartiles represented via whiskers, medians via red dotted lines, and averages via red diamonds; the

standard deviations σ are given below. The left-hand side displays absolute values, whereas on the right all the variation levels are scaled down by N.

https://doi.org/10.1371/journal.pone.0259969.g005
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use the following parameter configuration: an average degree K = 10, dual network tracing

with overlap Γ 2 {0.11, 0.22, . . ., 1} (uptake r is implicitly derived), asymptomatic probability

pa = 0.2, a tracing rate τt 2 {0.01, 0.04, 0.07, 0.1}, a testing rate τr 2 {.001, 0.01, 0.04, 0.07, 0.1},

and a non-compliance rate η = 0 (assuming everybody self-isolates until they are no longer

infectious), with a single Ip node sampled at time t0. The resulting statistics get averaged over

105 runs, as previously described.

Fig 6 shows that a sub-optimal test rate, such as τr = 0.001, leads to inconclusive results,

where the variance induced by the stochasticity of the process shadows any benefit obtained

through contact tracing. With better testing, clearer patterns start to emerge: The higher the

contact tracing rate, the better the peak suppression is and the faster it gets approached (see

Fig 7). As τr becomes even more effective, smaller tracing network overlaps are needed to

swiftly reduce that maximum point. Looking at the tracing rate, a moderate value of τt 2 {0.04,

0.07} achieves a delay in the peak for smaller Γ, but this can occasionally lead to a prolonged

epidemic, especially for overlaps in the “noise” region like Γ = 0.11, since initially-uninfected

regions may get incorrectly traced, so the epidemic has the chance to gain momentum once

those individuals exit self-isolation. In contrast, noticeable reductions with no such side effect

can be observed for Γ� 0.5. On the other hand, a small value of τt = 0.01 seems unable to pro-

duce a positive outcome. In real life, the latter scenario would occur if the tracing programme

was very slow, missing too many contacts as a result, or if the digital contacts application failed

to promptly notify many of its active users. Another noteworthy occurrence in Fig 7 is the

bimodality of some of the curves. This effect has been previously noted for larger tracing rates

and overlaps [7], being a rare artefact of fast incidence reductions that cannot be sustained by

a τt< β any further.

Aside from outlining the effects of different testing strategies and tracing network overlaps,

this experiment also hints at which parts of τr’s and τt’s parameter spaces are more relevant for

exploration. To aid our search, we plot heatmaps of these parameter’s achieved peak suppres-

sion for different levels of overlap (see Fig 8), and observe, as a result, that significant outcomes

(i.e. distinguishable from simulation noise for Γ� 0.5 and beyond) are obtained when τr� 0.1

and τt� 0.04, while values�0.1 should fall within the “adequate” region of a large spectrum of

Γ values.

3.3 Effects of average degree and app uptake

Further, we analyse the impact of the application uptake in scenarios with different average

degrees (K 2 10, 20), and more appropriate testing and tracing strategies—i.e. τt, τr 2 {0.05,

0.1, 0.2, 0.5}. For this trial, we set N = 1000, the asymptomatic probability to pa = 0.2, and the

non-compliance rate to η = 0.001 (with automatic isolation exit after 14 days), selecting a single

Ip node as the infection seed. The results are averaged over 750 simulations to reduce the vari-

ance induced by the smaller N.

Fig 9 shows the peak suppression achieved by each strategy given a specific adoption level.

For τt = 0.05, uptakes r� 0.5 generally give results within the noise region. Improving the con-

tact tracing rate, however, leads to a noticeable decrease of this maximal point, even at smaller

adoption levels. This is particularly true in the larger average degree case. Interestingly, deploy-

ing a wider-scale testing programme alone (τr = 0.5) seems to lead to a considerable spread

reduction which makes contact tracing less beneficial at achievable uptakes (even entirely prof-

itless in the K = 10 situation).

Our findings suggest that a testing rate of τr = 0.1 remains suitable in conjunction with con-

tacts isolation not only for the previous experiment with N = 10000, but also in these smaller

scale scenarios featuring different average degrees. Consequently, we decided to examine
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further the effect of such a testing regime on the evolution of the spread (Fig 10), the number

of total deaths (Fig 11) and hospitalizations (S1 Fig in S1 File) for K = 20. The first chart below

illustrates how the epidemic curves significantly “flatten” for uptakes r� 0.4, the effect being

more apparent as the contact tracing rate increases. The second diagram puts these results into

perspective by showing that the number of deaths can be reduced even with lower uptakes,

Fig 6. ER network—Peak suppression (left) and the time of peak (right) at various tracing network overlaps.

