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Abstract

Photoreceptor terminals contain post-synaptic density (PSD) proteins e.g., PSD-95/PSD-93, but their role at photoreceptor
synapses is not known. PSDs are generally restricted to post-synaptic boutons in central neurons and form scaffolding with
multiple proteins that have structural and functional roles in neuronal signaling. The Shank family of proteins (Shank 1–3)
functions as putative anchoring proteins for PSDs and is involved in the organization of cytoskeletal/signaling complexes in
neurons. Specifically, Shank 1 is restricted to neurons and interacts with both receptors and signaling molecules at central
neurons to regulate plasticity. However, it is not known whether Shank 1 is expressed at photoreceptor terminals. In this
study we have investigated Shank 1A localization in the outer retina at photoreceptor terminals. We find that Shank 1A is
expressed presynaptically in cone pedicles, but not rod spherules, and it is absent from mice in which the Shank 1 gene is
deleted. Shank 1A co-localizes with PSD-95, peanut agglutinin, a marker of cone terminals, and glycogen phosphorylase, a
cone specific marker. These findings provide convincing evidence for Shank 1A expression in both the inner and outer
plexiform layers, and indicate a potential role for PSD-95/Shank 1 complexes at cone synapses in the outer retina.
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Introduction

Postsynaptic density (PSD) protein-95 family members (e.g.,

PSD-95, PSD-93) are associated with presynaptic photoreceptor

terminals in the outer plexiform layer (OPL) in the retina [1].

However, the functional role of PSD-95 family members in

photoreceptor terminals is not known. In central neurons, PSD-95

family members are associated with post-synaptic sites and linked

to multiple anchoring/scaffold proteins [2,3]. PSD-95 family

members interact with a variety of signaling and cytoskeletal

proteins, including, the Shank family of proteins, which are

reported to function as putative anchoring proteins for PSD-95,

ionotropic and metabotropic glutamate receptors, and L-type

Ca2+ channels in neurons [4,5,6,7,8].

Shank proteins consist of 3 major family members: (Shank 1-3)

(Sheng and Kim 2000), and contain five domain/regions that are

involved in protein-protein interactions: 1) ankyrin repeats, 2) SH3

domain, 3) PDZ domain, 4) a proline-rich region and 5) SAM

domain [8]. The PDZ domain of Shank directly interacts with the

C-terminal QTRL motif of GKAP/SAPAP/DAP-1 [8,9], a

protein that binds to the GK domain of the PSD-95 family of

proteins [10,11,12,13,14,15,16]. The Shank family of proteins has

been shown to interact with group I metabotropic glutamate

receptors via the Homer1 protein, which in turn interacts with

IP3Rs [9,17,18,19,20]. Shank proteins also interact with several

actin regulatory proteins [21], and L-type Ca2+ (CaV1.3) channels

in medium spiny neurons of the striatum [4,22,23]. Shank 1

expression is restricted to neurons [24], including retina [25],

except during embryonic development in Xenopus where Shank 1

transcripts have been observed with in situ hybridization in the

pronephros [25]. Alternative splicing of Shank 1 has been shown

to yield multiple Shank 1 isoforms. The Shank 1A isoform has all

five functional domain regions (ankyrin, SH3, PDZ, proline-rich,

and SAM), and it is localized to excitatory synapses with PSD-95

[26]. Since photoreceptors possess a unique and yet undefined role

for PSDs, it is possible that Shank 1A is expressed at photoreceptor

synapses and may contribute to photoreceptor signaling at the

terminal.
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To address this question we used a transgenic line expressing

yellow fluorescent protein (YFP) under control of the thy-1.2

promoter that labels cone bipolar cells in the retina [27]. The thy-

1.2 YFP-expressing mouse cone bipolar cells allows us to easily

differentiate presynaptic expression of proteins in the outer retina

at photoreceptor terminals from postsynaptic expression of

proteins expressed at cone bipolar cell dendrites in the mouse

retina at the light microscopic level. Our findings indicate that

Shank 1A is expressed at both synaptic layers of the retina, in the

OPL shank1 A is restricted solely to cone pedicles and is absent

from rod spherules, in the IPL, Shank 1A is homogenously

expressed throughout the synaptic layer, likely present at amacrine

and ganglion cell processes where it can assemble with the

postsynaptic complex. Thus, this differential expression of Shank

1A in the outer retina at photoreceptor terminals may influence

cone signaling, and account for some of the reported differences in

the output properties of rod and cone photoreceptors.

Results

Shank 1A is expressed in both the OPL and the IPL
Immunostaining of vertical sections of the adult mouse (thy-1.2

YFP 16 line) retina with antisera against Shank 1A showed Shank

1A immunoreactivity in the outer plexiform layer (OPL) and the

inner plexiform layer (IPL) of the retina (Fig. 1A–C). All three

Shank 1 antibodies used in this study produced similar punctate

immunolabeling in the OPL and the IPL of the mouse retina.

These antibodies have been previously characterized in neurons

using Western blotting and immunohistochemistry [6,24,28]. The

YFP-16 mouse line contains the YFP reporter signal in cone

bipolar cells, amacrine cells, and ganglion cells (see Fig. 1B, [27]).

Shank 1A immunofluorescence had a punctate appearance in both

plexiform layers, suggesting a synaptic localization. In the OPL,

Shank 1A immunoreactivity consisted of large clusters at the base

of the OPL that are indicative of cone pedicles (Fig. 1D–F). Each

cluster of Shank 1A puncta were in close apposition and distal to

the tips of the dendrites of YFP cone bipolar cells (Fig. 1F),

suggesting that Shank 1A was restricted to the presynaptic cone

terminal, and not present in cone bipolar cell dendrites. Shank 1A-

immunoreactive puncta were homogeneously distributed through-

out the IPL (Fig. 1G–L), and found around YFP processes (Fig. 1K)

and PKCa immunoreactive axons and terminals (Fig. 1J) in the

IPL.

Several lines of evidence suggest that the immunostaining is

specific for Shank 1A. First, in all previous studies characterizing

Shank 1 antibodies, immunoblotting of wild-type mouse brain

extracts with Shank 1 antibodies showed a major band in the 240–

288 kDa range [24,29,30]. In addition, this band was decreased in

the heterozygote and eliminated in the homozygous shank 1-/-

knockout mouse brain [29]. Second, the same immunolabeling

pattern was obtained using three different antibodies (see

Methods). Third, the immunostaining for all three antibodies

used in this study were absent in retinal sections obtained from

mice were the Shank 1 gene was deleted (one example is shown;

see Fig. 2). However, expression of other prominent synaptic

proteins, like CTBP2/Ribeye and PSD-95 were not disrupted in

the outer retina and within the OPL of mice where the Shank 1

gene had been deleted (Fig. S1).

