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Clustering analysis is one of the most important technologies for single-cell data mining. It is widely used in the division of
different gene sequences, the identification of functional genes, and the detection of new cell types. Although the traditional
unsupervised clustering method does not require label data, the distribution of the original data, the setting of
hyperparameters, and other factors all affect the effectiveness of the clustering algorithm. While in some cases the type of some
cells is known, it is hoped to achieve high accuracy if the prior information about those cells is utilized sufficiently. In this
study, we propose SCMAG (a semisupervised single-cell clustering method based on a matrix aggregation graph convolutional
neural network) that takes into full consideration the prior information for single-cell data. To evaluate the performance of the
proposed semisupervised clustering method, we test on different single-cell datasets and compare with the current
semisupervised clustering algorithm in recognizing cell types on various real scRNA-seq data; the results show that it is a more
accurate and significant model.

1. Introduction

Analysis on the gene expression matrix of the single-cell
dataset is the critical step to obtain a single-cell type [1–3].
The categories of cells are already unknown. Detecting the
type of each single-cell manually will take a lot of time and
money. Then, how to obtain the best results of classification
through applying a semisupervised learning algorithm effec-
tively and using the single-cell type as little as possible is a
research direction worthy of exploration [4, 5].

The current common semisupervised learning algo-
rithms mainly contain generative semisupervised models
[6], self-training [7], collaborative training (Co-training)
[8], semisupervised support vector machines (S3VMs) [9],
and methods based on graph theory [10, 11]. Generative
semisupervised models use the unlabeled data to make an
attribution according to the distribution generated by the
previously labeled data and modify the previous model
parameters to better adjust the decision boundary [12], then
iterate this process to optimize the model. Self-training uses
existing label data to train a classifier and then uses this clas-
sifier to classify unlabeled data to generate pseudolabels or

soft labels [13], then develops certain criteria for judging
and selects the correct label data from the original pseudola-
bel data and adds it to the classifier for training, and finally
iterates to produce the final classification results. Co-
training is a kind of self-training, in which the algorithm
assumes that each data can be classified from different per-
spectives and then uses these classifiers trained from differ-
ent perspectives to classify unlabeled samples and selects
those that are considered credible to be added to the training
set. Since these classifiers are trained from different perspec-
tives, they can complement each other and improve the
accuracy of the classification. Supervised support vector
machines use structural risk minimization for classification
[14], and semisupervised support vector machines also use
spatial distribution information for unlabeled data [15].
Among them, the selection of decision-making hyperplanes
should focus on the place where the distribution of low-
density unlabeled data and label data are consistent [16].
However, if this assumption is not true, the spatial distribu-
tion information of unlabeled data can mislead decision-
making hyperplanes and result in worse performance than
when only labeled data is used. In recent years, due to the
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rise of artificial neural networks [17–19], semisupervised
clustering algorithms have made breakthrough progress,
among which the label propagation algorithm is one kind
based on graph networks [20, 21]. In the label propagation
algorithm, the connection between the labeled data and the
unlabeled data is found in the training data through the con-
struction of the graph analysis structure. Through the edge-
to-edge connectivity, the labeled data flow through the unla-
beled data during propagation, then use edge connections
between the unlabeled data to obtain new labels and the clas-
sification results [22]. Considering that one single cell contains
a large number of genes, that is to say, the characteristic
dimension of each single cell is extremely high, a single classic
classifier cannot learn all the high-dimensional features.
Therefore, we consider using a graph convolutional neural
network method to deal with high-dimensional complex con-
nections [23–25]. The graph convolutional neural network
transfers the similarity between cells to the connection rela-
tionship between the edges in the graph and then uses the con-
volution operation to further extract the classification features
of the edges. Due to its powerful feature extraction capabilities,
this algorithm shows strong performance in semisupervised
clustering. However, the algorithm needs to adjust many
parameters in practical applications, especially how to trans-
form the expression matrix of genes on cells to a connection
graph that can effectively reflect the similar relationship
between cells is a key issue. To solve this problem, we propose

SCMAG. The framework of our proposed method is pre-
sented in Figure 1. We finally demonstrate that the perfor-
mance of this algorithm is better than other semisupervised
clustering algorithms through tests on different datasets.

2. Materials and Methods

2.1. Data Description and Data Preprocessing. To verify the
effectiveness of the method, we executed four datasets which
are summarized in Table 1. These datasets are downloaded
from the NCBI Gene Expression Omnibus (GEO) repository
(https://www.ncbi.nlm.nih.gov/geo).

