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Real‑time estimation of phase 
and amplitude with application 
to neural data
Michael Rosenblum1*, Arkady Pikovsky1, Andrea A. Kühn2 & Johannes L. Busch2

Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool 
of data analysis. This approach finds many applications in various science and engineering branches 
but is not proper for causal estimation because it requires knowledge of the signal’s past and future. 
However, several problems require real‑time estimation of phase and amplitude; an illustrative 
example is phase‑locked or amplitude‑dependent stimulation in neuroscience. In this paper, we 
discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit 
well‑known physical phenomena, the synchronization and the resonance. After testing the algorithms 
on a synthetic data set, we illustrate their performance computing phase and amplitude for the 
accelerometer tremor measurements and a Parkinsonian patient’s beta‑band brain activity.

Estimation of the instantaneous phase and amplitude is essential for electrical and mechanical engineering, 
synchronization studies of oscillatory systems of different nature, time series analysis of physiological data, and, 
in particular, for  neuroscience1–4. A special application is developing efficient sensing algorithms for adaptive 
deep brain stimulation, a recent advancement of a widely used treatment option for Parkinson’s disease and 
other neurological  disorders5. One of the directions in this development is to adjust stimulation parameters 
according to a peripheral or neurophysiological signal’s phase and amplitude computed on the  fly6–12. The popu-
lar approach to phase and amplitude estimation is to exploit the analytic signal approach based on the Hilbert 
Transform (HT) or, equivalently, the wavelet transform with a complex  wavelet1,13–15. However, this widely-used 
tool is non-causal and therefore not appropriate for real-time analysis, whereas causal estimation of phase and 
amplitude is often crucial for closed-loop control of complex systems. Despite several attempts to adapt the 
HT for a causal  measurement16,17, the reliable and fast estimation of phase and amplitude of real-world signals 
remains challenging.

In this study, we do not rely on the Hilbert Transform. Instead, we follow another development line and extend 
our previous  approach18,19 for real-time estimation based on the oscillation theory and nonlinear dynamics. The 
main idea is as follows. Suppose we have an oscillator, e.g., an electronic circuit, which amplitude and phase we 
can monitor. Next, suppose we feed our measurement to this oscillator. We choose the oscillator so that there 
is a one-to-one correspondence between the oscillator’s phase and amplitude (what we can monitor) and the 
measured signal (what we want to determine). If this correspondence is achieved, we recompute the monitored 
state of the oscillator into desired quantities. Thus, the oscillator acts as a measuring device. Indeed, we will not 
exploit a physical oscillator but use a simple computer program that simulates the oscillator’s dynamics. In our 
approach, we rely on two well-known physical effects: linear resonance and synchronization. We present and 
compare three techniques that provide a fast estimation of phases and amplitudes, using only the past of the time 
series. We test the algorithms on model data and apply them to neural time series. Namely, demonstrating our 
approach’s efficiency, we causally estimate the phase and amplitude of the accelerometer tremor measurements 
and Parkinsonian patients’ beta-band brain activity and compare the results with non-causal HT-based analysis.

Results
Hilbert transform versus causal estimation. A common practice in extracting the amplitude and the 
phase of an input signal s(t) is based on application of the Hilbert transform. The HT analysis provides proper 
estimates for the instantaneous phase of s(t) for narrow-band one-component signals with slowly varying ampli-
tude and frequency. We emphasize that, though formally one can compute the HT for an arbitrary signal s(t), 
not in all cases the extraction of the amplitude and the phase will lead to reasonable results. We also stress that 
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HT is a non-causal operation: to extract features at time instant t ′ , one has to know both the signals’ past t < t ′ 
and future t > t ′ . For a further detailed discussion of the HT’s properties and practical implementation, see 
Methods.

The main goal of this paper is not to extend HT approach to complex signals  (see20,21 for examples of such 
an extension), but to provide and explore causal alternatives to the HT approach. In what follows, we use the 
HT-based amplitude aH and the HT-based phase ϕH as a “gold standard” for testing our algorithms. Strictly 
speaking, this is reasonable for narrow-band signals only. Definition and determination of the proper phase 
and amplitude for a complex signal represent a challenging problem that we do not address here. Instead, we 
use an operational approach: a proper amplitude should correctly represent an envelope of the signal; a proper 
phase should gain 2π at each oscillatory cycle. Below, we present three techniques for causal computations and 
compare the computed amplitudes and phases with non-causally obtained aH ,ϕH.

Causal estimation techniques. Phase locking approach. The first technique exploits the ideas from the 
synchronization theory. It is well-known that a force s(t) acting on a limit-cycle oscillator can entrain (lock) it. 
It means that the oscillator’s frequency becomes equal to that of the force, and their phases differ by a constant. 
Thus, the phase of the locked limit-cycle oscillator will correspond to the phase of the signal. For our purposes, 
it is helpful to use the simplest oscillator model, the so-called phase oscillator. To ensure the phase-locking to 
the force, we have to adjust the oscillator’s frequency to the signal’s frequency. We assume that we do not know 
the latter a priori, but can only roughly estimate it. We propose a simple approach that starts with this estimate 
and automatically tunes the “device’s” frequency to ensure the locking and thus provides the instantaneous phase 
ϕL(t) . The amplitude is not determined with this approach. One can treat the suggested scheme as a software 
implementation of a phase-locked  loop22. Technically, the algorithm reduces to solving differential equation 
incorporating measured data given at discrete time points; for details of the technique and its implementation, 
see Methods.