Shank 1A and PSD-95 are clustered together in the OPL
PSD-95 showed strong immunolabeling throughout the OPL

(Fig. 3). In our hands the PSD-95 antibody typically labeled only

the OPL, with very faint or no labeling in the IPL as described

previously [31]. To investigate whether Shank 1A is associated

with PSD-95 we performed double immunolabeling experiments

with antibodies to Shank 1A and PSD-95 on adult YFP-16 mouse

vertical retinal sections. We found that Shank 1A puncta were co-

localized with PSD-95 in clusters just above the YFP labeled

dendrites (see Fig. 3D and J, co-localized signal is the pink colored

shank 1A puncta in the OPL). PSD-95 shows a strong signal

within the photoreceptor terminal region, and significant overlap

of Shank 1A and PSD-95 is generally observed at all areas with

Shank 1A expression (Fig. 3D I and J). In contrast, YFP and Shank

1A show no significant overlap of the two signals, with most of the

fluorescence out of phase with the YFP dendritic process (Fig. 3H).

Moreover, in these experiments we used anti-fluorescent protein

antibodies (anti-GFP/anti-YFP) to enhance weakly labeled den-

drites to rule out the possibility that the YFP signal is weakly

expressed at the dendrites of cone bipolar cells. Shank 1A labeling

was absent from any YFP labeled cone bipolar cell dendrites

consistent with Shank 1A labeling being confined to photoreceptor

terminals in the outer retina. We also confirmed the synaptic

localization of all Shank 1A antibodies used in this study with the

PSD-95 antibody in mouse cerebellar cultures (data not shown) as

described previously [9,24]. These findings indicate that Shank 1A

is clustered with PSD-95 at photoreceptor synapses, and not

associated with YFP cone bipolar cell processes.

Shank 1A is expressed at ribbon synapses in the OPL
The relationship between Shank 1A and the synaptic ribbon

was determined by evaluating the distribution of the synaptic

protein RIBEYE, which is a splice variant of the transcription

factor CtBP2 [32,33], and Shank 1A in the OPL at photoreceptor

terminals. In vertical retinal sections, CtBP2 labeling was

characterized by multiple horseshoe shaped structures within the

OPL (Fig. 4), and diffuse labeling of nuclei in all cell layers, with

Shank 1A labeling restricted to the OPL and IPL. The

immunoreactivities of the two proteins did not overlap at the

cone photoreceptor-cone bipolar cell dendrites; instead, it appears

that Shank 1A puncta were expressed just distal to the YFP cone

bipolar cell dendrites, with the horseshoe shaped CtBP2

immunolabeled ribbon structures surrounding Shank 1A in the

cone pedicle (Fig. 4 C and H). Shank 1A and VGLUT1

immunostaining overlapped in cone pedicles (see Fig. S2), which

is consistent with a presynaptic site of expression for Shank 1A.

VGLUT1 immunoreactivity generally fills the synaptic terminal,

which is indicative of vesicles present throughout the photorecep-

tor terminal (Figs. S2B, D, F, and G); however, the most intense

VGLUT1 immunolabeling always appeared to be adjacent to or

co-localized with the synaptic ribbon (data not shown). Shank 1A

puncta showed the most intense labeling at the base of the

VGLUT1-containing cone terminal (Figs. S2 D and G). However,

without further ultrastructural analysis it is difficult to draw any

conclusions regarding Shank 1A and VGLUT1 localization, still it

is clear that Shank 1A is present within VGLUT1-containing

photoreceptor terminals.

Shank 1A is restricted to cone photoreceptor terminals
Since expression of Shank 1A is likely restricted to cone

terminals we tested whether the cone marker, peanut agglutinin

(PNA) conjugated to rhodamine, co-localized with Shank 1A.

Vertical sections were immunostained with Shank 1A and then

treated with PNA-conjugated rhodamine (Fig. 5). PNA labeled the

base of cone terminals (red) and inner and outer segments of cones

in the outer retina (Fig. 5 B and D). In the OPL, the PNA signal

(red) overlapped strongly with the Shank 1A signal (blue),

suggesting that PNA and Shank 1A were expressed at the same

site (inset of box in 5D see Fig. 5E–H). This can be observed in the

Shank 1A Is Expressed at Cone Terminals
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high magnification confocal scans of the OPL (see inset, Fig. 5E–

H). Since PNA can bind to the extracellular side of the cone

terminal, we wanted to determine whether Shank 1A immuno-

fluorescence is not obscured by the close proximity of the YFP

dendrites. To test this possibility we dissociated solitary cone

photoreceptors and YFP labeled bipolar cells from YFP-16 mouse

retinas and labeled cones with Shank 1A, PSD-95, and PNA, and

YFP cone bipolar cells with Shank1A and PNA (Fig. S3). Shank

1A, PSD-95, and PNA were localized to the terminal (Fig. S3 A–

D), and both Shank1A and PNA were absent from the dendrites of

YFP cone bipolar cells (Fig. S3 E, F, and H), providing additional

support that Shank 1A is present at cone photoreceptor terminals.

To definitively test whether any rod photoreceptor terminals

possess Shank 1A, double labeling with Shank 1A and wheat germ

agglutinin (WGA) were performed. WGA has been used as a

marker of rod and cone terminals in the mouse retina [34,35], and

WGA is localized distal to the dendritic tips of PKCa labeled rod

bipolar cell dendrites (Fig. S4), illustrating that cone pedicles are

proximal to distal rod spherules in the OPL. Therefore, we wanted

to ascertain whether any Shank 1A signal was present at rod

terminals. Fig. 6 illustrates a high magnification confocal image of

WGA and Shank 1A labeling at the dendrites of a YFP labeled

mouse cone bipolar cell. Rod terminals labeled with WGA had a

punctate appearance and measured about 0.5 mm diameter, and

they were located in the OPL distal to YFP cone bipolar cell

dendrites (see arrowheads Fig. 6B). Cone terminals labeled with

WGA are characterized as large rectangular blobs that measured

about 2–3 mm in length (see arrows Fig. 6B) and they were cradled

by YFP cone bipolar cell dendrites (Fig. 6H). WGA labeled both

rod and cone photoreceptor terminals (Fig. 6), and co-localized

with Shank 1A in cone pedicles (Fig. 6F–I), showing that Shank 1A

is absent from rod terminals, and restricted solely to cone

terminals.