Values are averaged over 105 runs, representing results for N = 10000, K = 10, pa = 0.2. The suppression is calculated

by subtracting the average maximal infected point given by each parameter configuration from the average point

obtained with no contact tracing (τt = 0). Apart from τr = 0.001 and τt = 0.01 which produce inconclusive results that

we regard as noise, the effectiveness of an epidemic containment strategy expectedly scales with the testing and the

tracing rates.

https://doi.org/10.1371/journal.pone.0259969.g006
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Fig 7. ER network—Epidemic evolution over time given a less efficient (left) and a more effective (right) testing

regime. Results averaged over 105 simulations, obtained for N = 10000, K = 10, pa = 0.2. As the contact tracing rate

increases, the accuracy of the network given by Γ becomes more important for “flattening” the curves. The case with

no contact tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g007
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while at the other end of the spectrum many simulations have ended with notably fewer

deceased (even none for an effective tracing τt� 0.2).

Interestingly, these figures indicate that a higher uptake does not always guarantee a better

epidemic outcome (e.g. r = 1 ends up with a higher peak than r = 0.8 in the case of τr = 0.1 and

τt� 0.2). This is a direct consequence of isolating too many susceptibles early on in the out-

break (scenario similar to a partial lockdown), making their eventual self-isolation exit an

unpredictable impact factor for the transmission chain.

3.4 Combining digital tracing with an imperfect manual tracing process

In this section, we study a more realistic scenario in which digital solutions complement an

inherently imperfect interview-based tracing system. To that end, a triad network topology is

employed, with digital tracing happening at a rate of 1

tt
days on average, over one subgraph

given by the uptake r 2 {0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1}, while the manual process gets carried

at a slower pace of 2þ 1

tt
days on average, over a third network view whose edges have been

Fig 8. ER network—Heatmaps of achieved peak suppression for different testing and tracing rates. N = 10000, K = 10, pa = 0.2. Averaged over 105

runs.

https://doi.org/10.1371/journal.pone.0259969.g008
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randomly removed according to the degree of overlap Γ 2 {0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1}. For

the purpose of this experiment, we make use of a more representative graph structure for the

SARS-CoV-2 transmission based on the Holme and Kim (HK) model [11], which features

both a SF degree distribution and a SW clustering coefficient. The network parameters chosen

here are: N = 1000, m = 10 (number of random edges to add for each new node; this replaces K
in Eq 1 for calculating Nute) and p4 = 0.2 (probability of making a triangle after adding a ran-

dom edge). To avoid runs in which the epidemic gets quickly contained by chance, the

Fig 9. ER network—Uptake rate r against peak suppression. Suppression is difference in peak to no tracing, i.e. τt =

0. N = 1000, pa = 0.2, η = .001. K = 10 given on the left, K = 20 on the right. The case with no contact tracing (τt = 0) is

colored in black. All lines were plotted with the 95% confidence intervals resulted from 750 runs.

https://doi.org/10.1371/journal.pone.0259969.g009
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simulation starts with 10% of the nodes in the Ip state—c(t0) = 10% of N. The other parameters

remain unchanged from the previous section, including the number of total runs.

The first aspect to notice in Figs 12 and 13 is that all curves remain monotonic with respect

to r, while the dissimilarities between different τt contact rates become more apparent than

what could be observed in the preceding experiment. This is a direct consequence of the

increased number of infected people selected for time t0, which prevents simulations from

averaging over too many early-stopped runs. Considering the scale this pandemic has reached

and the unavoidable presence of a delay between the infection onset and the debut of tracing,

scenarios such as this one are more likely to occur, and therefore of a greater interest [17, 70].

Fig 12 shows the degree of peak suppression achieved by utilizing digital and manual trac-

ing solutions when compared to a scenario in which no contact tracing was performed. These

results suggest that, as the efficacy of the interview-based process increases (i.e. less contacts

get missed), lower and achievable application adoption rates (20–50%) are sufficient to effec-

tively reduce the maximal point of the epidemic. When the tracers are eventually able to “see”

the full network of contacts (Γ = 1), varying r no longer impacts the spread significantly, as

Fig 10. ER network—Epidemic evolution over time for τr = 0.1 N = 1000 and K = 20. Results averaged over 750 runs. The case with no tracing (τt =

0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g010
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should be expected. In contrast, a very good testing regime (τr� 0.2) can partially compensate

for an inefficient manual tracing system (Γ = 0.1) within the aforementioned uptake range.