Nonresonant linear filter. The second technique relies on the resonance effect. Our measuring “device” consists 
now of two linear damped oscillators. The oscillators’ frequency is much larger than the frequency of the signal, 
i.e., the system is far from resonance. We choose the damping parameters to ensure that (i) phase of the first 
linear oscillator equals that of the input and that (ii) amplitude of the second one and the input relate by a known 
constant multiplicator. The technique yields both phase ϕN (t) and amplitude aN (t) , where the index N stands 
for “non-resonant”.

Resonant linear filter. Our third approach adopts the technique used for model studies in our previous 
 publications18,19. The corresponding “device” consists of a linear oscillator in resonance with the measured signal 
and of an integrating unit. It also provides both the phase and the amplitude that we denote as ϕR and aR , respec-
tively. The method exploits the known relation between the resonant oscillator’s phase and amplitude and those 
of the input. Additionally, the resonant oscillator acts as a bandpass filter for experimental data.

Technically, both latest techniques require the numerical solution of linear differential equations with the 
input signal s(t). We present a detailed description of the techniques and the developed numerical schemes in 
the Methods section. Like the phase-locking algorithm, both techniques include an automated frequency-tuning 
algorithm to adjust the systems to the a priori unknown signal’s frequency.

Testing the algorithms. Artificial data. First, we test our approach on artificial data. All algorithms work 
well with simple narrow-band signals like slowly modulated sine waves. So, we do not show these results and 
proceed with a more complicated case. The signal is

where

its waveform has three harmonics. The signal is amplitude- and phase-modulated, see Fig. 1a; it is sampled with 
� = 0.01 to yield s(�k) = sk . The frequencies are �1 =

√
2/30 , �2 =

√
5/60 . Another test signal is s̄k = sk + ξk , 

where ξk are Gaussian random numbers with zero mean and standard deviation 0.05, see Fig. 2a.
For testing all three algorithms, we set the initial frequency of the device to be 10% higher than the actual 

value; in this way, we imitate the imprecision of the initial frequency estimation. The other parameters are given 
in the Methods.

Phase-locked oscillator.  Figure 1b shows that after a short transient, the phase determined by the “device” 
becomes close to the Hilbert phase. The difference is due to the presence of the harmonics (for a mono-compo-
nent amplitude-modulated signal, the phase difference is very small, its standard deviation is 0.03). The lock-
ing-based measurement’s advantage becomes evident in the noisy data, as expected for a phase-locked loop 
approach: here, the real-time estimation provides a reasonable phase even at low amplitudes, where the noise 
dominates, see Fig. 2a,b.

Non-resonant linear oscillator (filter). This approach works well in noise-free case (Fig. 1c). Initially, the dif-
ference with ϕH grows rapidly due to decaying high-frequency oscillation with the natural frequency ω of the 
system. (We remind that frequency ω of the non-resonant oscillator is much larger than the input’s frequency.) 

(1)s(t) = [1+ 0.95 cos(�1t)] · [cos(ψ(t))+ 0.2 cos(2ψ(t)+ π/6)+ 0.1 cos(3ψ(t)+ π/3)] ,

ψ(t) = t + 5 sin(�2t) ,
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Nevertheless, after the transient, the performance is comparable or even better than that of two other techniques. 
In the presence of noise the performance is poor because noisy perturbations excite high-frequency oscillation 
with the frequency ω . The amplitude estimation is slightly worse than that via HT, see Fig. 2a. Thus, for process-
ing without a filter, this technique is not optimal.