To determine whether cone photoreceptor terminals possess

Shank 1A, double labeling experiments with anti-glycogen

phosphorylase and Shank 1A were performed on mouse YFP

Figure 1. Shank 1A immunoreactivity is in both the inner plexiform layer (IPL) and outer plexiform layer (OPL) of the mouse YFP-16
line retina. A–C: A. Image of a retinal section immunostained for Shank 1A. B. Mouse YFP-16 line vertical retinal section. C. Shank 1A (red)
immunolabeling and YFP (yellow). Shank1A expression is restricted to the OPL and IPL. A regular pattern of Shank 1A immunolabeling appears in the
OPL, which is indicative of cone photoreceptor terminals. D–E: High magnification zoom of the OPL demonstrates that Shank 1A puncta (red) are
distal to the dendrite tips (yellow) of YFP labeled cone bipolar cells, suggesting that Shank 1A is expressed presynaptic to the YFP cone bipolar cell
dendrite. G–L: High magnification zoom of the IPL demonstrates that Shank 1A puncta are likely expressed postsynaptically to bipolar cell terminals.
G. Shank 1A immunoreactive puncta. H. YFP labeled neurons and processes within the IPL region. I. PKCa labeled rod bipolar cell axons and terminals.
J. Combined Shank 1A (red) and PKCa (blue) immunolabeling illustrate that shank 1A puncta are postsynaptic to rod bipolar cell terminals in the IPL.
K. Combined Shank 1A (red) immunolabeling and YFP (yellow) in the IPL demonstrate that Shank 1A puncta are postsynaptic to cone bipolar cell
terminals in the IPL. L. Combined triple fluorescent image of Shank 1A (red), PKCa (blue), and YFP (yellow) in the IPL. OPL = outer plexiform layer,
INL = inner nuclear layer, IPL = inner plexiform layer, and GCL = ganglion cell layer. Scale bars = 10 mm.
doi:10.1371/journal.pone.0043463.g001

Shank 1A Is Expressed at Cone Terminals
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retinal sections. Glycogen phosphorylase selectively labels cone

photoreceptors in the mouse retina [37,38]. Fig. 7 shows both low

(Fig. 7A–D) and high (Fig. 7E–J) magnification images demon-

strating the localization of Shank 1A immunostaining within

glycogen phosphorylase-immunoreactive cone terminals. Cone

terminals labeled with glycogen phosphorylase show consistent co-

localization with Shank 1A immunoreactive puncta (Fig. 7D, H,

and J), however YFP dendrites don’t co-localize with shank 1A

puncta (Fig. 7F) and generally don’t overlap or contact Shank 1A

puncta at cone terminals arguing that Shank 1A is localized

entirely within the cone pedicle (Figs. 7H and J).

Discussion

This is the first report of Shank 1 expression in the mammalian

retina revealing Shank 1 immunoreactivity within both synaptic

layers of the retina. More importantly, there is a differential

distribution of Shank 1A among photoreceptors in the mouse

outer retina. Shank 1A is localized exclusively at cone pedicles and

it is absent from rod spherules. Shank 1A immunostaining

demonstrated strong overlap with the lectin, PNA, and it was

found in the terminal region of glycogen phosphorylase labeled

cone photoreceptors providing strong evidence that Shank 1A is

restricted to the cone pedicle. In addition, PSD-95 is co-localized

together with Shank 1A at cone photoreceptor terminals,

suggesting a potential role for Shank 1A. We also found that

Shank 1A immunoreactivity is not co-localized with the synaptic

ribbon protein RIBEYE/CtBP2, suggesting that Shank 1A is not

associated with synaptic ribbons, but it is likely to be associated

with PSD-95 near the base of the synaptic terminal. The emerging

role of structural signaling proteins, like Shank 1A and PSD at the

cone synapse will be considered further below, however, it is

conceivable that these protein interactions might provide novel

ways to target proteins to the synapse (e.g., Ca2+ channels),

modulate cone synaptic plasticity, and perhaps influence trans-

mitter release from cones.

Figure 2. Shank 1A immunoreactivity is absent when the Shank
1 gene has been deleted in mouse retina. A: Shank 1A
immunoreactivity in wild type mouse retina, punctate antibody labeling
in the OPL in the outer retina and throughout the IPL. B: No Shank 1A
immunoreactivity was found in retinal sections obtained from animals
where the Shank 1 gene was deleted. (OS = outer segment, ONL = outer
nuclear layer, OPL = outer plexiform layer, INL = inner nuclear layer,
IPL = inner plexiform layer, and GCL = ganglion cell layer). Scale bar is
10 mm.
doi:10.1371/journal.pone.0043463.g002

Figure 3. Shank 1A is expressed with PSD-95 labeled
photoreceptor terminals in the mouse thy-1.2 YFP 16 line
retina. A–D: Zoomed confocal region of the OPL immunostained with
rabbit anti-Shank1A and mouse anti-PSD-95 antibodies. A. Shank 1A
puncta labeling in the OPL in the mouse retina. B. PSD-95 immunolabels
rod and cone photoreceptor terminals in the OPL. C. YFP labeled
dendrites from cone bipolar cells in the OPL. D. Merged confocal image
showing Shank 1A (red), PSD-95 (blue), and YFP (yellow). E–J: High
magnification single plane confocal images of Shank 1A and PSD-95 in
the mouse thy 1.2 YFP 16 line retina (1006 objective, N.A. 1.3). E.
Shank1 A (red). F. PSD-95 (blue). G. YFP (yellow). H. Merged image of
YFP and Shank 1A, YFP and Shank 1A puncta are not co-localized at
cone bipolar cell dendrites (see arrowheads, shank fluorescence above
YFP dendrite. I. Merged image of Shank 1A and PSD-95, the two
immunoreactivities (pink) indicate co-localization of Shank 1a and PSD-

Shank 1A Is Expressed at Cone Terminals
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Shank 1A expression in the OPL and IPL
The finding that Shank 1A is clustered in cone terminals within

PSD-95 (Fig. 3), but absent from YFP cone bipolar cell dendrites,

strongly supports a presynaptic localization of the protein in the

cone terminal. More importantly, deletion of the Shank 1 gene

completely abolished all Shank 1A immunoreactivity in the outer

and inner retina (Fig. 2), demonstrating that the observed

immunoreativity is specific to Shank 1A. Also, it is important to

note that the synaptic ribbon and PSD scaffolding organization is

not disrupted by the deletion of Shank 1 gene, since there is no

difference in the PSD-95 and CtBP2 immunolabeling between

wild type and shank1 (-/-) mice (Fig. S1). This doesn’t rule out the

possibility that signaling in the outer retina has not been altered in

cones by this genetic deletion of the shank 1 gene. Support for this

conclusion comes from a previous study examining nyctalopin

gene deletion in mouse retina [36], the expression pattern of both

synaptic and signaling proteins (PSD-95, etc.) appeared to be

normal in the absence of nyctalopin, it is possible that one or more

may not be functional. Alternatively, a lack of function could be

due to mislocalization that is not discernible at the light-

microscope level and requires ultrastuctural analysis, which may

be the case for Shank 1 and is beyond the scope of this study.

Shank 1A expression was absent from both horizontal cells (data

not shown) and cone bipolar cells (Figs. 1, 4, 5, and 6) which is in

contrast to Shank 2 expression in dendrites of ON bipolar cells and

horizontal cell processes [39]. However, it is clear from our

findings that unlike Shank 2, Shank 1A immunoreactivity is

restricted solely to cone photoreceptor terminals and lies at or near

the plasma membrane just above the YFP-expressing cone bipolar

cell dendrites (Figs. 5 and 7). In addition, Shank 1A is likely to

form a tight association with PSD-95 via GKAP in cone terminals,

similar to previous reports of the relationship of Shank 1A and

PSD-95 in hippocampal neurons [3,8,9,21], and it is possible that

any one of the four GKAP family members (GKAP/SAPAP1-4)

could link Shank 1A to PSD-95 in cones. However, we were

unable to test this relationship due to the lack of anti-GKAP

antibodies that immunostain retinal tissue. Shank 1A unlike other

members of the Shank family (2 and 3), are restricted solely to

neurons in the mature central nervous system [8,25,26] and

characterized by interactions with CaV1.3 (a1D) L-type Ca2+

channels [4,22,23]. This raises the possibility that Shank 1A could

influence L-type Ca2+ channels expressed at mammalian cone

photoreceptor synapses [40,41,42,43,44,45].

