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Abstract: We investigated the evolutionary history of the striped field mouse to identify factors
that initiated its past demographic changes and to shed light on the causes of its current genetic
structure and trans-Eurasian distribution. We sequenced mitochondrial cyt b from 184 individuals,
obtained from 35 sites in central Europe and eastern Mongolia. We compared genetic analyses with
previously published historical distribution models and data on environmental and climatic changes.
The past demographic changes displayed similar population trends in the case of recently expanded
clades C1 and C3, with the glacial (MIS 3–4) expansion and postglacial bottleneck preceding the
recent expansion initiated in the late Holocene and were related to environmental changes during
the upper Pleistocene and Holocene. The past demographic trends of the eastern Asian clade C3
were correlated with changes in sea level and the formation of new land bridges formed by the
exposed sea shelf during the glaciations. These data were supported by reconstructed historical
distribution models. The results of our genetic analyses, supported by the reconstruction of the
historical spatial distributions of the distinct clades, confirm that over time the local populations
mixed as a consequence of environmental and climatic changes resulting from cyclical glaciation and
the interglacial period during the Pleistocene.

Keywords: Apodemus agrarius; environmental niche model; glacial expansion; Holocene bottleneck;
MaxEnt; mitochondrial DNA; Muridae; phylogeny

1. Introduction

Over the Pleistocene and Holocene, the global environment has undergone cyclical
large-scale shifts that have affected ecosystems, species’ spatial structures and population
trends [1–4]. The changing climate and global degradation of the environment resulting
from human activities have both positively and negatively affected most global species.
Deforestation, agricultural development, especially the cultivation of agricultural crops
and the creation of a secondary (cultural) steppe, have positively affected the spread of
several rodent species (European ground squirrel Spermophilus citellus, European hamster
Cricetus cricetus, common vole Microtus arvalis, several mice species) from the Asian steppes
to central Europe [5–7]. These pressures are unlikely to diminish in the future, so we need to
acquire knowledge of the evolutionary ability of species to adapt to changing environments
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and their response to changes in the availability and extent of species preferred habitats,
related to glacial and non-glacial cycles and more recently to human activity [8,9].

Whether or not a species can adapt to environmental changes strongly affects its
vulnerability, thus influencing its genetic structure and shaping its distribution and spatial
diversity [10,11]. For instance, in some invading populations of opportunistic or invasive
species with a high adaptive capacity, such evolutionary changes can occur rapidly [12,13].
Reconstructing a species’ history and evolution in the context of concurrent environmental
and climatic changes enhances our understanding of various aspects of its biology, such as
how the species spreads and what factors affect this process, what role it plays in speciation
processes, and its current population structure. Understanding the nature of a species’
successes and failures, especially when linked to particular events in its history, provides
us with tools for making more reliable predictions of future changes, trends and threats
in ecosystems affected by human factors and climatic changes [3,14,15]. Learning about
the factors affecting the historical colonization of various species may provide insight
into the processes behind current expansions, especially in the context of non-native and
invasive species, to specify future trends, and to forecast the directions and scales of a
species’ continued dispersion.

Currently, we still observe progressive expansion of the striped field mouse (SFM)
in Europe [14], the Siberian region [15] and far east Russia [16,17], closely related with
human activity and habitat transformation leading to increased availability of the SFM’s
preferred habitats and potential “new” migration corridors, allowing for overcoming
the previously existing migration barriers. In the context of the observed high plasticity
of SFM and their ability of fast occupation of newly formed preferred biotopes, this
species should be in newly inhabited regions, where it appears as a new, alien element
of local fauna, capable to changing the community of small mammals and displacing
other “native” species [18,19]. Some European studies highlighted strong interspecies
interactions between SFM and A. sylvaticus [18,20] and occupying the habitat niche of
sympatric species such as A. uralensis, very quickly becoming a dominant element of the
small mammal community [19].

Additionally, small mammals constitute a suitable model group for reconstructing the
history of ecosystems and biota affected by glacial and interglacial cycles [21–23]. Western
Palearctic wood mice of the genus Apodemus were used for assessing demographic and
environmental factors that affected their populations during the Plio-Pleistocene [24], and
these results were used as a proxy in analyses of the history of European forests. Similarly,
phylogenetic studies on the Eurasian genus Mus enabled researchers to reconstruct the
historical backdrop of shrinking forests and expanding grasslands [25,26].

The striped field mouse (Apodemus agrarius), hereafter SFM, is one of the most
widespread rodents with an Eurasian distribution extending from eastern Asia to cen-
tral Europe [27]. This distribution has an unusual pattern: its populations inhabit two
disjunctive parts of Eurasia. This disjunct distribution may be a result of past demographic
and spatial declines, as well as the fragmentation of the species’ former range following
the original transcontinental expansion, and postglacial environmental changes, during
the Postglacial period when the boreal forests, avoided by the species, replaced steppe
and scrubland biomes preferred by SFM. This scenario of distribution disjunction, as a
consequence of climate/environmental changes, is supported by the estimated time of
disjunction dated at the early/middle Holocene (<12 ka) as the consequence of forest
succession replacing previously dominant semi-open and open biota preferred by SFM
or related with the climatic events during the MIS3, preceding the LGM (~39 ka) [28,29].
The former context is usually associated with Neolithic agricultural expansion [30]. The
recently confirmed presence of the species in the region of Transbaikalia previously in-
dicated as uninhabited or inhabited by a very scarce SFM population indicates current
expansion in this region, mostly along the river valley and agricultural areas [15]. Some
recent papers reconstructing SFM history in Europe using fossil records have suggested
multiple probable SFM expansions, with a maximum frequency during the post-Neolithic
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period preceded by an early or middle Holocene population decline [6,7,31,32]. On the
basis of their results of phylogenetic studies of SFM, Latinne et al. support the hypothesis of
a relatively rapid expansion of SFM initiated in central Asia during the Eemian interglacial
(MIS 5), when the open and semi-open habitats preferred by SFM were distributed across
central Asia and Siberia, and further expansion into western Europe during the last Glacial
period [29]. However, there is still no detailed analysis of the past SFM expansion and the
factors that initiated it, especially in the context of its historical expansions of its Asian
populations into the western Palearctic during the Pleistocene and Holocene.

Here, we analyzed the evolutionary history of the SFM and tested various scenarios of
past events explaining its current genetic structure and current trans-Eurasian distribution
in relation to past environmental changes during the upper Pleistocene and the Holocene.
In doing so, we examined whether these climate-induced environmental changes could
have influenced or initiated the large-scale trans-continental expansion of the species as
well as past demographic changes within the different, site-specific populations, which in
turn could have initiated colonization of new, previously uninhabited areas, and subse-
quently, spatial expansion and/or decline of populations as an effect of the appearance or
disappearance of appropriate environmental conditions in relation to past climatic shifts.

2. Materials and Methods
2.1. Sampling

This study used newly collected genetic material from 361 trapped mice and museum
specimens obtained from 35 sites in central Europe (Czech Republic, Slovakia, Germany,
Poland) and Mongolia. The material included hair roots and tissue samples taken from
museum specimens and root hair samples were collected from SFMs captured in Poland in
wooden live capture traps between 2014 and 2015. The captured animals were marked and
then released back into the wild. The sampled hair roots were stored in a freezer at −20 ◦C,
and the tissue samples were stored in 96% ethanol until DNA extraction using a Sherlock
AX DNA isolation kit (A & A Biotechnology, Poland). The procedure for catching and
collecting the animals was approved by the Second Local Ethics Committee for Animals,
Wrocław University of Environmental and Life Sciences (Nr 40/2012, 16 April 2012).