Resonant linear oscillator (filter). This technique also demonstrates efficient phase estimation, see Fig. 1d for 
the noise-free data and Fig. 2c for the noisy case. Actually, the results for the latter are hardly distinguishable 
from those in Fig. 2b, though the frequency adaptation of the resonant oscillator is faster. The technique also 
provides the instantaneous amplitude, see Fig. 2a. Notice that the Hilbert amplitude aH for the multi-component 
signal s̄ is not the perfect envelope. The real-time amplitude aR is not perfect either, but is much more smooth 
than aH.
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Figure 1.  (a) The test signal s according to Eq. (1) and its Hilbert amplitude aH (red); one can see that 
aH does not represent a good envelope for s. On the contrary, the Hilbert-based phase estimation yields 
good results, and therefore we take it for the ground truth. Panels (b, c, d) show the difference between the 
Hilbert phase ϕH and causally estimated phases ( ϕL , ϕN , and ϕR are obtained by means of the locking-based 
technique, non-resonant and resonant oscillator, respectively). These panels demonstrate that the output of the 
developed causal algorithms is very close to the HT-phase. Notice that in (c) we show (ϕH − ϕN ) mod 2π : 
within the first 20 time units the phase difference decreases to −14π until it saturates and oscillates around 
(ϕH − ϕN ) mod 2π = 0.
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Figure 2.  (a) Short epoch of noisy data s̄ (blue) and causally obtained amplitudes aN (red) and aR (magenta); 
the latter provides the most smooth envelope (cf. aH in Fig. 1a). When the signal’s amplitude is very small, the 
noise dominates and phase determination becomes complicated. The HT approach fails here (blue line in (b,c)), 
while both locked and resonant oscillator “devices” provide reasonable results. The performance of the non-
resonant technique is poor: when the amplitude nearly vanishes, the phase estimated by this technique (not 
shown) is not better than the Hilbert phase.
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Estimation without an additional filter: tremor data. The tremor time series (Fig. 3a) is relatively simple: it 
resembles the test signal from the previous section. The tremor data is amplitude modulated, and its power 
spectrum also contains several harmonics (Fig. 3b). However, the real-world signals are naturally more compli-
cated than the simple test data series Eq. (1). Analyzing them, one frequently faces additional difficulties. For the 
tremor signal under consideration these features are: a drift of the baseline; presence of epochs when the ampli-
tude vanishes; and outliers. To cope with the baseline fluctuation, we exploit the following causal detrending 
algorithm. For each new measurement point, we remove the mean value computed over several previous cycles. 
For the sake of computational speed, we update this value several times per period. We denote the detrended 
signal by s̃k (Fig. 3c).

Figure 3c compares the Hilbert amplitude aH with the causally computed aR . Like in the case of test data, the 
causally computed amplitude aR is a better estimation of the envelope than aH is. Moreover, computation of aR is 
stable with respect to outliers (Fig. 3d). Next, in Fig. 3e,f we show the Hilbert phase ϕH along with two causally-
obtained phases ϕL and ϕR . We see that for large-amplitude oscillation, all the phases practically coincide. When 
the amplitude almost vanishes, the “device” of the locking-based method falls out of synchrony and makes one 
cycle less. On the contrary, the resonant-oscillator phase ϕR and the Hilbert phase reveal the same number of 
cycles. We emphasize, that both causal techniques are not sensitive to the outliers in the original data, while the 
Hilbert approach is (see Fig. 3f). Finally, we mention that the non-resonant oscillator technique works poorly 
for the unfiltered tremor data. Only if we use the bandpass filter 4.5± 2 Hz, then this technique works perfectly.

Wide‑band signal: beta‑band brain activity. Elevated beta-band activity has been established as a marker for 
rigidity and bradykinesia in patients with Parkinson’s  Disease23. As such, it has been employed in several studies 
of adaptive deep brain stimulation aiming for automatic adjustment of stimulation parameters in response to 
beta-band  amplitude7,9. The analysis of the beta-band brain activity requires a bandpass filter preprocessing. We 
use a simple FIR filter with bandwidth 17± 4 Hz (281-point filter was generated by the Matlab fir1 function). 
A causal filtration introduces a delay, but this is a necessary price to be paid. Our tests with this signal demon-
strate that the non-resonant-oscillator technique outperforms the other two that fail because of the substantial 
variation of the signal’s amplitude. Noteworthy, due to the bandpass, the approach works without the baseline 
correction and the frequency adaptation. Hence, the algorithm implementation requires only a few lines of code. 
The results are illustrated by Fig. 4.

Computation time. An obvious requirement for a real-time estimation algorithm is its computational effi-
ciency. Since our algorithms do not exploit the Hilbert Transform, they are extremely speedy. We illustrate here 
the performance of the Matlab code used to generate Fig. 1 and presented in Supplementary Material. The time 
to process a new measurement point on a desktop iMac computer with the 3.8 GHz Quad-Core Intel Core i5 
processor is:
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Figure 3.  The raw tremor data (a) and its power spectral density S(f), computed by the Burg algorithm (b). 
Panels (c,d) show some epochs of s̃k (the original signal with the constant component and baseline fluctuation 
removed on the fly), the Hilbert amplitude aH (red) and the causal amplitude aR (magenta). The latter provides 
a smooth envelope and does not reflect the outliers (d). Panels (e,f) demonstrate the Hilbert phase ϕH (blue) 
and causal phases ϕL (red) and ϕR (magenta). For epochs with vanishing amplitude, causal phases do not exhibit 
noisy jumps as the Hilbert phase. The causal phases are stable with respect to outliers (f).
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• for the locking-based measurement (phase only): 6.4 · 10−7 s;
• for the non-resonant-oscillator algorithm (phase and amplitude): 6.7 · 10−7 s;
• for the resonant-oscillator algorithm (phase and amplitude): 3.7 · 10−7 s.

One can further improve the efficiency by compiling the algorithms in C++.