In the inner retina, Shank 1A-immunoreactive puncta were

homogeneously distributed throughout the IPL, and were present

in amacrine and ganglion cell processes (Fig. 1G–L). Similar to

Shank 2, Shank 1A in the IPL is likely to form a postsynaptic

complex composed of an NMDA receptor (NR1), PSD-95 and

GKAP [8]. This is supported by the findings that Shank 2 is

associated with the NR2A subunit of the NMDA receptor [39],

and that PSD-95 and the NR1 subunit of the NMDA receptor, co-

localize at many postsynaptic sites in the IPL [1]. In addition,

Shank 1A was absent from bipolar cell dendrites but it is likely to

be present at post-synaptic sites in the inner retina, suggesting a

role for Shank 1A at inner retinal PSDs. The only other Shank

family member that has been studied in the retina to date is Shank

2/ProSAP1 [39,46]. The presence and localization of the Shank 2

protein with postsynaptic glutamate receptors suggest that Shank 2

has a functional role at postsynaptic sites, where it assembles with

glutamate receptors and links them to the cytoskeleton and

downstream signaling pathways.

Shank 1A expression at cone but not rod ribbon
synapses

Double labeling of Shank 1A with PNA, WGA, and glycogen

phosphorylase demonstrated that Shank 1A expression was

restricted to cone terminals (Figs. 5, 6, 7). Interestingly, the

VGLUT1 signal overlapped with Shank 1A; however, VGLUT1

identifies synaptic vesicles and is diffusely distributed throughout

95 (see arrows which indicate that Shank 1A is co-localized with PSD-
95). Arrows indicate location of Shank 1A immunoractive puncta co-
localized with PSD-95. J. Merged image of inset Shank 1A (red), PSD-95
(blue), and YFP (yellow). Primary antibodies were detected using a
secondary goat anti-rabbit Alexa 568 IgG for Shank 1A, and a goat anti-
mouse Alexa 633 IgG to PSD-95. Scale bar is 5 mm.
doi:10.1371/journal.pone.0043463.g003

Figure 4. Shank 1A immunoreactivity is not associated with the synaptic ribbon protein. High magnification zoom of a region in the OPL.
A–H: Confocal images from the mouse thy-1.2 YFP 16 line immunolabeled with Shank 1A and CtBP2 (a homologue of RIBEYE), a marker of synaptic
ribbons in mammalian retina. A. Shank 1A (red). B. CtBP2 (blue). C. A combined fluorescence image showing Shank 1A (red) and CtBP2 (blue). D. A
schematic illustrating the zoomed confocal image in H, showing that the Shank 1A puncta (red) is located distal and adjacent to the tips of the YFP
dendrite (yellow), and are surrounded by CtBP2 labeled synaptic ribbon protein structures (blue). E. YFP (yellow) F. A combined fluorescence image
showing Shank 1A (red) and YFP (yellow). G. A combined fluorescence image showing CtBP2 (blue) and YFP (yellow). H. A combined triple labeled
image showing Shank 1A (red), CtBP2 (blue), and YFP (yellow). Scale bar = 10 mm.
doi:10.1371/journal.pone.0043463.g004

Shank 1A Is Expressed at Cone Terminals
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the entire cone terminal (Fig. S2). Therefore, it is likely that we

observe putative co-localization due to the large number of

synaptic vesicles present within the cone terminal, and we observe

overlap of these two signals at the light microscopy level. A more

detailed analysis at the ultrastructural level is needed to determine

the relationship of VGLUT1 and Shank 1A expression in cone

terminals. It is possible that Shank 1A could interact with the

underlying cytoskeleton to target vesicles to the synaptic ribbon or

plasma membrane, but this is purely speculative without a detailed

ultrastructural analysis. More interesting, synaptic ribbon protein

CTBP2/RIBEYE does not co-localize with Shank 1A at the cone

terminal (Fig. 4), but instead Shank 1A is located near the base of

the ribbon (Fig. 4 C–H), likely adjacent to the plasma membrane

where it could form a complex with PSD-95 (Fig. 3). Shank 1A is

likely to be associated with the local actin-based cytoskeleton

through the N-terminal ankyrin repeats or short proline-rich

regions, based on previous reports in central neurons [8,24].

Support for a functional role of Shank 1A in the regulation of

synaptic architecture in cones comes from studies at central

synapses, where Shank 1 has been shown to regulate dendritic

spine morphology, and dysregulation of Shank 1 synthesis results

in abnormal spine development [47], and loss of the functional

architecture at synapses in Alzheimer’s disease [48]. It is also

possible that Shank 1A mediates the targeting of cytoskeletal

proteins, receptors and ion channels (e.g., Ca2+ or IP3R channels)

to the plasma membrane in cones. Support for this idea comes

from studies in hippocampal neurons, where expression of Shank

1A, alone or together with other structural signaling proteins (e.g.,

Homer), corresponded with the appearance of IP3Rs and the

accumulation of complete endoplasmic reticulum (ER) cisternae in

the spines of hippocampal neurons [7], providing evidence for

Shank 1A in regulating Ca2+ homeostasis in neurons. Since Ca2+

signaling is a hallmark of neurotransmission in photoreceptors,

Shank 1A may have similar role in Ca2+ regulation at the cone

pedicles.

Functional significance of Shank 1A at cone
photoreceptor terminals

Since the discovery of PSD proteins at photoreceptor terminals

[1], the functional role of these proteins has been an enigma. The

PSD is thought to be the prime target for postsynaptic plasticity,

and the entry of Ca2+ ions into the postsynaptic compartment

[21,49,50,51]. Ca2+ entry through Ca2+-permeable glutamate

receptors is considered to be the key signal for the induction and

regulation of plastic changes at postsynaptic sites [52,53,54].

However, Shank proteins target multiple types of proteins,

including Ca2+ channels [4,22,23]. In mammalian retina, photo-

receptors express high voltage-activated dihydropyridine (DHP)-

sensitive, L-type Ca2+ channels [CaV1.3 (a1D) or CaV1.4 (a1F)],

which regulate transmitter release (L-glutamate) from photorecep-

tors in the retina [40,42,44,45,55,56,57]. Evidence that cone and

rod photoreceptors express different subtypes of L-type Ca2+

channels comes from numerous functional and anatomical studies

in both non-mammalian and mammalian species. For example, in

mammals some cones express predominately the CaV1.3 (a1D)

pore forming subunit [42,57], whereas rods express predominately

the CaV1.4 (a1F) pore forming subunit [42,55,56]. Since, Shank

1A has been shown to interact with both PSD-95 and L-type

Cav1.3 Ca2+ channels in other preparations [4,22,23], it is possible

that Shank 1A could interact with Cav1.3 Ca2+ channels at the

cone synapse to influence transmitter release, although very

intriguing this is highly speculative and will need to be investigated

further in the future. Taken together, the discovery of Shank 1A

expression at cone photoreceptor terminals sheds new light on the

understanding of PSDs and their associated proteins that might

influence differences in photoreceptor signaling in the mammalian

retina.