The datasets are in the form of a matrix Xðg × nÞ, which
represents that there are g genes in a row and n cells in a col-
umn. Since the amount of gene expression varies greatly in
each single-cell, we use min–max normalization [30] to nor-
malize the data to (0,1):

Xstd g × nð Þ =
X g × nð Þ − Xmin axis=0ð Þ

� �
Xmax axis=0ð Þ − Xmin axis=0ð Þ

� � , ð1Þ

Xscaled g × nð Þ = Xstd g × nð Þ × max −minð Þ +min, ð2Þ

where Xmin ðaxis=0Þ represents the row vector composed of the
minimum value in each column, Xmax ðaxis=0Þ is the row
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Figure 1: The workflow of the SCMAG. The input is a gene expression matrix; the algorithm includes four steps: (1) the similarity matrix is
calculated by the cosine similarity formula; (2) the incidence matrix is judged by the threshold; (3) the consensus matrix is constructed by
the matrix aggregation method; (4) the consensus matrix is saved as a graph; (5) lastly, the graph is used as input to the GCN classifier for
training.
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vector composed of the maximum value in each column,
max represents the maximum value of the interval to be
mapped to (the default value is 1), and min represents the
minimum value of the interval to be mapped to (the default
value is 0). Xstdðg × nÞ is the standardized result and Xscaled
ðg × nÞ is the normalized result, then we use cosine similar-
ity to measure the relationship between cells [31].

H i, jð Þ = Xscaled i, :ð Þ ⊗ Xscaled j, :ð Þ
Xscaled i, :ð Þk k × Xscaled j, :ð Þk k , ð3Þ

where Xscaledði, :Þ represents the i-th row of Xscaledðg × nÞ.
⊗ represents the inner product. kXscaledði, :Þk is the modu-
lus of Xscaledði, :Þ. Hði, jÞ represents the value in the i-th row
and j-th column of the similarity matrix Hðn × nÞ.
2.2. Data Division by Threshold. We divide H into multiple
different matrices by threshold:

K = Kt = 0:1 × t, t = 1, 2, 3, 4f g, ð4Þ

S = Sn, n = 1, 2, 3, 4f g, ð5Þ

Sijn =
1, H i, jð Þ ≥ Kt ,
0, H i, jð Þ < Kt ,

(
ð6Þ

where Kt is the threshold, Sn is the incidence matrix after
threshold division, and Sijn represents the value in the i-th
row and j-th column of the Sn, where 1 means that two cells
are correlated and 0 means that two cells are not correlated.

2.3. Graph Convolutional Neural Network Construction. To
construct a graph convolutional neural network, first of all,
we should save the incidence matrix Sn as a graph GnðV , E
Þ. We use the DGL package in the Python library to solve
it [32]. Where the number of vertices VnðGÞ is equal to the

number of cells, the number of edges EnðGÞ is equal to the
number of elements in the Sn whose value is 1. Whether
the two vertices in the graph are directly connected is deter-
mined by the value in the incidence matrix; the value of 1
means direct connection and 0 means no connection. Then,
we build a graph convolutional neural network with two
hidden layers, and its structure is shown in Figure 2.

According to equation (4), we can get 4 initial graphs of
S, and we take each Sn as the input. We randomly select 10%
of the cell labels as the true labels, and the remaining 90% of
the cells have no labels. In the Chu dataset, the input dimen-
sion is 1018 ∗ 1018, the activation function is ReLU, the hid-
den layer dimension is 256, the dimension of the final output
probability matrix In is 1018 ∗ 7, and Iði, jÞ represents the
probability that the i-th cell belongs to the j-th type. Finally,
we select Imaxði, jÞ =max fIði, 1Þ, Iði, 2Þ,⋯, Iði, jÞg as the
output and choose j as the type of i-th cell. Table 2 shows
the classification accuracy under different epochs and
thresholds.

From Table 2, we can see that GCN performs well under
75 epochs. From 75 to 100 epochs, it shows the trend of con-
vergence, and the classification accuracy is close to 90%.
Then, we wonder whether there is a way to make full use
of different Sn to get better performance.

Table 2: Accuracy under different iterations and thresholds.

Kt
Iteration

25 50 75 100

0.1 50.2 84.7 89.2 88.4

0.2 50.6 82.3 89.7 89.3

0.3 51.4 87.3 89.3 89.4

0.4 62.8 86.6 88.1 87.6
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Figure 2: Graph convolutional neural network structure.

Table 1: List of datasets and their attributes.