Comparison to other techniques. There exist two approaches to causal estimation. The idea of the first approach 
is to complement the running-window non-causal computation of the HT by a  predictor16,24,25. This approach 
works well for signals with a slow frequency variation, i.e., in cases where the frequency practically does not 
change within the running window. This property allows for the prediction of the phase value on the time scale 
of the window. The recent  publication17 exploits a conceptually similar idea: an additional filter in the frequency 
domain reduces the boundary effects of the finite-length HT and, therefore, helps to predict the phase at the end 
of the finite-length window. However, there are two weak points in this approach. First, it is sensitive to modula-
tion. Since even the non-causal HT does not provide a proper estimation for the signal s̄ , illustrated in Figs. 1 
and 2, it is not surprising that prediction based on a finite-window HT fails as well. In Supplementary Material, 
Fig.  4, we illustrate this issue using the technique of Ref.17. Second, the HT-based methods require a time-
consuming computation of the direct and inverse Fourier transforms in a running window. So, the algorithm by 
Schreglmann et al.17 is about thirty times more computationally demanding than an oscillator-based approach.

A different approach has been recently suggested by Wodeyar et al.26. Assuming that the signal represents a 
linearly filtered stationary stochastic process and using some portion of the data, they construct a linear state-
space  model27. When constructed, this model determines the phase and its error bars for new measurements 
(but not the amplitude). Wodeyar et al.26 demonstrate with several tests that their technique outperforms other 
methods, but they admit that the model construction is computationally demanding. We performed two tests 
with this algorithm, for details, see Supplementary Material. The method by Wodeyar et al. performs poorly 
for the test signal s̄ . For the brain activity data shown in Fig. 4, the precision of their algorithm is slightly worse 
then that of our non-resonant oscillator approach, but the  algorithm26 is very slow. For example, it takes about 
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Figure 4.  Beta-band brain activity data. (a) Power spectral density S(f) of the raw (blue) and filtered (red) 
series. (b) Bandpass filtered series (arbitrary units). (c) A short epoch of the filtered series (yellow) and two their 
envelopes computed via the Hilbert Transform (blue) and by means of the non-resonant oscillator (red). The 
envelopes practically overlap, as is also illustrated by panel (d). Panel (e) demonstrates the difference between 
the Hilbert phase ϕH and the real-time phase ϕN along with the amplitude. One can see that the phase difference 
is negligible when the amplitude is finite, and is not small only when the amplitude is at the level of noise (so 
that the phase is not well-defined). It means that for these amplitude values, neither HT nor causal algorithms 
provide a reliable phase determination. (Here ãN is the amplitude rescaled for better visibility.) The probability 
distribution of the phase difference in panel (f) confirms practical coincidence of ϕH and ϕN.
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one minute to construct a model and then use it to process a one-minute long segment of data. Our algorithm 
on the same computer runs about 0.03 sec.

Estimation error. We briefly discuss the complicated problem of an uncertainty quantification. To the best 
of our knowledge, there are no established techniques for error bars computation for a phase of a signal with 
unknown statistical properties, even for the non-causal Hilbert-based approach.  (See28 for the analysis of the 
effects of noise and artifacts on the HT phase estimation.) In a recent attempt to tackle this problem, Wodeyar 
et al.26 computed confidence intervals for a signal representing linearly filtered Gaussian noise. Since our tech-
niques are designed to analyze general rhythms and do not rely on any assumptions about their origin, we sug-
gest two operational approaches to quantify the estimation precision. In both cases, we exploit some time inter-
val to train the algorithms, cf.26. (1) As is demonstrated in Fig. 4e, for vanishing amplitude, the phase estimation 
error is of the order of π for any techniques because the phase is not defined for zero amplitude. On the contrary, 
if the amplitude is not small, then ϕN ≈ ϕH . Thus, the computed phase ϕN (tk) is unreliable if aN (tk) < athr and 
reliable otherwise; for the threshold we use athr = max(aN )/20 , where max(aN ) is the maximal value over the 
training interval. This observation suggests the following algorithm: We use the training interval to compute 
the standard deviation, σ , for the circular difference ϕH − ϕN as a function of aN . In doing this, we consider the 
Hilbert phase as the ground truth. Completing the training, we proceed with the causal measurement: obtain-
ing new values ϕN and aN , we compute the error bars as ϕN ± 3σ(aN ) . For the considered example, we find 
σ(aN ) ≈ 6 · 10−4 · a−0.94

N  , for aN > athr . For details and plots, see Supplementary Material. (2) The results in 
Fig. 4e (supported by the dependence σ(aN ) shown in Fig. 2 in Supplementary Material) suggest a simplified 
algorithm: we discard the phase estimates for aN < athr , while for aN > athr we take ϕN as a reliable measure-
ment, since its deviation from the Hilbert phase is negligible. (The same consideration applies to quantifying the 
uncertainty of ϕR.)

Figure  4d suggests a similar approach to uncertainty in the amplitude measurement: the width of the stripe in 
this representation provides a measure for deviation of aN from aH . Computing aN , aH over the training interval, 
we use this measure to obtain the error bars for the causal measurement.