Materials and Methods

Ethics Statement
All animal procedures were approved by UCLA Animal

Research Committee, the UCLA Division of Laboratory Animal

Figure 5. Shank 1A immunoreactivity is co-localized with the
lectin PNA (peanut agglutinin) in photoreceptor terminals. A–
D: Combined labeling of Shank 1A, PNA, and YFP in the mouse thy-1.2
YFP 16 line vertical retinal section. A. Shank 1A labels both the OPL and
IPL. The immunoreactive puncta in the OPL are indicative of cone
photoreceptor labeling. B. PNA conjugated rhodamine labels the inner
and outer segments of cone photoreceptors, and cone photoreceptor
terminals in the OPL. C. YFP fluorescence is present in bipolar, amacrine,
and ganglion cells. D. Combined triple fluorescence channel image of
PNA (red), Shank 1A (blue), and YFP (yellow). A box is drawn of a region
in the OPL and high magnification images are shown in E–H. E–H: High
magnification zoom of a region in the OPL from D. E. Shank 1A (blue). F.
PNA (red). G. YFP labeled cone bipolar cells and their dendrites (yellow).
H. A combined triple labeled fluorescent image showing that Shank 1A
(blue) is expressed at the same site as PNA (red) above the YFP cone
bipolar cell dendrites (yellow). OS = outer segment, IS = inner segment,
ONL = outer nuclear layer, OPL = outer plexiform layer, INL = inner
nuclear layer, IPL = inner plexiform layer, and GCL = ganglion cell layer.
Scale bars is 10 mm.
doi:10.1371/journal.pone.0043463.g005
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Medicine, and conducted according to the Guide for the Care and Use

of Laboratory Animals, published by the National Institutes of Health

(NIH Publication No. 85–23, Revised 1996).

Tissue Preparation
The retinas used for this study were obtained from 12 week old

or order mice of either sex, and included the following mouse

strains: C57BL/6; Thy-1.2 YFP mice 16 Jrs [thy-1.2 YFP-16 line

(B6.Cg-Tg(thy1-YFP)16Jrs), The Jackson Laboratory, Bar Harbor,

ME] or Shank 1 (-/-) knockout mice (129SvJae/C57BL/6). The

Shank 1 (-/-) knockout mice were generated as previously

described [29]. Briefly, chimeric mice were produced by injecting

targeted ES cell clones into C57BL/6 blastocysts, and heterozy-

gous offspring were backcrossed into C57BL/6 and 129SvJae

strains. The Shank1 (-/-) knockout animals used for experiments in

this study were in a 129SvJae/C57BL/6 hybrid genetic back-

ground.

All studies followed the guidelines prescribed by the UCLA

Animal Research Committee, the UCLA Division of Laboratory

Animal Medicine, and the U.S. National Institutes of Health/

National Eye Institute. Adult mice were housed in standard cages

at ,23uC on a 12-hr/12-hr light/dark cycle. Mice were deeply

anesthetized with either a lethal dose of Nembutal (80–90 mg/kg)

or isoflurane (30% v/v) in a covered glass container (volume: 1L).

The animal was decapitated and the eyes were removed. The eyes

were opened along the ora serrata, the cornea, lens, and vitreous

body was removed and the eyecups were immersion-fixed in 4%

paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB; pH 7.4)

for 15 to 30 minutes at room temperature. The eyes were then

cryoprotected in 25% sucrose overnight at 4uC. Prior to cutting

the tissue with a cryostat the retina was washed with 0.1 M PB and

embedded in Tissue-Tek OCT compound (Sakura Finetek Inc.,

Torrance, CA) and rapidly frozen with dry ice or liquid nitrogen.

Cryostat sections of the retina were cut at 12–15 mm, mounted on

to gelatin-coated slides, air dried, and stored at 220uC.

Retinal Dissociations
Adult YFP-16 mice 10 to 12 weeks of age were deeply

anesthetized with a lethal dose of Nembutal (80–90 mg/kg). The

animal was decapitated and the eyecup is removed. The eyes are

opened along the ora serrata, the cornea, lens, and vitreous body is

removed. Each retina was isolated from the eyecup in Ca2+-free

Mg2+-free Hanks Balanced Salt Solution (HBSS) (Invitrogen,

Carlsbad, CA). The retina was transferred to a flask containing

papain (10–15 U/ml) and DL-cysteine (1 mg/10 mls) in Ca2+-free

Mg2+-free HBSS. For photoreceptor isolation the retinas were

agitated on an orbital shaker at 37uC in a humidified CO2

incubator for 15 minutes. For bipolar cells the retinas were

agitated on an orbital shaker at 37uC in a humidified CO2

incubator for 35 minutes. The retinas were carefully washed three

times in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen,

Carlsbad, CA) containing 10% fetal bovine serum (FBS, Invitro-

gen, Carlsbad, CA) and DNase (50 U/ml, Worthington). For

photoreceptor isolation the retina was carefully triturated through

a 200 ml eppendorf pipette by gently applying suction to the

photoreceptor side of the retinal pieces and then and plated onto

concanavalin A (1 mg/ml) (Sigma, St. Louis, MO) coated

coverslips and allowed to settle for 15–30 min. For bipolar cell

isolation the retina was carefully triturated through a fire-polished

fine bore Pasteur pipette and plated onto concanavalin A (1 mg/

Figure 6. Shank 1A immunoreactivity co-localizes with the lectin WGA at cone photoreceptor terminals. A–C: A. Shank 1A B. WGA
labeling at the OPL. Arrowheads indicate WGA rod spherule labeling, and arrows indicate the location of WGA labeling of cone pedicles. C. YFP cone
bipolar cell dendrites. D–F: Shank 1A (blue) and WGA (red) co-localize at cone terminals in the OPL. G–I: YFP cone bipolar cell dendrites (yellow)
synapse with WGA (red) labeled cone terminals, which cradle Shank 1A immunoreactive puncta (blue). Scale bar is 10 mm.
doi:10.1371/journal.pone.0043463.g006
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ml) coated coverslips. Bipolar cells were allowed to settle for at

least 30 minutes. Dissections were usually performed under room

light or dim red illumination.