2.2. Genotyping

We analyzed the mitochondrial DNA variability of SFM using cytochrome b (cyt b)
sequences from Eurasia, including newly sequenced specimens from Europe and Mongolia
and other sequences from GenBank (Table S1 in Supplementary Materials S1).

We used two universal primers L14724 and H15915 for genotyping cyt b in the genus
Apodemus, in each PCR reaction [33]. Each PCR contained 6.5 µL of 10X DreamTaq buffer
with MgCl2 at a concentration 20 mM, 2.5 µL of dNTP mix (0.2 mM of each dNTP), 1.3 µL of
forward and reverse primer (10 µM/1 µL), 0.23 µl of DreamTaq DNA polymerase (Thermo
Scientific), 1 µL of genomic DNA, and 10.2 µL of ddH2O. The PCR comprised the following
steps: 94 ◦C for 3 min, 35 cycles of 94 ◦C for 1 min., 55–57 ◦C (incremental increase in each
cycle up to 57 ◦C) for 1 min., 72 ◦C for 1 min., and 72 ◦C for 5 min. PCR products were
Sanger sequenced in forward and reverse directions using BigDye™ Terminator ver. 3.1
technology (Life Technologies, Carlsbad, CA, USA) on an ABI Genetic Analyser 3130 (Life
Technologies). The sequences were manually edited using Bioedit to generate consensus
DNA sequence from forward and reverse sequence [34] and aligned using the Clustal W
method [31], implemented in MEGA 7 [32].
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2.3. Phylogeny, Population Structure and Genetic Variability Based on mtDNA

We generated phylogenetic trees using Bayesian inference in BEAST ver. 1.8.4 [35],
employing the birth–death process as a speciation, with Rattus and R. norvegicus (GenBank
accession nos. AB752989 and KC735129, respectively) as an outgroup. To select the best-fit
model of nucleotide substitution, we used the Bayesian Information Criterion (BIC) in
MEGA 7, with the one partition consisting of three codons (positions 1–3) of cyt b [32].
The TN93+I+G model had the lowest BIC and AICc values; hence, it was selected as the
best evolutionary substitution model. The MCMC chain with 100 million generations and
tree sampling every 10,000 generations was used in three independent runs. The resulting
log files were examined for convergence and effective sample sizes (with ESS > 200) in
Tracer 1.7, and a maximum clade credibility tree was calculated in TreeAnnotator v1.8.4.
A combined tree file was generated in LogCombiner v1.8.4 using a 25% burn-in period.
Minimum spanning networks (MSN) for cytb sequences were prepared in PopArt ver.
1.7 [36]. Several of the shortest sequences were excluded in network reconstruction.

For all the regions (continental populations) and clades designated by phylogenetic
analysis, we calculated several parameters of genetic diversity using DnaSP ver. 5 [37]
and Arlequin ver. 3.5 [38,39] (Table 1). Analysis of molecular variance (AMOVA) was
used in the assessment of the geographical pattern of population subdivision [39]. The
Genetic Landscape Shape Interpolation (GLSI) tool implemented in Alleles In Space (AIS,
ver. 1.0), which allows visualization of patterns of genetic diversity across the landscape,
graphically represent the spatial shape of the species’ diversity [40]. Additionally, we
employed allelic aggregation index analysis (AAIA) to test whether the alleles showed
non-random spatial diversity across the landscape studied. To test the significance of RAVE
(the mean AAI value), 1000 permutations were used. Correlations among geographical
and genetic distances (IBD) were estimated with the Mantel test, using AIS.

Table 1. The genetic diversity indices of mtDNA (cyt b) of the populations and identified phylogenetic clades; n—number of
sequences, S—number of segregating sites, Eta—total number of mutations, k—average number of differences, h—number
of haplotypes, Hd—haplotype diversity, π—nucleotide diversity.

Population n S Eta k h Hd ± S.D. π ± S.D.

A. agrarius—Eurasia 473 255 275 15.17 210 0.980 ± 0.003 0.0133 ± 0.0004
Eurasia—mainland 392 209 227 11.46 172 0.972 ± 0.005 0.0101 ± 0.0002

Asia 307 230 243 17.80 143 0.960 ± 0.007 0.0156 ± 0.0004
Asia—mainland 226 179 191 13.35 105 0.929 ± 0.013 0.0117 ± 0.0002

Europe 166 78 81 4.52 67 0.973 ± 0.004 0.0040 ± 0.0002

Clades

Clade 1 226 110 118 5.71 97 0.974 ± 0.004 0.00501 ± 0.00020
Clade 2 59 12 12 1.11 3 0.133 ± 0.060 0.00099 ± 0.00044
Clade 3 65 95 96 7.86 44 0.979 ± 0.009 0.00690 ± 0.00035
Clade 4 15 25 26 6.54 10 0.895 ± 0.070 0.00574 ± 0.00089
Clade 5 28 47 47 9.36 17 0.947 ± 0.025 0.00821 ± 0.00049
Clade 6 64 63 63 7.30 30 0.958 ± 0.011 0.00640 ± 0.00031
Clade 7 17 21 21 8.12 8 0.897 ± 0.042 0.00712 ± 0.00108

2.4. Historical Demography of Populations

We used three different approaches to analyze the demographic history of the SFM
based on cyt b sequences. The first uses the mismatch distribution (MMD) of pairwise
differences [41,42], analyzed using the pure demographic expansion and spatial expansion
models fitted in Arlequin ver. 3.5 [38,39]. Both models assume the growth of a stationary
population size from N0 to N1 during T generations. The pure demographic expansion
model assumes the growth of a panmictic (global) population, whereas the spatial expan-
sion model uses the infinite-island model (equivalent to the continental-island model),
involving spatial range expansion and spatially diverged populations [38]. For both the
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sudden and spatial expansion models, we determined whether the sequences deviated sig-
nificantly from the population, using the sum of squared deviations (SSD) and raggedness
index (r) [41], estimated in Arlequin.

We also tested the demographic history using three neutrality tests: Tajima’s D test [43],
Fu’s Fs statistic [44], determined using Arlequin ver. 3.5, and the Ramos-Onsins and Rozas
R2 statistic [45], determined using DNAsp ver. 5 [37]. The statistical power of these tests
depends strongly on sample size (n) and the number of segregating sites (S). The statistical
significance of all the tests was estimated using 1000 permutations. The time of the last
expansion was calculated on the basis of the Tau (τ) value generated in Arlequin using
the formula t = τ/2 u, where t is the time (in generations) since the expansion and u
is the cumulative evolutionary rate per generation for the sequence analyzed [46]. The
evolutionary rate u is defined by formula u = 2 µk, where µ is the evolutionary rate
(substitutions per site per generation) and k is the sequence length [42]. To calculate the
expansion time in years, t is multiplied by the generation time of the species studied.
According to a recent recommendation, we used the length of generation time g = 1.38 [47].
After taking into account time-dependent evolutionary rates, the time of the most recent
expansion was estimated using the standard evolutionary rate of 0.024 substitutions per site
as per My [48], and the recommended faster molecular clock of 0.027 to 0.036 substitutions
per site as per My, as recommended for Apodemus populations with divergences of 130 ka
or older [49,50].