Discussion
To summarize, in this paper, we considered the problem of causal instantaneous amplitude and frequency 
estimation. Contrary to attempts to adjust the inherently non-causal analytic signal approach, we used oscilla-
tion theory ideas. We presented and tested three algorithms. The first one exploits the phase-locking property 
of nonlinear limit-cycle oscillators, while the other two rely on linear resonance. Technically, we encountered 
solving differential equations incorporating experimental data; we suggested efficient numerical schemes to 
solve them. Below, we discuss the advantages and disadvantages of all three techniques. Since these techniques 
aim at real-time applications, we pay special attention to their computational efficiency. Although we illustrated 
our approach with tremor and brain activity data, it is of general interest to the nonlinear dynamics and control 
science community. One can exploit the method to analyze and control complex nonlinear systems of various 
origins, e.g., electrochemical  oscillators29, nanomechanical  systems30, and power  grids31, to name just a few.

The locking-based technique is similar to the phase-locked loop approach and provides the phase only. It 
works well for relatively narrow-band signals like the tremor data and does not require an additional bandpass 
filter. It can easily incorporate the frequency adaptation that makes the algorithm able to cope with the signal’s 
frequency’s slow variation. The technique does not work well with the signals like beta-band activity, where both 
the frequency and the amplitude vary relatively fast; this results in frequent loss of synchrony. The algorithm 
is computationally efficient: the only demanding operations for a new phase value are several computations of 
the sine function.

As an advantage of the resonant oscillator technique, we mention that it provides both the phase and the 
amplitude. It is stable to high-frequency noise because the resonant oscillator acts as a weak bandpass filter. 
However, it requires baseline correction because the integrator unit enhances the low-frequency perturbations. 
The implementation described in the Methods section is very efficient, provided the oscillator’s frequency does 
not change. Adaptation of the frequency to that of the signal requires recomputation of algorithm’s coefficients 
what slightly reduces the efficiency.

If extraction of the rhythm of our interest requires a bandpass filter, the non-resonant oscillator approach is 
the best choice. Using the beta-band brain activity as an illustrative example, we demonstrated that this causal 
algorithm provides phase and amplitude very close to non-causally computed Hilbert Transform-based values. 
An essential advantage of the algorithm is its efficiency: computation of the new phase and amplitude values 
requires only several arithmetic operations and two function calculations. This property makes the algorithm 
especially appropriate for the real-time processing of high-frequency signals.

We emphasize that all three techniques are much faster than approaches based on the HT, because the latter 
require the computation of the direct and inverse Fourier transform in a running window plus additional filtra-
tion to compensate for the boundary effects and non-causal nature of the HT. Taken together, the techniques 
suggested here may provide useful means for real-time detection of phase and amplitude in the context of 
adaptive deep brain stimulation. For example, estimation of instantaneous amplitude has been implemented by 
interpolating beta-filtered and squared LFP  data32. However, this approach is not able to recover the signal’s phase 
simultaneously. Additionally tracking phase may augment therapeutic benefit, though, by delivering stimula-
tion pulses at specific points within the oscillatory cycle. This has been shown to effectively disrupt pathological 
 oscillations10–12,17. So far, to our knowledge, adaptive stimulation algorithms integrating both the phase and 
amplitude of a signal have not been established yet.
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Finally, we mention that our techniques do not cause any additional delay. The processing delay is only due 
to a causal filter if the latter is required, e.g., for brain activity data. To minimize the delay, one has to exploit 
specially designed  filters33.

Methods
In the description of time-series analysis algorithms the input is an oscillatory signal s(t), sampled with interval 
� . Thus, available is a sequence s(tk) = s(k�) = sk.

The non‑causal Hilbert‑Transform based approach. In this approach one constructs the correspond-
ing complex-valued analytic signal Z(t) = s(t)+ iŝ(t) , where ŝ(t) = π−1

P.V.
∫∞
−∞

s(τ )
t−τ

dτ is the HT of s(t). 
Obviously, the HT is a non-causal operation; HT of a finite-length time series yields spurious values for the 
boundaries. The absolute value and argument of Z(t) provide the instantaneous Hilbert amplitude aH (t) and 
phase ϕH (t) , respectively. For a narrow-band one-component signals like s(t) = A(t) cos[ω(t)t] , where A(t), 
ω(t) are slow functions of time, the analytic signal approach provides aH ≈ A and ϕH ≈

∫

ω(t)dt . For a discus-
sion of the HT’s practical implementation and technical hints we refer, e.g.,  to1,4,34. In a practical implementation 
either a discrete evaluation of the integral is performed, or a discrete Fourier transform is used.

Causal estimation of phase and amplitude. In these methods, we obtain the value of the instantaneous 
phase ϕ(tk) = ϕk and amplitude a(tk) = ak by using only the current and the previous values of the signal, i.e., 
sk , sk−1, . . ..