Our estimate of R = 3.20 for minimal interventions (i.e. τr = 0.05 and no tracing) during

this scenario’s first week falls within the confidence interval of the basic reproduction number

R0 2 [3.09, 3.24] derived in Di Domenico et al. [24] by applying the next-generation approach

Fig 11. ER network—Total deaths over time for τr = 0.1 N = 1000 and K = 20. The 95% confidence intervals resulted from 750 runs are displayed

around each line. The case with no contact tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g011

PLOS ONE Modelling digital and manual contact tracing for COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0259969 November 18, 2021 18 / 32

https://doi.org/10.1371/journal.pone.0259969.g011
https://doi.org/10.1371/journal.pone.0259969


[71] on a model fairly similar to ours. Fig 13 demonstrates that with good testing regimes (τr�
0.1) and a reasonable manual tracing in place (Γ� 0.5), achievable uptake levels are enough to

limit this R to a value close to 1. In contrast, digital tracing alone fails to significantly reduce

the spread unless both the testing and the adoption rates are very high. Similarly to what could

Fig 12. HK network—Uptake rate r against peak suppression. Suppression is difference in peak to no tracing, i.e. τt = 0. The results here correspond

to a Holme-Kim network with N = 1000, m = 10, p4 = 0.2, pa = 0.2, η = .001. On the left, we have a scenario in which only digital tracing was

conducted, whereas the next 3 columns represent simulations with a combination of digital tracing on a second network, and manual tracing over a

third network with various overlaps: 0.1, 0.55, 1. The 95% confidence intervals are displayed. The case with no tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g012
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be observed in Fig 12, uptakes play a minor role in the infection proliferation if tracers are able

to track the whole contact network eventually, yet this scenario is rather unlikely in real life.

Interestingly, most of the other trends outlined in the peak suppression charts are faithfully

mirrored by the evolution of R in the first week of the simulation. This reinforces the fact that

efficient contact tracing in the early stages of an outbreak is essential for containing a virus like

SARS-CoV-2 [72].

Even though peak suppression remains a good metric for assessing the benefits of public

interventions, policy makers are more often interested in what combinations of these measures

can quickly bring R to acceptable levels. In light of this, we plotted the contour lines of the R
values produced by various degrees of interview-based network overlaps, testing and digital

tracing adoption rates (see Fig 14, but also S6 Fig in S1 File). With an estimated uptake of

around 40% in Finland and Ireland, 30% in the UK, or 27% in Germany and Norway at the

time of writing [73], an effective testing regime (τr� 0.2) coupled with an efficient contact

Fig 13. HK network—Uptake rate r against the effective reproduction number R. Suppression represents the

difference to no tracing, i.e. τt = 0. The results here correspond to a Holme-Kim network with N = 1000, m = 10, p4 =

0.2, pa = 0.2, η = .001. On the left, we have a scenario in which only digital tracing was conducted, whereas the next

columns represent simulations with a combination of digital tracing on a second network, and manual tracing over a

third network with various overlaps: 0.1, 0.55, 1. The case with no contact tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g013
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tracing rate (τt = 0.5) can drive R below 1 even when tracers miss up to half the contacts (Γ�
0.5). Should this adoption improve to 50%, the aforementioned effect would be obtained with

a testing rate half as good. In contrast, a moderate tracing rate only becomes effective if a

large-scale testing programme gets deployed (τr = 0.5) or bigger uptakes are achieved within a

population (r> 50%). We note the quoted uptakes were approximated using the total number

Fig 14. HK network—Contour plots of R based on the level of manual tracing overlap Γ and digital tracing uptake

r. The results here are for a Holme-Kim network with N = 1000, m = 10, p4 = 0.2, pa = 0.2, η = .001. Each line

represents a different testing level τr, while the columns correspond to a moderate (left) and efficient (right) average

level of tracing engagement and isolation compliance given by τt.

https://doi.org/10.1371/journal.pone.0259969.g014
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of application downloads, therefore due diligence should be exercised when interpreting these

statistics because new downloads do not always convert to new active users.