The second method of demographic analysis we used was the Bayesian skyline plot
method (BSP), implemented in BEAST software ver. 1.8.4 [35,51]. A powerful technique
for inferring historical demographic changes based on sequence data [52], BSP helped us
to visualize demographic changes in SFM populations over time. To identify phylogenetic
clades, the analysis used the HKY+G+I model with a chain length of 150 million generations
and a linear growth rate [51]. All of the parameters analyzed (the mean values with 95%
confidence intervals) were estimated using Tracer software ver. 1.7; this was also used to
check the results of the posterior distribution and to confirm that the effective sample sizes
(ESS) were larger than 200 [53]. The Bayesian relaxed-molecular clock method was used to
estimate divergence times while accounting for changes in evolutionary rates through time.
A log-normal distribution was specified as the prior mean mutation rate, with a mean of
0.02, log (SD) of 0.56, and offset of 0.0172; it covered the range from 2% to 8% substitution
per site per million years, with the 95% HDP (highest posterior density) range of 2.4% to
6.01% per Ma [54,55].

To corroborate the results with the past expansions reconstructed by BSP analysis,
we tested several distinct demographic scenarios that could have occurred during the
last glaciation and postglacial periods using an approximate Bayesian computation (ABC)
framework in DIYABC ver. 2.1.0 [56]. The ABC approach allows a quantitative evaluation
of the demographic and evolutionary history by strictly contrasting realistic models defined
a priori and estimating relevant parameters [57]. The scenarios in both models included the
constant population, i.e., null hypothesis, glacial expansion or decline, recent expansion,
Holocene bottleneck followed by expansion, and middle/late glacial expansion followed
by decline (Figure S2 in Supplementary Materials S3). The prior distribution of demo-
graphic parameters are listed in Table S4 in Supplementary Materials S3. For each scenario
within the two models, we calculated summary statistics that were used for comparing the
simulated and observed datasets. Each model was run through 0.5 million simulations for
each scenario, with summary statistics and principal component analysis used to confirm
the good fit of all the scenarios with the observed data. These competing scenarios were
then compared by estimating their posterior probabilities using polychotomous logistic
regression on the 1% of simulated datasets closest to the observed data [58]. The best
scenario was chosen based on the highest posterior probability with a 95% confidence
interval (CI) not overlapping with the posterior probabilities of other scenarios; the pos-
terior predictive error was calculated to evaluate the confidence of each scenario. The
posterior probabilities of each parameter under the chosen scenario were analyzed using
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a local linear regression on the 1% closest simulated datasets, and logit transformation
was applied to the parameter values [58]. An additional historical model (Model 3) with
eight potential scenarios was prepared to reconstruct the possible events affecting the
evolution and divergence of SFM in SE Asia in the context of its colonization of the Korean
peninsula (Figure S2 in Supplementary Materials S3). The method of analysis in this model
was as above.

2.5. Species Distribution Modelling

To estimate the historical distribution range of the SFM during the Last Glacial Maxi-
mum, we employed environmental niche modelling (ENM), using the maximum entropy
method implemented in MaxEnt software ver. 3.4 [59]. MaxEnt reconstructs the distri-
bution of a species based on presence data used as georeferenced point occurrences, and
on annexed environmental condition data used as variables determining the species’ oc-
currence. Environmental data regarding actual and historical bioclimatic conditions were
retrieved from the World Bioclim database, ver. 1.4. (http://www.worldclim.org, date of
access: 29 April 2019), with a resolution of 2.5′ [60]. To avoid problems with collinearity
among 21 bioclimatic variables, we eliminated highly correlated variables using the SDM-
toolbox in ArcGIS (Table S12 in Supplementary Materials S4). The final set of variables to
be used in the niche modelling included twelve bioclimatic and three topographic variables
(Table S13 in Supplementary Materials S4). A detailed description of the method used for
modelling the predictive past distribution of SFM is given in Supplementary Materials S4
and the measures of model accuracy in Table S14 in Supplementary Materials S4.

The estimated areas of the species’ distribution during the LGM can be interpreted,
especially in the temperate climate zone, as the refugia that members of the species would
most likely have used under the most unfavorable climatic conditions. All the analy-
ses were performed to reconstruct the historical distributions of SFMs across the whole
of Eurasia as well as the identified clades (potentially capable of showing distinct habi-
tat/climate preferences) with the confirmed strong signal of a recent expansion during the
last glaciation modelled separately.

3. Results
3.1. Phylogenetic Analysis Based on Mitochondrial DNA

This analysis resulted in 184 newly sequenced specimens: 153 from central Europe
(the Czech Republic, Germany, Poland and Slovakia), representing 59 haplotypes, and
31 specimens from eastern Mongolia, representing 19 haplotypes. Additionally, 134 haplo-
types (289 sequences) were obtained from GenBank (Table S1 in Supplementary Materials
S1). All of the new haplotypes were submitted to GenBank (Accession Number MT113485-
MT113569). Phylogenetic analysis indicated that the populations from Taiwan and Jeju
Island clearly differed, the former consisting of the monophyletic clade C7 and the latter
of clade C6. Together, the Eurasian continental populations (not including the two is-
land populations) were classified into five clades: four strictly Asian (C2–C5) and one
distributed across the Eurasian northern hemisphere (C1) (Figures 1 and 2). Even so,
these classifications did not reflect the populations’ biogeographic regions (Figure 1), with
specimens from China and Mongolia being present in all of the Asian clades (C2–C5)
(Figure S1 in Supplementary Materials S2). Specimens from South Korea are represented
mostly in C3. The distributions of the specimens classified into clades C4 and C5 over-
lap and cover mostly central and eastern China, with the northernmost locations being
near Primorski Krai in the Russian far east and the southernmost ones below 30◦ N. The
easternmost range limit of clade C5 includes the remote islands along the west coast of
South Korea. Clade C3 encompassed all the specimens from South Korea and some from
remote islands, but its range extends to eastern and north-eastern China, western Mongolia,
and the far east of Russia. Haplotypes from clade C2 are distributed over a large area of
central and north-eastern China to the north of the Russian far east (Khabarovsk Krai and
Magadan Oblast). The northern hemisphere clade C1 included specimens from Europe,

http://www.worldclim.org
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the Siberian region, and north-eastern Asia above 40◦ N (north-eastern China, eastern
Mongolia and the far east of Russia) (Figure 1).
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3.2. Population Structure and Genetic Variability

All of the SFM specimens had a mean haplotype diversity (Hd) of 0.98 and nu-
cleotide diversity (π) of 0.013. The Asian populations had the highest nucleotide diversity
(π = 0.0156) and the average number of nucleotide differences (k = 17.804), with partic-
ularly small values for China (π = 0.011 and k = 12.849) and Mongolia (π = 0.0115 and
k = 13.097). The Asian SFM specimens from China and Mongolia exhibited a higher genetic
diversity than those from western Europe (π = 0.004, p < 0.05) and from the far east Russia
(Table S3 in Supplementary Materials S1). The Korean and Russian populations had much
lower π and k values, similar to those observed in the populations from Taiwan and Jeju
Island (Table S3 in Supplementary Materials S1). European populations had the lowest π
and k values (π = 0.004 and k = 4.523), with π ranging from 0.0013 to 0.007 and k from 1.46
to 6.44 (Table 1). The Eurasian clade C1 was lower in genetic diversity indices than Asian
clades C3–C7.