Measuring “device”: phase‑locked oscillator. The synchronization theory says that an oscillatory force s(t) acting 
on a limit-cycle oscillator can entrain it, if the frequency of the force is close to the natural frequency of the limit-
cycle oscillator. It means that the oscillator’s frequency becomes equal to that of the force, and their phases fulfill 
the locking condition ϕ − θ ≈ const , where θ and ϕ are the oscillator’s and the signal’s phases. For our purposes, 
it is appropriate to use the so-called phase oscillator. Its forced dynamics is described by

where ε is a parameter that determines the coupling strength. Consider first a harmonic force, s = a cos(νt) . 
If ω = ν , then in the locked state ϕ ≈ θ . However, ν is not known a priori, but we assume that we can roughly 
estimate it. Let this initial guess be ν0 . Thus, we set initially ω = ν0 and start our computation with this value. To 
adapt the phase oscillator to the signal, we estimate the frequency of the forced oscillator νe on the fly. (The index 
e stands for “estimated”). To this end, for the time instant t, we take previously computed unwrapped phases θ 
for the time interval [t − Te , t] , where Te ∼ 2π/ν0 (approximately one or two cycles). Assuming that within this 
time interval θ(t ′) = θ(t − Te)+ νe(t

′ − t + Te) , we compute the frequency νe via the linear fit. Next, we update 
the oscillator’s autonomous frequency as

where K is a constant update factor. Adapting the frequency in this way, we ensure a transition from the unlocked 
to locked dynamics. Performing frequency estimation several times per cycle, we successfully estimate the phase 
of signals with slowly drifting frequency. We expect that this algorithm also works if the force’s amplitude a 
slightly varies with time (so that the oscillator still remains locked).

One can treat the suggested scheme as a software implementation of a phase-locked  loop22, cf.  also35. Practi-
cally, we have to solve the differential Eq. (2) numerically, whereas its right-hand side is known only in discrete 
time points tk . The easiest way is to exploit Euler’s technique with the integration step � to advance from the 
known value θk at tk to the new phase θk+1 at tk+1 = tk +� , given a new measurement sk+1 . This technique may 
work properly if � is sufficiently small; otherwise, the numerical solution becomes unstable. (We recall that 
� is the fixed sampling interval that cannot be made arbitrarily small). Therefore, to advance the solution of 
Eq. (2) from ϕk to ϕk+1 given new measurement sk+1 , we use the parabolic approximation of s(t) on the interval 
[tk , tk+1] and then exploit the standard Runge-Kutta algorithm. (Notice that the Runge-Kutta step can be much 
smaller than � .) The coefficients of the parabolic fit are computed from sk−1, sk , sk+1 . Starting with some initial 
condition, e.g., θ0 = 0 , we achieve, after a short transient (see examples in Fig. 1), the synchronous state where 
ϕk ≈ θk . Notice that the phase oscillator can be complimented by a low-pass filter:

then the scheme becomes the simplest traditional phase-locked  loop4,22; for τ → 0 it reduces to Eq. (2). This 
extension may be useful for the data with strong high-frequency noise but it does not show any advantages for 
the tremor data we use.

Measuring “device”: non‑resonant linear oscillator. Our second measuring “device” is linear damped oscillator:

where ω and α are the frequency and the damping parameter of the oscillator, respectively. Suppose first that s(t) 
is harmonic, s(t) = a cos(νt) = a cos(ϕ(t)) . The well-known stationary solution of linear Eq.  (4) is 
x = b cos(νt + β) , where b = a√

(ω2−ν2)2+(αν)2
 and β = arctan

[

−αν
ω2−ν2

]

 . Thus, the forced system (4) oscillates 

(2)θ̇ = ω − ε sin θ · s(t) ,

(3)ω −→ ω + K(νe − ω) ,

ϕ̇ = ω + εw , τ ẇ + w = −s(t) sin θ ,

(4)ẍ + αẋ + ω2x = s(t) ,
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with the force’s frequency ν and the amplitude b. The dependencies of the amplitude ratio b/a and of the phase 
shift β on the forcing frequency ν reflect the well-known resonance effect. Knowing the oscillator’s state 
x(t) = b cos(νt + β) , ẋ(t) = −bν sin(νt + β) we find the amplitude and phase of the external force:

Thus, if our “device” yields x(t) and ẋ(t) , then we easily compute a(t) and ϕ(t) , provided the frequency ν of the 
force is known. However, it is not known but can only be roughly estimated. Moreover, generally, it varies with 
time. Before we discuss how to cope with this fact, we mention how we practically obtain x(t) and ẋ(t) . Here, 
we make use of the linearity of Eq. (4) and develop and exploit an efficient numerical scheme, presented below. 
With this scheme, starting with some initial conditions, e.g., x0 = ẋ0 = 0 , we obtain, after a short transient, the 
forced solution of Eq. (4) and compute a(tk) and ϕ(tk) from Eqs. (5).

Now, we discuss how to choose the parameters of the measuring oscillator. Recall that to compute a,ϕ , we 
need the value of the signal frequency ν . First, let us consider the amplitude measurement. Inspecting Fig. 5, 
we see that if we take a large value of α (strongly damped oscillator) and ν ≪ ω then the ratio b/a is practically 
independent on ν . Thus, to compute the second square root in Eq. (5) we need only a very rough estimate of ν . 
For the phase estimation, the damping parameter shall be different. Indeed, as follows from Fig. 5b, now we have 
to choose α to be small, then the phase shift β ≈ 0 in a wide range of ν and the phase of the external force equals 
the phase of the oscillator. A reasonable choice is to take the oscillator’s frequency ω about five times larger than ν.