3.5 Contact tracing efficiency in a real social network

Lastly, we evaluate the ability of digital tracing to curb an epidemic simulated over a real social

network, in the presence or the absence of manual contact tracing. In this scenario, both the

population size N and the average degree K are data-driven, with the latter also changing

dynamically (N = 74, Kt0
¼ 5:62 at time t0). Given that the network represents a tightly-knit

community (static average degree Kstatic> 60), we investigate a broader range of testing and

tracing rates: τr 2 {0.1, 0.2, 0.5, 1, 1.5}, τt 2 {0.1, 0.2, 0.5, 1, 1.5, 2}. The uptakes r, the overlaps

Γ, and the initial incidence c(t0) are left unchanged from the last passage, while the relative

delay between digital and manual tracing is kept at 2 days on average. The probability of

becoming an asymptomatic case following exposure is fixed at pa = 0.2 for the purpose of our

initial discussion, but a comparison to the case in which pa = 0.5 can be consulted at the end of

this section.

The first thing to note about both Figs 15 and 16 is that each presents qualitatively similar

trends to their counterpart figures from the previous experiment (i.e Figs 12 and 13, respec-

tively). Namely, the better the testing and tracing rates are, the higher the benefit. At the same

time, lower uptakes, in conjunction with an adequate overlap Γ� 0.5, consistently achieve sig-

nificant peak reductions, driving the R estimate of the first week below 1.5, even when the test-

ing rate is smaller than 0.5. In contrast, with higher uptake values, the degree of overlap

becomes less relevant for the epidemic outcome. Interestingly, the benefits of increasing the

tracing effort τt beyond the value of 1 remain minimal across parameter configurations, and

therefore we restrict further analyses to the range [0.1, 1].

Fig 17 presents the 2D contours of the estimated R value (during the initial 7 days of the

simulation) for the whole range of parameters. When comparing these results to Fig 14, we

can see that a significantly faster testing strategy would be needed in this case to swiftly contain

the epidemic and force R< 1. This is a consequence of dealing with an outbreak in such a

lively and highly-interactive community, where the virus spreads too rapidly to afford testing

at a lower rate than 0.5 (or even 1 in some cases) if the objective is to keep R subunitary. Simi-

larly, an efficient τt� 0.5 is needed for achievable uptakes to attain (or be close to) the afore-

mentioned goal. Where limited public health resources are available, locking down or

restricting the movements within such hubs is therefore recommendable.

Finally, we investigate whether the efficacy of tracing appreciably changes when different pa
values are considered. An asymptomatic node is assumed to be less infectious—rI = 0.5, but

also less likely to get tested positive—rT = 0.8, so the epidemic dynamics should significantly

differ when varying this probability. Remarkably, however, we observe the benefits of contact

tracing do not fluctuate across the two studied values in the majority of the scenarios under

scrutiny (see Figs 18 and 19). As shown in Fig 19, the most apparent differences in R were

recorded when less accurate tracing networks (Γ, r< 0.5) and less effective testing rates (τr<
0.5) were employed. That is to say a suboptimal “test and trace” policy leads to more people

getting infected when pa = 0.2, yet this higher rate of infectiousness can be offset by the smaller

likelihood of nodes testing positive in the pa = 0.5 scenario, ultimately leading to minimal dis-

similarities for the more adequate policies.

4 Conclusions and future work

This paper demonstrated how a novel methodology for modelling the effects of different “test

and trace” strategies can be applied to study the transmission dynamics of a complex viral
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epidemic, such as COVID-19. Following a comprehensive analysis of the model’s parameters,

the procedures described here can be utilised to predict how the SARS-CoV-2 virus would

spread through those communities where some indication of the interview-based network

overlap and/or the digital tracing uptake exists. To facilitate such endeavors, we made our

entire codebase open-source (refer to S1 File).

Fig 15. Social evolution—Uptake rate r against peak suppression. Suppression is difference in peak to no tracing, i.e.

τt = 0. The results here correspond to the real Social Evolution network, dynamic over the studied period of 31 weeks,

pa = 0.2, η = .001. On the left, we have a scenario in which only digital tracing was conducted, whereas the next 3

columns represent simulations with a combination of digital tracing on a second network, and manual tracing over a

third network with various overlaps: 0.1, 0.55, 1. The 95% confidence intervals are displayed. The case with no tracing

(τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g015
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The approach we propose can address from a modelling perspective four of the open ques-

tions formulated by Anglemyer et al. in their Cochrane Review [74]: the combined effects of

digital and manual tracing can be studied via the triad network topology, populations with

poor access to the internet may be factored in by the degree of overlap Γ, individuals that have

privacy concerns or accessibility issues can be represented in the system via the application

adoption rate r, while the ethical and economical repercussions of balancing false positives and

false negatives of tracing can be assessed through the statistics our simulations readily capture

Fig 16. Social evolution—Uptake rate r against the effective reproduction number R. Suppression represents the

difference to no tracing, i.e. τt = 0. The results here correspond to the data-driven Social Evolution network, pa = 0.2,

η = .001. On the left, we have a scenario in which only digital tracing was conducted, whereas the next columns

represent simulations with a combination of digital tracing on a second network, and manual tracing over a third

network with various overlaps: 0.1, 0.55, 1. The case with no contact tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g016
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(for more details, consult S2 and S3 Figs in S1 File). Consequently, the model we put forward

is already powerful enough to answer a large spectrum of research and policy-related

questions.