The Mantel test revealed a pattern of isolation by distance (IBD), i.e., positive re-
lationships between pairwise genetic and geographical distances, for the entire region
studied (r = 0.31, p < 0.001). Clades C1 and C3 had higher IBD signals (r = 0.34 and 0.49,
respectively, both significant at p < 0.001), as well as Eurasia; after excluding the island
populations from Jeju Island and Taiwan (r = 0.39, p < 0.001), however, Europe did not
exhibit the IBD pattern (r = 0.08, p = 0.69), though Asia did (r = 0.35, p < 0.001). The AAIA
indicated significant allelic aggregation in the Eurasian population (RAVE = 5.608, p < 0.001)
and in clades C1 (RAVE = 14.287, p < 0.001) and C3 (RAVE = 3.702, p < 0.001), suggesting
a non-random distribution of genotypes. The GLSI revealed a cline of genetic diversity
of SFM from eastern Asia to Europe, with the highest diversity in Asia, and decreasing
diversity towards the east and north-east in clade C3 (Figure 3).

AMOVA testing on the seven genetic groups (C1–C7) showed that the differences
between the clades accounted for 68% of the total variance (Table 2), with the percentage
genetic variation within and between populations expressed in terms of overall genetic
variance. The molecular variance between the clades in the continental population that
were divided into three groups (Eurasia, Taiwan and Jeju Island) was higher than the
intra-population (clade) variability (39.8% versus 25.1%). Hierarchical AMOVA conducted
for the 11 populations defined by countries (with the Jeju Island population treated as
a distinct group) and classified within three isolated groups (one continental Eurasian
and two island populations, Jeju Island and Taiwan) indicated a 50.1% genetic variation
between the groups (versus 30% of total genetic diversity for the clades), with only an 18.8%
variation between the nine populations from continental Eurasia (Table 2). These results
suggest that genetic diversity within country populations was higher than the diversity
between countries, and similarly, that molecular variation within the clades was greater
than the variation between the clades. These results suggest a strong genetic structure
between the clades.
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Table 2. Analysis of molecular variance (AMOVA) for A. agrarius using mtDNA between (1) seven clades C1–C7, (2) three
groups (Eurasia, Taiwan and Jeju Island) from these clades, and (3) three groups (Eurasia, Taiwan and Jeju Island) stratified
according to countries/populations. *—statistically significant values (p < 0.05).

Source of Variation d.f. Sum of Squares Variance Components Percentage of Variation Fixation Indices

(1)
Among seven clades 6 2196.1 6.433 * Va 68.3 FST: 0.683 *

Within clades 467 1393.0 2.983 * Vb 31.9

(2)

Among three groups 2 1045.5 4.157 * Va 30.0 FSC: 0.613 *

Among five clades
within Eurasia

(excluding islands)
4 1150.5 4.727 * Vb 39.8 FST: 0.749 *

Within clades 467 1393.0 2.983 * Vc 25.1 FCT: 0.350 *

(3)

Among three groups 2 1045.5 6.114 * Va 50.1 FSC: 0.377 *

Among nine
countries within

Eurasia (excluding
islands)

8 790.0 2.292 * Vb 18.8 FST: 0.689 *

Within population 467 1753.5 3.787 * Vc 31.1 FCT: 0.501 *

3.3. Demographic Analyses

Both the spatial and sudden demographic expansion models, as well as the neutrality
tests, displayed the population growth of the SFM, as indicated by the strong signal of a re-
cent SFM expansion in Eurasia, Asia and Europe (Table S2 in Supplementary Materials S1).
This signal strength was determined only for C1 and C3, the two most recently diverged
clades. In both the spatial and sudden demographic models for Eurasia and clades C1
and C3, SSD and Harpending’s raggedness index r were statistically insignificant, the
models showing a good fit between the observed and expected MMD values. Only for the
Asian and European populations did the tests support the corresponding spatial expansion
models. For clade C6, the models were well fitted, as indicated by the neutrality test
showing low and non-significant values, different expected and observed MMD values,
and goodness-of-fit tests (Table S2 in Supplementary Materials S1).

The sudden and spatial models estimated similar expansion times of the SFM in
Eurasia (τ = 14.1 and 11.0, respectively). The models also estimated similar distributions of
pairwise differences (Table 3, Figure 4). The Asian (mainland) and European population
expansion times were quite different, as estimated by the corresponding spatial expansion
models (τ = 15.5 and 2.1, respectively) (Table 3). The results of the historical demogra-
phy in clade C1 indicated the estimated time of the most recent sudden expansion at
ca 99–66 ka (MIS5), and the estimated time of spatial expansion at ca 64–42 ka (MIS4)
(Table 3). Similarly, the estimated time of spatial expansion for clade C3 was slightly more
recent than the estimated demographic expansion for this clade, with the most recent
estimate (3.6% per Ma) dated to the early Weichselian (MIS 5a–d). The glacial expansion
times of both clades were confirmed in the BSP demographic history (Figure 5), with a
more recent rapid growth of clade C1′s population size during the MIS 4-3, and an earlier
growth than clade C3 after the last Interglacial period during the MIS 5a–d (Figure 5). The
population growth rate decreased, reaching negative values during the LGM and post-
glacial periods, as did the effective population size in all the populations analyzed. These
rates, however, rapidly increased during the middle (Northgrippian) and late Holocene
(Meghalayan) (Figure 5).
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Table 3. The time of the most recent expansion, estimated using Arlequin 3.5 separately for the populations and clades of A.
agrarius, based on the sudden demographic and spatial expansion models for three different mutation rates with 95% CI
values. Estimated evolutionary rate: (1) 0.024/Ma [48], and (2) 0.027–0.036/Ma [49,50].