Thus, we neglect β in the expression for ϕ and compute 
√

(ω2 − ν2)2 + (αν)2 in the expression for a only 
once, using an initial guess ν0 for frequency. However, the terms 

√

x(t)2 + [ẋ(t)/ν]2 and arctan
(

−ẋ(t)
νx(t)

)

 essen-
tially depend on ν . Imprecise estimation of ν and/or its variation with time results in spurious oscillations of the 
estimated amplitude and phase. To remove these oscillations and to make the results less dependent on the initial 
frequency estimation, we improve this estimation by computing the signal frequency in real-time as discussed 
in the precious section. We start with an initial guess ν0 and begin the computation of a(t), ϕ(t) . After a transient 
time of the order of several cycles, we begin with the frequency estimation to obtain νe . (The estimation is per-
formed in exactly same way as for the phase-locked oscillator.) We use νe instead of ν0 and, in this way, signifi-
cantly improve the real-time computation of the amplitude and frequency. Performing frequency estimation 
several times per cycle, we track the slowly drifting signal frequency. (Notice that for the bandpass filtered signal 
used in the last example, the algorithms works well without any frequency correction. Here we set ν equal to the 
center of the bandpass.)

In summary, for the amplitude measurement, we need a strongly damped oscillator, while for the phase 
estimation, we need an oscillator with small damping. If we need both measurements simultaneously, then the 
solution is to exploit two “devices” concurrently. Though Eq. (5) are derived for the harmonic force, we expect 
that they approximately hold for signals with a slow variation of the amplitude and frequency. The presented 
numerical tests confirm this expectation.

Measuring “device”: resonant linear oscillator. Here we adopt the technique used for model studies in our pre-
vious  publications18,19. The device consists of a linear oscillator in resonance with the measured signal and an 
integrating unit:

(5)a(t) =
√

x(t)2 + [ẋ(t)/ν]2
√

(ω2 − ν2)2 + (αν)2 , ϕ(t) = arctan

[−ẋ(t)

νx(t)

]

− β .

(6)ẍ + αẋ + ω2x = s(t) ,

(7)µż + z = ẋ .

0 5 10
0

0.1

0.2

0.3
(a)

0 5 10
-

/2

0 (b)

Figure 5.  Resonance curves for amplitude (left) and phase shift (right) for the linear oscillator with frequency 
ω = 5 . Blue and red curves correspond to the weakly ( α = 0.2 ) and strongly ( α = 6 ) damped oscillator, used 
for the phase and amplitude measurement, respectively (these parameters were used to process the artificial 
data). The domains where b/a ≈ const (for the red curve) and β ≈ 0 (for the blue curve) are marked by red and 
blue arrows, respectively. These are intervals of signal frequency ν where the algorithm’s performance is good. 
We see that ω ≈ 5ν is a reasonable choice.
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The role of the harmonic oscillator Eq. (6) is twofold. First, it acts as a bandpass filter and the damping factor α 
determines the width δf ≈ α/2π of the bandpass. Second, the harmonic oscillator yields signal ẋ which phase 
is close to that of the input x(t), provided the frequency ω is close to the mean frequency of s(t). (This condition 
also ensures that the band-pass is centered at the frequency of the signal.) Next, for µ ≫ 1 Eq. (7) acts as the 
integrating unit. Its output is shifted by π/2 with respect to ẋ . It is useful to rescale ẋ , z so that their amplitudes 
are close to that of s(t). For this, we compute u = αẋ and w = αω0µz and obtain the instantaneous phase and 
amplitude of s(t) as ϕ(t) = arctan(w/u) , a(t) =

√
u2 + w2.

Solving the linear oscillator equation for discrete input signal. Here we present the numerical 
scheme for solving Eq. (4), adopted to the situation where the input signal is available at a finite sampling rate. 
Using the substitution y = xeγ t , where γ = α/2 , one obtains

Another standard substitution

where A∗ denotes complex conjugate of A, yields Ȧ = −iη−1S(t)e−iηt . Integrating we obtain

Next, locally interpolating the measured signal s(t) by a parabola going through the points sk−1, sk , sk+1 we com-
pute the integral I =

∫ �

0
S(tk + τ)e−iητdτ . As a result, we obtain the following practical scheme for integration 

of Eq. (4). First, we pre-compute the coefficients C1,2,3:

where

Next, for given xk , ẋk and the new measurement sk+1 we compute xk+1, ẋk+1 in three steps: 

1. Compute Ak = xk − i(ẋk + γ xk)/η.
2. Compute Ak+1 = Ak + C1sk−1 + C2sk + C3sk+1.

3. Compute xk+1 = Re (Ak+1e
iη�)e−γ�

, ẋk+1 =
[

0.5iη(Ak+1e
iη� − A

∗
k+1

e
−iη�)− γ Re (Ak+1e

iη�)

]

e
−γ�

.

We emphasize that all coefficients can be pre-computed, so that the integration step requires only a few sum-
mations and multiplications.

The extension of the approach to solving Eqs. (6,7) of the resonant oscillator is straightforward. The equa-
tion (6) of the linear oscillator is solved as just described. Then the known points ẋk−1, ẋk , ẋk+1 provide the local 
parabolic approximation of the function ẋ in Eq. (7). The solution of this linear equation is readily obtained by 
variation of the constant and reads:

with a = ẋk , b = (ẋk+1 − ẋk−1)/2� , c = (ẋk−1 − 2ẋk + ẋk+1)/2�
2.