Datasets Number of cells Number of cell types Number of genes Number of GSE References

Chu 1018 7 19097 GSE75748 Chu et al. [26]

Patel 430 6 5948 GSE57872 Patel et al. [27]

Xin 1600 8 39851 GSE81608 Xin et al. [28]

Usoskin 622 4 25334 GSE59739 Usoskin et al. [29]
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2.4. GCN Based on Matrix Aggregation. To solve this prob-
lem, we build a consensus matrix P to minimize the distance
between different thresholds [33, 34]:

P =min 〠
m

t=1
〠
n

j=1
〠
n

i=1
Pij − Sijt

� �2
, ð7Þ

where Pij is the value of the i-th row and j-th column in the
consensus matrix P. Due to the high dimension of the
matrix, directly finding the minimum distance will cost a
lot of time and memory. Since the values of the incidence
matrix Sijn are all 0 and 1, we can convert the problem of
finding the minimum distance matrix P between multiple
incidence matrices Sijn into finding the number of occur-
rences of 0 and 1 for each Sn. We use count0 and count1 to

count the total times of occurrences of 0 and 1.

Pij =
1, count1 ≥ count0,
0, count1 < count0:

(
ð8Þ

We take the minimum distance matrix P as the input of
graph convolutional neural network for training, then we
compared it with the current commonly used semisuper-
vised learning methods; under different epochs, the classifi-
cation accuracy is shown in Figure 3.

On the Chu dataset, we found that the SCMAG showed
better performance than other semisupervised methods, and
we also compared it with the GCN without matrix aggrega-
tion. The result suggests that the accuracy of classification
has increased by nearly 5%.
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Figure 3: Accuracy under different methods.

Table 3: Performance comparison in different methods.

Dataset Iteration Label propagation Label spreading Self-training GCN SCMAG

Patel

25 50.3 44.6 50.2 62.3 60.4

50 67.8 59.1 58.5 76.5 75.7

75 69.6 65.2 61.4 78.3 79.1

Xin

25 70.5 63.4 60.4 74.6 78.9

50 77.1 74.6 68.2 87.1 90.6

75 79.8 75.2 72.7 89.6 91.4

Usoskin

25 35.4 39.2 37.5 36.8 38.2

50 38.1 41.4 43.3 43.7 44.1

75 41.6 43.2 44.8 44.9 45.2
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3. Experiments and Results

To further demonstrate the performance of the proposed
method SCMAG, we apply the Patel, Xin, and Usoskin data-
sets for testing. We use label propagation, label spreading,
self-training, and GCN, four classic semisupervised learning
algorithms for training; then, we use SCMAG to compare
with the previous four methods. After 25, 50, and 75 itera-
tions, we get the final result, and classification accuracy is
shown in Table 3.

Table 3 shows the comparison results for the Patel, Xin,
and Usoskin datasets. In the Patel and Xin datasets, while
the number of iterations is 25, 50, and 75, the accuracy of
the GCN method is higher than that of the label propaga-
tion, label spreading, and self-training methods. When the
number of iterations is small, the accuracy of the SCMAG
method is lower than that of the GCN, but as the number
of iterations increases, the accuracy of the SCMAG method
gradually approaches and finally exceeds GCN. In the Uso-
skin dataset, the label spreading method has the highest
accuracy after 25 iterations, followed by SCMAG. But when
the number of iterations increases, the performance of GCN
is better than the previous three methods. It is worth noting
that SCMAG has the highest accuracy rate among the five
methods. Therefore, SCMAG is the best method for cell
identification.

4. Conclusion

Single-cell RNA sequencing technology has made a great
contribution to the identification of single-cell types, but
single-cell datasets often have a large amount of data and
high dimensionality. It usually takes a lot of time to identify
them. So whether other cell labels can be measured with only
part of single-cell data labels is a direction worthy of
research. In recent years, some semisupervised learning
methods have begun to be used for single-cell data analysis.

In this study, we have proposed SCMAG for the classifi-
cation of cells. Compared with the conventional graph con-
volutional neural network, we divide the similarity matrix by
different thresholds to get different incidence matrices, and
then, we construct a minimum distance matrix, and it can
make full use of the high-dimensional information in the
cells and better reflect the characteristics of the cells. We also
test the cell classification accuracy of several commonly used
semisupervised learning methods, label propagation, label
spreading, self-training, and normal GCN under the same
conditions. We found that SCMAG shows the best average
performance in classification accuracy compared to the
other four competing approaches.

Although SCMAG makes considerable improvement on
identifying cell types, there remains room for improvement.
Several problems are still open. For example, when the
single-cell dataset contains a large number of cells, it will
cost a lot of time to save the incidence matrix as a graph,
and the division of threshold is also a question worth study-
ing. In the future work, we will focus on these questions and
hope to achieve more promising results.

Data Availability
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available in the GEO database repository under accession
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