Groups

Sudden Expansion Model Spatial Expansion Model

Tau
Est. Val.
(95% CI)

Evolutionary Rate
(per Site per Million Years) Tau

Est. Val.
(95% CI)

Evolutionary Rate
(per Site per Million Years)

2.4 × 10−2 1 2.7 × 10−2 2 3.6 × 10−2 2 2.4 × 10−2 1 2.7 × 10−2 2 3.6 × 10−2 2

Expansion Time (ka)
Mean (95% CI)

Expansion Time (ka)
Mean (95% CI)

Populations

Eurasia 14.1
(8.5–29.9)

257.7
(156–546)

229.0
(138.7–485.4)

171.8
(104–364)

11.0
(7.5–26.0)

201.5
(137.9–474.7)

179.1
(122.6–422.0)

134.3
(91.9–163.3)

Asia - - - - 13.9
(10.1–21.7)

154.4
(185.0–396.2)

226.1
(164.4352.2)

169.6
(123.3–264.1)

Asia
Mainland - - - - 15.5

(10.9–18.2)
282.9

(199.1–333.2)
251.4

(177–296.2)
188.6

(132.7–222.2)

Europe - - - - 2.1
(0.9–5.7)

38.9
(16.4–103.3)

34.6
(14.6–91.9)

25.9
(10.9–68.9)

Clades

Clade 1 5.4
(2.8–11.1)

99.5
(51.7–202)

88.4
(46.0–179.5)

66.3
(34.5–134.7)

3.5
(1.7–7.3)

63.7
(30.7–134.3)

56.6
(27.3–117.4)

42.4
(20.4–89.5)

Clade 3 8.9
(5.3–11.5)

162.6
(96–209.4)

144.5
(85.3–186.1)

108.4
(64.0–139.6)

7.4
(5.2–10.3)

134.4
(95.1–187.6)

119.5
(84.6–166.7)

89.6
(63.4–125.0)
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Figure 5. The reconstructed demographic history of A. agrarius obtained from the Bayesian skyline plot (BSP) in Eurasia
(a), clade 1 (b), and clade 3 (c). Solid red lines—median, green areas—95% HPD confidence limits, violet lines—mean
growth rates (with 95% HPD). The arrows indicate the estimated start of expansion based on the mismatch distribution
estimation; black arrow—spatial expansion model, red arrow—pure demographic expansion model with either the standard
evolutionary rate of 2.4% per Ma (solid line) or the fast evolutionary rate 3.6% per Ma (dotted line). The scales of the time
axes (X) are the same. Vertical dashed blue lines indicate distinct last Glacial periods mentioned in text (late Weichselian—
MIS 2, middle Weichselian MIS 3–4, early Weichselian MIS 5a–d). Grey area defines the glacial periods, with LGM marked
in dark grey. The plot of temperature and sea level changes is based on [61] and the extent of glacial periods and Marine
Isotope stages based on [62–64].

ABC analysis corroborated the scenarios of the middle Weichselian (MIS 4-3) expan-
sion initiated during the early Weichselian (MIS 5) or earlier, and the postglacial population
decline (Figure 6a, Tables S6 and S7 in Supplementary Materials S3). The best scenario in
the first model (Figure 6a) recovered the ancestral population of clade C3 expanding (t4)
at 97,300 (95% CI 51,600–119,000) generations ago (i.e., about 70–164 ka, median 134 ka)
and at 63,500 (95% CI 46,000–114,000) generations ago (i.e., 63–155 ka, median 87 ka) for
clade C1, with estimated population declines (t2) during and after the late Glacial at 20,500
(95% CI 9650–29,500) generations ago (about 13–41 ka) and 13,400 (95% CI 9200–28,000)
generations ago (about 12.5–38.5 ka, median 18.5ka), for clades C3 and C1, respectively
(Table S9 in Supplementary Materials S3).

The best scenario in the second model (Figure 6a), with recent (late Holocene) expan-
sion preceded by a postglacial bottleneck after the glacial expansion, was the one (Figure 6a)
with late glacial/postglacial population declines (t2) at 15,900 (95% CI 9300–28,700) gen-
erations ago (about 13–39 ka, median 22 ka) for C3 and 15,000 (95% CI 9200–28,500)
generations ago (about 12–38 ka, median 21 ka) for C1, and estimated early Weichselian
(MIS 5a–d) or earlier expansion (t4) at 104,000 (95% CI 57,000–119,000) generations ago
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(about 78–164 ka, median 143 ka) and 87 600 (95% CI 50,200–119,000) generations ago
(about 69–160 ka, median 120 ka) for C3 and C1, respectively. The Holocene expan-
sion, after postglacial population decline (t1), is estimated at 5460 (95% CI 1540–11,600)
generations ago (i.e., 2.1–11.6 ka, median 7.5 ka) and at 3360 (95% CI 1090–11,000) gen-
erations ago (i.e., about 1.5–15.1 ka, median 4.6 ka) for the clades C3 and C1, respec-
tively (Table S10 in Supplementary Materials S3). The scenarios with the constant popula-
tion and glacial bottleneck were rejected in both models (Tables S6 and S7, Figure S2 in
Supplementary Materials S3).
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Figure 6. Representation of the most probable demographic scenarios for clades C1 and C3 (Model 1 and 2) (a) and
evolutionary scenario of divergence the Korean population of A. agrarius (Model 3) (b) analyzed with the ABC method
implemented in DIYABC.

An analysis confirmed the first expansion of SFM during the middle and late Weich-
selian (MIS 4–2) and postglacial population decline preceded the second expansion during
the middle/late Holocene (~5–7 ka).

The reconstruction of SFM history in east Asia in the context of its colonization of the
Korean peninsula (Model 3) included the specimens from China and Korean peninsula
(clades C3 and C5) supporting scenario 4 with ancestral population represented by spec-
imens from Korean remote islands and the Korean peninsula from the mainland China
population diverged (t2) 218,000 generations ago (~300 ka), preceding the split of ancestral
(initial) Korean population (t1) ~189,000 (95% CI 61,300–368,000) generations ago (~260 ka,
84.5–508 ka) (Figure 2, Table S11 in Supplementary Materials S3) distributed along the
(mainland) Korean peninsula. The other analyzed scenarios were rejected as less supported
(Figure S2 and Table S8 in Supplementary Materials S3).

3.4. Species Distribution Modelling

The fitted model of SFM distribution, with two distinct clades (C1 and C3) highlighted
during the LGM, indicated that these two populations had partially overlapped environ-
mental niches (Figure 6). The reconstructed possible glacial refugia for clade C3 were
limited mostly to south-eastern Asia, with the highest probability of occurrence on the
exposed sea shelf between eastern China and the Korean peninsula, a result of the glacial
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fall in sea level (Figure 7; Figure S6 in Supplementary Materials S6). Similarly, the glacial
ENM for clades C2 and C5 covered the Yellow Sea, the South China Sea and adjacent
regions (Figure S3 in Supplementary Materials S4). However, the region with the currently
highest probability of the presence of clade C5 covers much of south-eastern China, as
well as the east coast of the Korean peninsula and the north-eastern China (Manchurian)
Plain. In Europe, possible glacial refugia of clade C1 have been identified in southern and
south-eastern Europe (Figure 7a). During the LGM, the Black Sea and Caspian Sea regions
were the locations most likely to be inhabited by the northern SFM population, as well as
the Balkan region and the Po valley in the north of the Italian peninsula, identified as the
main glacial refugia of the SFM in Europe. The reconstructed glacial refugia for clade C3 in
eastern Asia were mostly restricted to north-eastern China and the adjacent areas of the
exposed sea shelf (Figure 7b). The results of the current and past distribution modelling of
clades C1–C5 are presented in Supplementary Materials S4.
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Analysis of climatic factors (variables) used in the reconstruction of current and past
ENMs indicate the very high impact of temperature-related variables on prediction in
the case of clade C1 (with >60% contribution), compared to other, strictly Asiatic clades
(C3–C5) for which the precipitation-related variables had an most important impact in
model building (with >50% contribution) (Table S13 in Supplementary Materials S4).