Antibodies
Three Shank 1 antibodies were used for this study: 1) a rabbit

polyclonal antibody raised against the COOH-terminal region of

Shank 1A (1:1000) using the product of pGex4T-1 synamon-16,

which is the COOH-terminal region of Shank 1A (a generous gift

from Dr. Yukata Hata, Tokyo Medical and Dental University,

Tokyo, Japan [24]; 2) a rabbit polyclonal antibody raised against

the following sequence SGPIYPGLFDIRSS in the COOH-

terminal region of Shank 1A (1:500–1:1000) (Catalog

No. RA19016, Neuromics, Edina, MN); and 3) a guinea pig

polyclonal Shank 1 antibody (1:20–1:25) was generated through

the use of a glutathione S-transferase (GST)-fusion of the PDZ

domain of SSTRIP/Shank 1. For this purpose the corresponding

cDNA fragment was cloned into pGEX4T-2, and purification and

isolation were performed as described previously [28]. All Shank 1

antibodies produced the same pattern of punctate immunolabeling

in the OPL and the inner plexiform layer (IPL) of the mouse

retina, and immunostaining was absent in retinas where the Shank

1 gene was deleted (Fig. 2). These antibodies have been previously

well characterized in neurons [7,24,28]. PSD-95 was identified in

photoreceptor terminals with a purified mouse monoclonal

antibody raised against the amino acid sequence 353–504 of

PSD-95 (1:500–1:1000) (Catalog No. 610495, BD Biosciences,

San Jose, CA). A rabbit polyclonal antibody was raised against

residues 659–672 from the COOH-terminal variable (V5) region

of rat protein kinase C a was used to identify rod bipolar cells

(1:200,000) (Catalog No. P4334; Sigma Chemical St. Louis, MO).

A guinea pig polyclonal antibody raised against the vesicular

glutamate transporter 1 (VGLUT1) was used to identify

glutamate-containing photoreceptor and bipolar cell terminals

(1:40,000–1:80,000) [Catalog No. AB5905; Millipore, Temecula,

CA; [58]]. A purified mouse monoclonal antibody raised against

the amino acid sequence 361–445 of the C-terminal binding

protein 2 (CtBP2) (1:2000) (Catalog No. 612044; BD Biosciences,

San Jose, CA) was used to label synaptic ribbons [32,33]. A rabbit

polyclonal antibody raised against a brain specific sequence of

glycogen phosphorylase [59] was used to label cone photorecep-

tors in the mouse retina (1:1000) [a generous gift from Dr. B.

Hamprecht, University of Tübingen, Tübingen, Germany

[37,38]]. To enhance, the YFP labeling in the dendrites of cone

bipolar cells either anti-YFP (1:500) (Catalog No. ABIN411626;

antibodies-online GmbH, Atlanta, GA) or anti-GFP (1:250)

(Catalog No. 06–896; Millipore, Temecula, CA) antibodies were

used in some experiments. See Table 1 for a complete list of

antibodies used in this study and their sources.

To check for antibody specificity, controls were prepared by

omitting one or two of the three primary antibodies for a triple

label immunostaining procedure or one of the two primary

antibodies for a double label immunostaining procedure. In these

control experiments only the immunoreactivity for the remaining

primary antibody and nonspecific background staining were

detected, as in the case of single labeling experiments, in which

the primary antibody was omitted. All antibodies were tested on

mouse retinal tissue as single labeling experiments at least three

times to confirm specificity and optimize concentration prior to

performing any double or triple labeling experiments to assure

specific labeling.

Characterization and evidence for appropriate use of antibodies

as cell and synaptic markers are as follows:

1. Anti-Shank 1/Shank 1A: These antibodies label the presyn-

aptic cone terminals in the mouse retina (Fig. 1). Western blot

analysis showed that Shank 1 (also known as synamon and

SSTRIP) antibodies labeled a series of protein bands with a

Figure 7. Shank 1 immunoreactivity is expressed solely within
cone terminals of the mouse thy-1.2 YFP 16 line retina. A–D:
Shank 1A is co-localized with glycogen phsophorylase (cone photore-
ceptor marker). A–D: Combined labeling of Shank 1A, glycogen
phosphorylase, and YFP in a vertical retinal section. A. Shank 1A labels
both the OPL and IPL. The immunoreactive puncta in the OPL are
indicative of cone photoreceptor labeling. B. YFP fluorescence is
present in bipolar, amacrine, and ganglion cells. C. Glycogen
phosphorylase (GP), a cone photoreceptor marker strongly labels the
cone terminals with faint labeling of bipolar cell bodies and their axons.
D. Combined triple label fluorescence image of Shank 1A (red), YFP
(yellow), and glycogen phosphorylase (GP) (blue), and. A box is drawn
of a region in the OPL and high magnification images are shown in E–J.
E–J: High magnification zoom of a region in the OPL from the inset
above in Fig. 7D. E. Shank 1A. F. Merge of Shank 1A (red) and YFP
(yellow), showing that Shank 1A (red) is expressed above the cone
bipolar cell dendrites (yellow). G. Glycogen phosphorylase (GP). H.
Merge of Shank 1A (red) and Glycogen phosphorylase (GP), the two
immunoreactivities (pink) indicate co-localization of Shank 1a and
Glycogenphosphorylase (GP). I. YFP labeled cone bipolar cells and their
dendrites. J. Combined image of Shank 1A (red), glycogen phosphor-
ylase (blue), and YFP cone bipolar cell dendrites (yellow). OPL = outer
plexiform layer, INL = inner nuclear layer, IPL = inner plexiform layer, and
GCL = ganglion cell layer. Scale bar is 10 mm.
doi:10.1371/journal.pone.0043463.g007
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molecular mass in the range of 240–288 kDa only in brain

tissues, and this band was not present in other tissues and

regions [24,30]. The intensity of these bands was weaker in the

heterozygote and absent in the homozygous Shank 1-/-

knockout mouse brain [29]. Shank 1A immunostaining was

absent in retinal sections obtained from Shank 1 -/- knockout

mice (Fig. 2) that were immunostained with the three

antibodies used in this study.

2. Anti-PSD-95: This antibody is a marker for photoreceptor

terminals in the retina [1,31]. In our hands, labeling was

restricted to the OPL, with very faint or no labeling in the IPL,

as described previously [31]. This antibody detects a 95-kDa

band on Western blots of rodent brain lysate that is blocked by

preincubation with the antigen [[60,61]; manufacturer’s data

sheet].

3. Anti-PKCa: PKCa is a well-established marker for rod bipolar

cells in the retina [62]. This antibody detects an 80-kDa band

on Western blots of rat brain that is blocked by preincubation

with the antigen, but not by preincubation with corresponding

peptides of other PKC isoforms (manufacturer’s data sheet,

SIGMA-Aldrich).

4. Anti-VGLUT1: VGLUT1 is a marker of glutamatergic

terminals of photoreceptor and bipolar cells in the retina

[58,63]. This antibody detects a single band on Western blots

of the hippocampus at approximately 67-kDa (manufacturer’s

data sheet).

5. Anti-CtBP2: This antibody shares sequence homology with

RIBEYE a marker of synaptic ribbons in the retina [33]. This

antibody detects a ,50-kDa band of the B-domain of RIBEYE

on Western blots [33].

Table 1. Antibodies and Lectins.