The simulations we conducted show that digital tracing remains a viable solution for reduc-

ing the peak of an outbreak, as well as the effective reproduction number R, even when its

Fig 17. Social evolution—Contour plots of R based on the level of manual tracing overlap Γ and digital tracing

uptake r. The results here correspond to the real Social Evolution network, dynamic over the studied period of 31

weeks, pa = 0.2, η = .001. Each line represents a different testing level τr, while the columns showcase a less efficient (far

left), a moderate (center-left), an efficient (center-right) and a very efficient (far right) average level of tracing

engagement and isolation compliance given by τt.

https://doi.org/10.1371/journal.pone.0259969.g017
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adoption levels are lower. At the same time, a less efficient interview-based process, which

misses up to half the contacts, can still contain the spread if coupled with 30–40% application

uptakes and large-scale testing regimes. For highly-connected communities, the latter condi-

tion becomes even more essential for swift containment. The peak reduction seems ubiqui-

tously tied to how fast the tracing is conducted, as well as how impactful the public-health

Fig 18. Social evolution—Uptake rate r against peak suppression, for different pa values. Suppression is difference

in peak to no tracing, i.e. τt = 0. The results here correspond to the real Social Evolution network, dynamic over the

studied period of 31 weeks, η = .001, and either pa = 0.2 (on the left of each pair) or pa = 0.5 (on the right of each pair).

The left-quadrant pairs represent a triad network scenario with manual overlap Γ = 0.1, while the right quadrant

showcases Γ = 0.5. The 95% confidence intervals are displayed. The case with no tracing (τt = 0) is colored in black.

https://doi.org/10.1371/journal.pone.0259969.g018
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messages are in making the involved communities more compliant with the self-isolation rec-

ommendations, as soon as more and more of each individual’s contacts get traced and isolated

(aspects encompassed in the τt rate).

We would like to emphasize that the parameter ranges under scrutiny in this study are by

no means exhaustive. Therefore, we leave for future exploration studying the effects of

Fig 19. Social evolution—Contour plots of R based on the level of manual tracing overlap Γ and digital tracing

uptake r, for different pa values. The results here correspond to the data-driven Social Evolution network when η =

.001, with each pair of charts describing pa = 0.2 on the left and pa = 0.5 on the right. Each line represents a different

testing level τr, while the columns showcase combinations of one pa value together with a level of tracing effort given by

τt.

https://doi.org/10.1371/journal.pone.0259969.g019
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extensively varying the average degrees of the random networks, the non-isolation rates, the

initial infections, or the variant-specific asymptomatic and hospitalization probabilities. Look-

ing at such diverse scenarios would allow one to better estimate the shortfalls of contact tracing

when different variants of concern are circulating, discover factors that may have introduced

significant inefficiencies into the strategies adopted by many countries (e.g. higher non-com-

pliance [75]), while also ensuring the variability induced by early-stopped simulations is

curbed.

Next, we envision leveraging several mobility datasets in subsequent endeavors to infer a

broader range of network structures, and derive time-dependent estimates of the transmission

rate, as previously described in Liu et al. [60]. Other parameters in our model could be tailored

to the epidemiological situation of different countries by fitting them to governmental data

reporting on the number of COVID-19 deaths registered within each region of interest.

Finally, the random nature of testing and deriving static tracing views in this study may not

provide the most realistic setup. Strategically targeting mass-testing campaigns to hubs or

dynamically intensifying tracing efforts in highly-affected regions could significantly improve

the outcome of an outbreak. To finely control the network dynamics in such an informed fash-

ion, we expect future studies to utilize a combination of graph neural networks and gradient-

based reinforcement learning techniques, possibly leveraging the setup recently proposed by

Meirom et al. for prioritizing the viral testing allocation [45].

Supporting information
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Supervision: Katayoun Farrahi.

Visualization: Andrei C. Rusu.

Writing – original draft: Andrei C. Rusu.

Writing – review & editing: Andrei C. Rusu, Rémi Emonet, Katayoun Farrahi.
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