4. Discussion

The phylogenetic structure of Asian populations, with monophyletic clades represent-
ing the island populations from Taiwan and Jeju Island, supports prior analyses [73–75].
This genetic structure is a consequence of the islands’ geographical locations, which have
undergone cyclical periods of isolation, together with a few relatively short periods when
they were connected to the Asian mainland due to sea-level lowering in glacial periods. In
the case of Taiwanese population (C7) two highly supported sublineages exist, distributed
along the eastern and western part of island as a consequence of multiple invasions from
continental Asia during subsequent glaciations and long-term isolation by mountain mas-
sif during the interglacial. Analogical multiple colonization is expected in the case of
population from Jeju (C6).

The genetic divergence between the European and Asian mainland populations was
smaller than the divergence between the mainland and island populations of SFM, but
equilibrium models of isolation by distance showed that genetic variance between sampling
locations increased with their geographic distance. The westward significant decrease
in genetic diversity observed in Europe supports the hypothesis of a relatively recent
expansion into western Asia and Europe [76]. The farther the distance from the source site,
the greater the between-group genetic diversity, but the smaller the within-group genetic
diversity, consistent with the conclusions drawn from studies employing serial founder
models of migration [77,78]. The SFM specimens displayed a similar geographic pattern of
genetic diversity: an ancestral population from single location in eastern Asia that spread
through eastern Russia and Siberia to Europe, with its genetic diversity decreasing with
increasing distance from the area of origin, especially across the northern hemisphere.

4.1. Demographic Analyses

Current knowledge of the demographic history of the SFM, especially in the context of
its westward expansion into Europe through Siberia, is still insufficient. The demographic
analyses of the whole sample demonstrated that the general SFM population showed a
tendency to grow, as indicated by both the spatial and sudden demographic expansion
models and confirmed by the neutrality tests. The indices of demographic history based
on neutrality tests indicated signs of expansion for only two genetic clades, C1 and C3
(Table S2 in Supplementary Materials S1). Nevertheless, the results obtained for clades
C4, C5, and C7 could have been affected by their small sample sizes, making historical
demographics difficult to analyze [79].

The two methods used in this study to estimate expansion time, mismatch analysis
(MMA) and Bayesian skyline plot (BSP) gave different results of estimated expansion time
for the Eurasian specimens of the SFM (Figure 5). There are two likely reasons for this
discrepancy. First, the two methods use different techniques to reconstruct and interpret
past demographic signals. Second, while deep coalescence does not affect BSP, it can affect
MMA [79]; consequently, BSP estimated a later time of expansion than did MMA. We
also observed particularly strong discrepancies in the results of the estimated changes
in demography for the Eurasian and Asian specimens, which pooled individuals from
different clades (Table 3). This discrepancy may have been due to either mixing of the
differentiated specimens [79], incomplete or weak sorting of the clades [80], or both of these
factors combined. The results of our genetic analyses, supported by the reconstruction
of the historical spatial distributions of the distinct clades, confirmed that over time, the
regional populations mixed as a consequence of environmental and climatic changes,
affected by cyclical glaciation and the interglacial period during the Pleistocene.
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The demographic history of SFM, reconstructed using the BSP method, showed an
early, long period of stability followed by rapid population growth during the last glacia-
tion (Figure 5). This series of changes resulted in contemporary genetic sequences which
had lost the genetic information from the pre-Glacial period [81,82]. It is important to
remember, however, that when reconstructing historical demography and estimating the
time of expansion, time-dependent evolutionary rates can strongly affect the results [52,83].
Many authors have discussed the methods of determining long- and short-term mutation
rates [83–85]. Based on recommendations for Apodemus from previous publications, we
chose the molecular clock calibration technique [49,50]. The results of Bayesian demog-
raphy derived from using the BEAST software complied with these assumptions, with
the estimated (median) molecular clock of 3.6 to 3.7% per million years. One should exer-
cise caution when interpreting the results presented on the plot of demographic changes,
however, especially the accuracy of the estimation of the time when population changes
occurred. Such an interpretation should take into account historical environmental and
climatic changes that were likely to influence the populations’ demography. Using the
recommended faster molecular clock, both the MMD and BSM models yielded similar
results for clades C1 and C3 (Figure 5). In both clades, the estimated spatial expansion
time with a fast molecular clock fell within the period of growth rate in BSP (Figure 5).
The Bayesian reconstruction of the historical demographic trends for the clades showed
that there were two region-related periods of expansion within Eurasia, with the first one
during the last glaciation and the second during the late Holocene.

4.2. The Demographic History of Asian Clade C3

The south-eastern Asian clade C3, probably distributed along the Korean peninsula
and adjacent areas, diversified relatively recently. The first Korean fossil records, identified
solely in the upper Pleistocene and Holocene deposits, indicate a recent expansion to the
Korean peninsula [68] (Figure 6b).

The reconstructed past demographic trends (BSP) of clade C3, with population growth
during the lower (MIS 5a–d) and middle Weichselian (MIS 3–4), showed a strong corre-
lation of the SFM’s history with sea level changes after the last interglacial (Figure 5c).
This same scenario was corroborated by ABC analysis in the first and second models
(Figure 6a, Tables S6 and S7 in Supplementary Materials S3). The GLSI model indicated
that the species expanded from eastern China to the Korean peninsula and the far east
of Russia, across the Yellow Sea and Bohai Sea regions (Figure 3c). This scenario is also
supported by the reconstruction of the past (LGM) widespread distribution of SFM clades
C5 and C3. These results indicate the important role that the exposed East China Sea shelf
(ECSS) and Yellow/Bohai Sea shelf (YBSS) played during the glacial sea-level regression in
shaping the species’ history and current genetic structure, a conclusion supported by the
historical distribution models (Figure 7, Figure S4 in Supplementary Materials S4). During
the glaciations, the exposed ECSS and BYSS formed a long-lasting land bridge between
south-eastern Asia and the Korean peninsula [86]. This bridge became a migration corridor
for the SFM, enabling it to colonize the Korean peninsula (Figure S6 in Supplementary
Materials S6). The glacial large-scale expansion of the open and semi-open habitats and
the retreat of forests in south-eastern China [87,88] created favorable conditions for ani-
mals to colonize regions previously deemed unsuitable [89]. The reconstructed historical
vegetation of the exposed sea shelf during the last glaciation was dominated by open grass-
lands and freshwater wetlands [90–92]. The Older Dryas (a cold period) and the Younger
Dryas (a dry period) were characterized by rapid changes in vegetation structure in the
Yellow Sea region, from the dominance (during warm and humid interstadials) of woody
C4 plants to the dominance of grassy C3 plants [93]. During the stadial (cold) periods,
the vegetation on the north-eastern Chinese coastline consisted mainly of steppes and
shrub-steppes dominated by Artemisia [94], with both biomes offering favorable conditions
for the SFM to expand from south-eastern China. The Bohai and Yellow Sea shelf were still
exposed during the warm Bølling/Allerød interstadial (~14.7–12.7 ka), characterized by
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the dominance of steppe biomes in the north China plain. Following transgression by the
sea, the water level over the North Yellow Sea shelf quickly rose) at the end of the Younger
Dryas (ca 11.5 ka) [95]. The scenario with exposed BYSS and ECSS was initially inhabited
by migrants from eastern China, forming a new “source population” which diverged
from clade C5 and then expanded into the Korean peninsula; this is corroborated by ABC
analysis as the most probable scenario in model 3 (Figure 6b; Table S8 and Figure S2 in
Supplementary Materials S3). The estimated split time of the ancestral population which
spread from China and colonized the Korean peninsula (Figure 6b) is dated at MIS 8/MIS
9 (t1, ~300 ka), and preceded the divergence of the highly supported strictly Korean (penin-
sulan) population during the MIS 7/MIS 8—glacial/interglacial transition (t2, ~260 ka)
(Table S11 in Supplementary Materials S3. These results indicate an earlier divergence of
phylogenetic lineage (clade C3) recently distributed along the Korean peninsula and remote
islands, preceding the colonization of the Korean peninsula during the last Glacial period.