Antibody/Lectin Dilution Host Immunizing antigen Remarks Reference Source

Shank 1A 1:1000 Rabbit
(IgG)

COOH-terminal region of Shank 1A Labels cone terminals;
Results identical in
Western blots and
immunohistochemistry
to polyclonal Shank 1
(Kreienkamp) and Shank
1A (Neuromics)

Yao et al.,
1999

Dr. Yukata Hata, Tokyo
Medical and Dental
University, Tokyo, Japan

Shank 1A
C-terminus

1:800–1,000 Rabbit
(IgG)

raised against the following
sequence SGPIYGLFDIRS in the
COOH-terminal region of Shank 1A

Labels cone terminals
(see above)

- Neuromics, Edina, Mn
(Catalog # RA19016)

Shank 1 1:20–1:25 Guinea
Pig (IgG)

Generated through the use of a
glutathione S-transferase
(GST)-fusion of the PDZ
domain of SSTRIP/Shank1

Labels cone terminals
(see above)

Quitsch et al.,
2005

Dr. Hans-Juergen
Kreienkamp,
Universitätsklinikum
Hamburg-Eppendorf,
Hamburg, Germany

Protein Kinase C a 1:200,000 Rabbit
(IgG)

raised against residues
659–672 from the COOH-terminal
variable (V5) region of rat
protein kinase C a

Labels rod bipolar cells Zhang and
Yeh, 1991

Sigma Chemical Corp.,
St Louis, Mo. (Catalog
# P4334)

Vesicular Glutamate
Transporter (VGLUT1)

1:80,000 Guinea
pig (IgG)

Peptide sequence
GATHSTVQPPRPPPPVRDY from rat
VGLUT1

Labels glutamatergic
vesicles in photoreceptors
and bipolar cell terminals

Johnson et al.,
2003; Sherry
et al., 2003

Millipore, Temecula, Ca,
Catalog # AB5905

C-terminal Binding
Protein 2 (CtBP2)

1:2,000 Mouse
(IgG)

recombinant protein consisting of
amino acid sequence 361–445 at
C-terminal binding protein 2

Labels the synaptic
ribbon

Tom Dieck
et al., 2005

BD Transduction
Laboratories, San Jose,
CA Catalog # 612044

Glycogen
Phosphorylase

1:1,000 Rabbit
(IgG)

The carboxy-terminal region of
glycogen phosphorylase, containing
the following peptide sequence
were used GVEPSDLQIPPPNLPKD.

Labels cone
photoreceptors

Haverkamp
et al., 2005;
Wässle et al.,
2006.

Dr. Hamprecht,
University of Tübingen,
Tübingen, Germany

PSD-95 1:1000 Mouse
(IgG)

Recombinant rat PSD95 Labels photoreceptor
terminals. Characterized
previously in Koulen
et al., J. Neurosci.
18:10136, 1998.

Blackmon
et al., 2000

BD Biosciences, San Jose,
CA Catalog No. 610495

Yellow Flourescent
Protein (YFP)

1:500 Rabbit
(IgG)

Recombinant YFP expressed
from E. coli

Selectively labels XFP
variants

_ Antibodies-online
GmbH, Atlanta, GA,
catalog # ABIN411626

Green Flourescent
Protein (GFP)

1:250 Chicken
(IgY)

His-tagged green fluorescent
protein of Aequorea victoria

Selectively labels XFP
variants

_ Millipore, Temecula, Ca,
Catalog # 06-896

Peanut agglutinin
(PNA)

1:250–1:500 _ _ Labels cone outer and
inner segments and
cone terminals

Blanks and
Johnson, 1984

Vector Laboratories,
Burlingame, CA, Catalog
# RL-1072

Wheat Germ
Agglutinin (WGA)

1:1,500 _ _ Labels rod and cone
terminals in the outer
retina

Fariss et al.,
1990; Iwasaki
et al., 1992.

Vector Laboratories,
Burlingame, CA, Catalog
# RL-1022

doi:10.1371/journal.pone.0043463.t001
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6. Anti-glycogen phosphorylase: This antibody is a cone photo-

receptor marker in mouse retina [37,38]. This is a brain

specific antibody that detects a 97-kDa band in brain

homogenates on Western blots [59].

7. Anti-YFP: This antibody selectively immunolabels native and

denatured forms of GFP and its variants EGFP, YFP, EYFP,

and CFP. See manufacture’s data sheet.

8. Anti-GFP: This antibody immunostains cells transfected with

an expression vector encoding GFP, and the antibody also

cross reacts with YFP. See manufacturer’s data sheet.

Lectins
Rhodamine conjugate of wheat germ agglutinin (WGA)

(Catalog No. RL-1022; Vector Laboratories, Burlingame, CA)

and rhodamine conjugate of peanut agglutinin (PNA) (Catalog

No. RL-1072, Vector Laboratories, Burlingame, CA) were used to

label rod photoreceptor spherules and cone photoreceptor

pedicles, respectively (see Figs. 5, for PNA labeling and Figs. 6

and S4 for WGA labeling; [34,35,64]). Lectin conjugated

fluorophores were incubated along with secondary antibodies to

reveal specific labeling. WGA also weakly labels cell surface

membranes of retinal neurons in addition to rod spherules and

cone pedicles in the OPL (data not shown).

Immunohistochemistry
All tissue was labeled using the indirect immunofluorescence

technique [65,66]. Briefly, retinal sections were warmed for

10 minutes at 37uC, and preincubated in a 0.1 M PB mixture

containing 10% normal goat serum (NGS) (Invitrogen, Carlsbad,

CA), 1% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis,

Mo) and 0.5% Triton-X 100 (Sigma-Aldrich, St. Louis, Mo) for

1 hour. The sections were then incubated in primary antibodies,

which were all diluted in 0.1 M PB (pH 7.4) containing 3% NGS,

1% BSA and 0.5% Triton-X 100 overnight at 4uC. The primary

antibody/antigen complex was detected using secondary antibod-

ies conjugated to either Alexa 568, Alexa 633, Alexa 647 or Alexa

700 (Invitrogen, Carlsbad, CA). The retinal sections were washed

three times for 10 minutes following the antibody incubation with

0.1 M PB to remove any unbound primary or secondary antibody.

For double or triple labeling experiments retinal sections were

incubated in a mixture of primary antibodies followed by a

mixture of secondary antibodies. All slides were allowed to air dry

in the dark at room temperature and coverslipped with Prolong

Gold anti-fade (Invitrogen, Carlsbad, CA).

Zenon labeling technology was used in some experiments when

two primary antibodies with the same serotype were combined in

an experiment (e.g., rabbit anti-glycogen phosphorylase and rabbit

anti-Shank 1A). Briefly, slides were prepared as described above,

during the blocking step; the primary antibodies were prepared

using the Zenon labeling kit (Catalog No. Z-25360; Invitrogen,

Carlsbad, CA), antibodies were incubated for 5 minutes in a

mixture of primary rabbit antibody (IgG) and Alexa conjugated

rabbit Fab fragment (molar ratio: 1 primary antibody (rabbit IgG):

3 Alexa Fab fragment). The Fab fragment binds to the Fc portion

of the rabbit IgG. In each reaction tube the Alexa conjugated Fab

fragment is neutralized by the addition of excess rabbit IgG for

5 minutes (molar ratio: 1 primary antibody: 3 rabbit IgG

fragment). In these experiments, Alexa conjugated 568 or Alexa

conjugated 633 Fab fragments were used. Following the tissue

blocking step both solutions were combined and brought to a total

volume of 200–250 ml with a solution containing in 0.1 M PB

(pH 7.4) containing 3% NGS, 1% BSA and 0.5% Triton-X 100.