To summarize the presentation of numerical techniques, we emphasize that if the sampling rate is very high, 
the differential equations in all presented algorithms can be fast and easily solved by the midpoint or predictor-
corrector  technique36. However, the stability of these simple methods is not guaranteed.

Choosing parameters. Locking‑based oscillator. The main parameter is the forcing coefficient 
ε (Eq.  2). The larger ε the faster the system synchronizes. On the other hand, the forcing term ε sin θ · s(t) 
shall be small enough to ensure the monotonicity of the phase θ . So, if s(t) = a cosϕ then (Eq.  2) reads 
θ̇ = ω + εa

2
sin(ϕ − θ)− εa

2
sin(ϕ + θ) ; in the locked state ϕ ≈ θ the first sine term vanishes and θ̇ > 0 if 

εa < 2ω . In the artificial data example we checked that he values 0.4 ≤ ε ≤ 0.8 provide good result. In this 
example, the amplitude goes up to ≈ 2 and the frequency is about 1, so that the above condition is satisfied. The 
parameter of the frequency adaptation shall be K ≤ 1 ; the values between 0.5 and 1 work well. The data in Fig. 1 
correspond to ε = 0.8 , K = 1 . For the tremor data ω ≈ 2π · 4.5 , ε = 30 , and K = 0.5 . In both cases we updated 
the frequency ω 20 times per period using the preceding phases θ in the interval that is about one cycle long.

Non‑resonant oscillator. To process the artificial signal we exploited αa = 6 (amplitude measurement), αp = 0.2 
(phase measurement). For the LFP example, the parameters were αa = 80 , αp = 10 . In both cases we took 
ω = 5ν , where ν = 1 and ν = 2π · 17 , respectively. Practically, we have to choose αp so that | tan β| ≈ |β| ≪ 1 . 
For the common choice ω = 5ν it reduces to the condition |β| = αp/24ν ≪ 1 . (Notice that the smaller α the 
longer the transient.) Similarly, we have to choose αa so that the derivative of the resonance curve 
d
dν (a/b)

∣

∣

∣

ν=ω/5
= 2(ω2−ν2)ν−α2aν

[(ω2−ν2)2+α2aν
2]3/2

∣

∣

∣

ν=ω/5
≈ 0 what yields αa ≈ 7ν . For a bandpass filtered signal, the algo-

ÿ + η2y = s(t)eγ t = S(t) , with η2 = ω2 − γ 2 .

(8)y = 0.5(Aeiηt + A∗e−iηt) , ẏ = 0.5iω(Aeiηt − A∗e−iηt) ,

Ak+1 = Ak − iη−1e−iηtk

∫ �

0

S(tk + τ)e−iητdτ = Ak − iη−1e−iηtk I .

C1 = iη−1e−γ�(I2�− I3)/2�
2 , C2 = iη−1(I3/�

2 − I1) , C3 = −iη−1eγ�(I2�+ I3)/2�
2 ,

I1 = iη−1(e−iη� − 1) , I2 = η−2[e−iη�(1+ i�η)− 1] , I3 = η−3[e−iη�(�η(2+ i�η)− 2i)+ 2i] .

zk+1 = (zk − a+ bµ− 2cµ2)e−�/µ + a− bµ+ 2cµ2 + b�− 2cµ�+ c�2 ,
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rithm is not very sensitive to αa . So, for αa ≈ 0.75ν in the LFP example, variation of the resonance curve within 
the bandpass is less than 4%.

Resonant oscillator. Here we always take α = 0.3ω what corresponds to bandpass width about 30% of the cen-
tral frequency ω . The requirement for the parameter µ is µ ≫ 1 ; in all computations we choose µ = 500.

Patients and recordings. All patient data analyzed here were obtained from a study approved by the local 
ethics committee at Charité Universitätsmedizin Berlin (study number EA2/129/17) and followed the Declara-
tion of Helsinki. All patients provided written informed consent. Tremor data was acquired from a patient with 
essential tremor using a 3D accelerometer (TMSi, Oldenzaal, The Netherlands) attached to the right index finger. 
The signal was sampled at 2048 Hz sampling rate using a Porti amplifier (TMSi). The patient stretched their arms 
out in front of their chest holding a bottle in order to provoke postural tremor. Only data from one axis was 
analyzed. LFP data was recorded from a patient with Parkinson’s Disease on medication, 2 days after surgery for 
deep brain stimulation with electrode cables being externalized. LFPs were acquired from the left subthalamic 
nucleus via a 4-contact electrode (Model 3389, Medtronic, Minneapolis, USA) using a D360 amplifier (Digi-
timer Ltd., Welwyn Garden City, UK) and were digitized at 1 kHz sampling rate with a 1401 analog-to-digital 
converter (CED Ltd., Cambridge, UK). A bipolar referencing scheme was adopted, with the signal shown here 
originating from contacts one to two. During the recording session, the patient was comfortably seated and was 
asked to rest quietly.
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