Results of recent and glacial ENMs indicate the presence of habitats potentially suitable
for SFM in south Japan (Figure 7, Figures S3 and S4 in Supplementary Materials S4).
Nevertheless, there is no evidence that the SFM has ever inhabited Japanese islands, even
though they do offer potentially suitable habitats [96,97]. Recently, species inhabit only
the Uotsouri Jima Islands, near Taiwan, connected with mainland China during the last
glaciations [98]. This can be explained by a permanent barrier, formed by the Sea of Japan
and the Korean (Tsushima) Strait, between Japan and the adjacent mainland regions, which
made it impossible for the SFM to colonize these islands (Figure S6 in Supplementary
Materials S6), even during the penultimate and the last glacial maxima [99]. Endemic
Japanese murids—A. argenteus and A. speciosus colonized the Japanese islands no later than
the middle Pleistocene, when the Tsushima land bridge was formed [100]. The Korean field
mouse, A. peninsulae, colonized only the Hokkaido island during the upper Pleistocene
glaciations, when the land bridge between Hokkaido and Sakhalin was formed. In both
examples presented above, the colonization of the Japanese Archipelago can be placed
before the SFM expansion into the Korean peninsula and far east Russia region. The
presence of harvest mouse Micromys minutus in the Japanese Archipelago and more recent
(~300 ka) colonization of southern islands (Kyushu, Shikoku, Honshu) is still discussed and
requires an explanation [101]. The most probable explanation is dispersal by the Tsushima
Strait on floating islands composed of plants [100], an unlikely scenario in the case of SFM.

4.3. Extensive Westward Expansion during the Last Glaciation

The recent westward expansion of SFM to central Europe has not been tracked in detail
to date. A preliminary analysis based on the short genetic distance between specimens
from Europe and the Russian far east permitted an approximation of the duration of the
SFM’s westward expansion; according to Suzuki et al. [102], it was ca 200 ka, while Sakka
et al. [76] placed it within the 175–190 ka range. Our analysis gave a similar estimated
expansion time for the Eurasian samples. As previously mentioned, Suzuki et al. [102]
identified the specimens from the far east of Russia and north-eastern China as an ancestral
population that dispersed from eastern Siberia to central Europe (north of 40◦ N). Our
reconstruction of the historical demographic trends of the northern hemisphere clade C1,
however, suggest that they had expanded earlier than previously estimated, during the
early Weichselian (MIS 5a–d). Standard and fast molecular clock calibrations estimated the
time of this as between 100 ka (standard evolutionary rate) and 66 ka (fast evolutionary
rate) for the sudden demographic expansion model, and between 64 ka and 42 ka for the
spatial expansion model (Table 3). The Bayesian demographic population changes plot
(BSP) supported the faster (3.6 × 10−2/Ma) evolutionary rate estimates by the MMD.
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To understand why the last glaciation allowed the transcontinental dispersion of the
SFM to the west, we can analyze the species’ requirements in the context of environmental
and climatic changes throughout its history. If we consider the range of glaciers during the
penultimate (Saalian) glaciation (the most extensive one in Eurasia), we see that expansion
during this period was unlikely (Figure S5 in Supplementary Materials S5). The glacial
extension during the last Glacial period was much smaller than during the Saale glaciation
(MIS 6), with a limited glacier range in Asia during the middle and late Weichselian (MIS
2–3) (Figure 6).

The SFM inhabits mostly open and semi-open habitats (i.e., steppes, shrub-steppes,
meadows, and arable fields) across northern Eurasia [14,15,102–104]. The reconstructed
habitats in southern Siberia during the last Interglacial (~128–117.4 ka) were characterized
by shrinking steppe plant communities and shrubby tundra, which were dominant at
the end of the penultimate glaciation, and the expansion of boreal forests (mainly Scots
and Siberian pine taiga) [105,106]. At the end of the interglacial period (~117.5 ka BP),
forest areas across northern Eurasia were again replaced by steppe biomes and cool grass-
shrub communities [105]. Palynological data and the reconstruction of LGM biomes
confirmed that steppe and forest-steppe biomes in eastern Europe and southern
Siberia during the last glaciation formed a migration corridor for the SFM [107]
(Figure S5 in Supplementary Materials S5). At 15 ka, steppes and tundra remained the
dominant Siberian biomes [108,109]. Environmental changes in the Siberian region during
the Holocene, with open and semi-open biotas replaced by Siberian taiga, explain why
its Eurasian range is separated into two disjunct parts by the Transbaikalia region: the
expansion of the taiga.

The reconstructed vegetation of eastern Europe and Siberia during the middle and
late Holocene showed that forest biomes at that time covered a noticeably larger
area than they did during the glacial period [110,111]. The end of the glacial period
(~14.5–12.65 ka BP) revealed a sharp increase in the proportions of boreal forest and tundra
(mostly shrubs, together with spruce, fir and larch trees). At that time, the expansion
of the SFM was clearly decreasing in intensity, and the recovery of the SFM’s current
area was beginning, with visible population growth. The Holocene expansion was likely
related to the recent expansion from the steppe habitats situated near the Russia–China
border into the west, along rivers and human-modified habitats [15]. The spatial expansion
model we fitted for SFM, with the demographic maximum during the glacial period, has
already been applied to some other Eurasian or European species associated with steppe
or forest-steppe biomes [112].