The retinal sections were then incubated in this mixture for

30 minutes to 1 hour at room temperature. The sections were

then washed 2 to 3 times with 0.1 M PB and 0.1% Tween-20

(Sigma-Aldrich, St. Louis. Mo). To insure proper cross linking of

Fab fragments and rabbit primary IgGs a second fixation was

performed with 4% PFA for 5 minutes. The retinal sections were

then washed 2–3 times with 0.1 M PB with 0.1% Tween-20 and

coverslipped. In addition, Zenon labeling technology was used for

some antibodies on mouse retinal tissue, where cross-reactivity

limitations of the secondary antibody interfered with detection of

the primary antibody. Briefly, monoclonal primary antibodies

were complexed with Alexa 568-labeled Fab fragments directed

against their Fc regions (Catalog No. Z-25006; Invitrogen,

Carlsbad, CA).

Confocal Microscopy
Images of retinal sections were acquired using a Zeiss Laser

Scanning Microscope 510 META (Zeiss, Thornwood, NY) with

Plan Apochromat 1006/1.40 Oil DIC objective, Plan Apochro-

mat 6361.4 NA oil objective, Plan Neofluar 4061.3 NA oil

objective, or a C-Apochromat 4061.2 NA water objective. To

identify fluorescent signals, different lasers were used for excita-

tion, for YFP the 488 nm argon laser line was used, for Alexa 568,

the 543 nm HeNe laser line was used; and for Alexa 633, Alexa

647, or Alexa 700 the 633 nm HeNe laser line was used. During

acquisition of signals from double-labeled or triple labeled

specimens, the scans were collected sequentially to prevent

spectral bleed-through. Specific band-pass filters were used to

achieve proper separation of signals (for double labeling 488/505–

530, 543/560LP; for triple labeling, 488/505–530, 543/560–610,

633/650LP). To reduce any further bleed-through of spectral

signals, linear unmixing was employed in some scans. Most images

were acquired at a resolution of 204862048, and in some cases

102461024, as either 12-bit or 8-bit signals. To increase the

signal-to-noise, images were averaged online (e.g. n = 4) and the

scan speed and photo multiplier detector gain were decreased.

Most confocal images were acquired at an approximate optical

thickness of 0.5 mm or 1.0 Airy unit. For projections typically 8–10

optical sections were acquired with an average total thickness of

5 mm and compressed for viewing. Some images have been

deconvolved to remove out of focus fluorescence using an iterative

deconvolution algorithm using Zeiss LSM 510 Meta software ver.

4.2 (Zeiss Ltd, Thornwood, NY). Digital confocal images were

saved as Zeiss. LSM files and final publication quality images were

exported in the. TIFF format as 300 dpi. All images were

processed and adjusted for brightness and contrast using Adobe

Photoshop 7.0 or CS3 Extended (Adobe Systems Inc., Mountain

View, CA).

Supporting Information

Figure S1 PSD-95 and CtBP2 immunolabeling in the Shank 1

(-/-) mouse retina. A–C: A. CtBP2 labeled the OPL and IPL with

faint labeling of cell bodies in the INL and GCL (red) B. PSD-95

labeled the OPL (red) C. Merged image of CtBP2 and PSD-95

immunolabeling. D–E: High magnification zoom of the OPL. D.

CtBP2 (red) E. PSD-95 (green) F. CtBP2 (red) and PSD-95 (green)

merged image. PSD-95 structures cluster around CtBP2 horseshoe

shaped structures in the OPL. OPL = outer plexiform layer,

INL = inner nuclear layer, IPL = inner plexiform layer, and

GCL = ganglion cell layer. Scale bar is 10 mm.

(TIF)

Figure S2 Shank 1A immunoreactivity is present within

photoreceptor VGLUT terminals. A–C: High magnification

confocal scan of a photoreceptor terminal in the OPL immuno-
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labeled with Shank 1A and VGLUT1 antibodies. A. Shank 1A. B.

VGLUT1. C. YFP dendrite. D. Shank 1A (red) is expressed within

the VGLUT1 (blue) labeled photoreceptor terminal. E. Shank 1A

puncta (red) is located distal to the YFP dendrite (yellow) in the

photoreceptor terminal. F. VGLUT1 (blue)-containing photore-

ceptor terminal located distal to the YFP dendrite (yellow) in the

OPL. G. A combined triple labeled fluorescent image showing that

Shank 1A (red) is expressed within the VGLUT1 (blue)-containing

cone terminal and above the YFP cone bipolar dendrite (yellow). A

schematic diagram (last panel in the first row) of the panel G

illustrates the expression of Shank 1A at the cone photoreceptor-

cone bipolar cell terminal. With VGLUT1 (blue) and the YFP

dendrite (yellow). OPL = outer plexiform layer. Scale bar is 10 mm.

(TIF)

Figure S3 Mouse Isolated cone photoreceptor and YFP cone

bipolar cell. All images are shown with their respective bright field

DIC image overlaid to illustrate the structures of the cells. A–D:

Isolated cone photoreceptor. A. Shank 1A labeling (green) in the

terminal of an isolated cone bipolar cell. B. PSD-95 labeling (blue)

in the terminal of an isolated cone photoreceptor. C. PNA (red)

labels the outer and inner segments (IS), the soma, and the

terminal of the cone photoreceptor. D. Merged image of

Shank1A, PSD-95, and PNA. In panel D the outer segment

(OS), inner segment (IS), terminal and soma are identified by

arrows. E–H: Isolated YFP cone bipolar cell. E. Shank 1A (no

labeling present) F. PNA (no labeling present) G. YFP (yellow) H.

Merged image showing only the YFP fluorescence. Scale bar is

5 mm.

(TIF)

Figure S4 Wheat germ agglutinin (WGA) labels the terminals of

rod and cone photoreceptors in the OPL. A. WGA conjugated

rhodamine. B. PKCa, a marker for rod bipolar cells, labels the

dendrites, the soma, and axon. C. Combined WGA (red) and PKC

(blue) image illustrating that WGA puncta sit above the dendrites

of the PKCa labeled rod bipolar cell. See higher magnification

image of the boxed region on the right in C. Arrows indicate

WGA puncta and the location of rod photoreceptor terminals. D.

Combined WGA (red) and YFP (yellow) image illustrating that

WGA also labels cone terminals in the OPL. Cone labeled WGA

puncta are larger than the rod puncta and contact YFP cone

bipolar cell dendrites which are located below the rod terminal

region. See higher magnification image of the boxed region on the

right in D. Arrowheads indicate WGA puncta and the location of

cone photoreceptor terminals. E. Combined triple label fluores-

cent image of WGA (red), PKCa (blue) and YFP (yellow). Scale

bar is 10 mm.

(TIF)
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