Researchers still do not agree on when the SFM first appeared in Europe. Most studies,
usually based on the dating of scarce fossilized remains, emphasize that a crucial factor
in the species’ expansion into Europe was the post-Neolithic deforestation during the
Holocene [73,74,113,114]. Genetic studies in western Europe, however, suggest that the
expansion of the SFM to Europe during the Neolithic was not natural, but induced by
humans [30]. Nevertheless, some upper Pleistocene fossil records from south-eastern
France, dated to about 17 ka [65], and a recently discovered record from north-western
Bulgaria, dated to over 50 ka [71], indicate that the species may have expanded into
Europe earlier than previously thought, or that this expansion was actually multiple
colonizations. Knitlová and Horáček [6] initially assumed (based on fossil records) that
the SFM colonized the western Palearctic (central and western Europe) during the middle
Weichselian (MIS 4–3). Early Holocene records of this species in the Pannonian region of
Slovakia [7], Belarus [21] and Italy [69] have all been dated to the Preboreal and Boreal
periods (Greenlandian). This supports the hypothesis of a pre-Holocene expansion or
multiple Pleistocene and early Holocene expansions, indicated by late Weichselian (MIS 2)
records in Europe [65,71].
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Our reconstruction of the historical distribution of the SFM has confirmed that po-
tential refugia might have existed in south-western and southern Europe (that is, in the
Balkans and the northern part of the Italian peninsula) (Figure 7). Most of these regions
have been recorded as places with fossil records from the upper Pleistocene and early
Holocene [7,23,31,32,73,74] (Figure S5 in Supplementary Materials S5). Nevertheless, there
are no fossil records confirming the presence of glacial refugia in Caucassus during LGM.
These discrepancies between the historical (the early Holocene) and current distributions
of the species led to the formulation of the hypothesis that after a decline in SFM distri-
bution during the LGM, the species expanded again, probably reverting to its previous,
more extensive area of occupancy [6]. The BSP demographic history and MMD expansion
models obtained in this study both support the hypothesis that the European population
of the SFM expanded to Europe for the first time during the middle Weichselian (MIS
4–3), and then for a second time after the post-Neolithic deforestation after the bottleneck
(Figure 5a, Figure S7 in Supplementary Materials S7). This past demographic recon-
struction, with the peak of expansion falling in the middle and late Glacial (MIS 4–2)
and the recent late Holocene expansion followed by the early/middle Holocene (post-
glacial) bottleneck, is supported by ABC analysis as one of the most probable scenarios
(Figure 6a; Table S10 in Supplementary Materials S3).

This deforestation, a consequence of climate changes during the LGM, and the result-
ing rapid reduction of the species’ range, probably explains the decline in the population
growth rate during MIS 2, reaching the early and middle Holocene. The observed bottle-
neck of the Eurasiatic population C1, falling on late Glacial/early Holocene (~12–38 ka), is
similar to the estimated time of disjunction between European and east Asiatic populations,
dated on the early Holocene (<12 ka) or pre-LGM period (~39 ka), depending on the used
molecular clock calibration [28,29]. The reconstructed vegetation pattern in Europe during
the past 20,000 years indicates cyclical environmental changes during this period, a result
of postglacial oscillations in climate. The last glacial vegetation in Europe was dominated
by herbaceous plants (with Poaceae and Artemisia as the most common species), scrub-
lands (with Juniperus and Betula) and boreal woodlands (with Pinus and Betula) [115,116].
During the Boreal and Atlantic stages, forest ecosystems replaced steppe and other non-
forest biomes; dense deciduous forests dominated north-western and central Europe, and
coniferous forests were dominant in southern regions of Europe and the Balkans [117].

During the late stages of the Holocene (mostly the late Holocene), the natural environ-
ment in Europe started to change, an effect of increasing human activity, which significantly
affected biotopes [113,114,118]. This resulted mainly in deforestation, a favorable change
for the SFM. SFM is a euryphagous species, but on an annual average, plant food represents
about 70%, with a substantial part consisting of seeds of agricultural plants and weeds of
the cultivated steppe [119]. This highlights the SFM’s habitat preference for deforested
land. Indeed, the postglacial demographic trends of the SFM in Europe, as reconstructed in
this study, correlate with postglacial changes in the distributions of herbaceous and grass
taxa (Figure S7 in Supplementary Materials S7). This phenomenon was represented by two
particularly interesting processes. First, during the early Holocene, the SFM’s range in Eu-
rope shrank, a likely result of the aforementioned changes in vegetation during this period;
dense broadleaved and coniferous forests, disliked and avoided by the species, replaced its
preferred steppe and scrubland biomes. Secondly, cyclical climatic changes and human
activities during the Holocene affected vegetation, leading to significant deforestation and
thus offering the SFM favorable conditions, which it took full advantage of during its most
recent expansion in Europe during the Epiatlantic stage and the late Holocene.

During glaciation, semi-open and open biomes dominated in northern Eurasia,
thereby contributing to rapid expansions of other steppe species, which increased
their western ranges during this period. Examples include Mustela eversmanii [120],
Spermophilus citellus [121], Cricetus [122], Sicista subtilis [123] and Saiga tatarica [124], all
of which had wider ranges during the upper Pleistocene than they have now.
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The methods implemented in this work can help to understand the reasons for recent
population declines and to better reconstruct the history and demography of other widely
distributed species, with still poorly recognized history, especially in the context of past
climatic and environmental changes, that could shape their current genetic and population
structure and initiated large-size expansion.

5. Conclusions

The reconstruction of the SFM’s historical demographic trends show that its history,
in terms of its population and overall Eurasian range, was closely related to environmental
and climatic fluctuations during the upper Pleistocene and early Holocene. The analysis of
the SFM demographic history showed two populations that recently expanded: one from
south-eastern Asia and the far east of Russia to the Korean Peninsula, and the other that
expanded across the northern hemisphere as far as Europe. In the case of the south-east
Asian population, the reconstructed demographic trends were correlated with sea level
changes and the formation of favorable biomes on new land bridges formed by the exposed
sea shelf. The westward expansion of the northern population, from north-eastern Asia
through Siberia to central Europe, began after the last interglacial period. Having occurred
during a period of relatively stable and warm climate in the second phase of the last
Glacial period, the population growth of the SFM could be associated with the favorable
environmental and climatic conditions at that time. In both cases, our results support the
role of climate-induced environmental changes during the upper Pleistocene and early
Holocene, as an important factor shaping history of the species. These results can help to
understand the factors that influenced Pleistocene expansion and Holocene population
declines of some other mammals, such as the European hamster, European ground squirrel,
Steppe polecat or Saiga antelope, which had wider ranges during the upper Pleistocene
than they have now.

The second important issue in this work is the recognition of the impact of man-made
large-scale environmental changes during the Holocene on the species demographic history.
In the case of the studied rodent, the Holocene expansion in Europe is considered to be the
species’ second expansion after the population decrease during the Pleistocene–Holocene
transition, affected by postglacial changes in northern environments. In the case of SFM,
this recent expansion can be associated with the middle and late glacial human-induced
changes in European biota.

The research techniques used in this work, combining the analysis of genetic material
with modelling of predictive past species distribution and a review of habitat changes over
the upper Pleistocene and early Holocene constitute an effective method of reconstructing
the history of SFM in relation to past climatic conditions, and identify the environmental
factors that influenced past demographic trends and could have initiated large-scale or
regional expansions, or bottleneck events, within site-specific populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12050642/s1. In File S1: Table S1. Sequences used in the genetic analyses; Table S2.
Indexes of the demographic history of the field striped mouse on the cyt b gene and goodness-of-
fit test of expansion models; Table S3. Genetic diversity indices of mtDNA (cyt b) calculated for
populations. In File S2: Figure S1. The phylogenetic tree of A. agrarius based on the Bayesian Inference
(BI) in BEAST and the Minimum Spanning Network generated in PopArt 1.7. In File S3: Table S4.
Demographic models and scenarios with parameters used in the ABC analysis in DIYABC; Table S5:
Divergence model (Model 3) parametrization of east Asiatic populations, used in the ABC analysis in
DIYABC; Table S6. Comparison of 6 scenarios in 1st model using Logistic approach as probability
index; Table S7. Comparison of 5 scenarios in 2nd model using Logistic approach as probability
index; Table S8. Comparison of 6 scenarios in 3rd model using Logistic approach as probability index;
Table S9. Results of ABC parameters estimation of most probable scenario in 1st model; Table S10.
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