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The impact of education inequality on rheumatoid
arthritis risk is mediated by smoking and body mass
index: Mendelian randomization study
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Abstract

Objective. To estimate the causal relationship between educational attainment—as a proxy for socioeconomic in-

equality—and risk of RA, and quantify the roles of smoking and BMI as potential mediators.

Methods. Using the largest genome-wide association studies (GWAS), we performed a two-sample Mendelian

randomization (MR) study of genetically predicted educational attainment (instrumented using 1265 variants from

766 345 individuals) and RA (14 361 cases, 43 923 controls). We used two-step MR to quantify the proportion of

education’s effect on RA mediated by smoking exposure (as a composite index capturing duration, heaviness and

cessation, using 124 variants from 462 690 individuals) and BMI (517 variants, 681 275 individuals), and multivari-

able MR to estimate proportion mediated by both factors combined.

Results. Each S.D. increase in educational attainment (4.2 years of schooling) was protective of RA (odds ratio

0.37; 95% CI: 0.31, 0.44). Higher educational attainment was also protective for smoking exposure (b¼�0.25 S.D.;

95% CI: �0.26, �0.23) and BMI [b¼�0.27 S.D. (�1.3 kg/m2); 95% CI: �0.31, �0.24]. Smoking mediated 24%

(95% CI: 13%, 35%) and BMI 17% (95% CI: 11%, 23%) of the total effect of education on RA. Combined, the

two risk factors explained 47% (95% CI: 11%, 82%) of the total effect.

Conclusion. Higher educational attainment has a protective effect on RA risk. Interventions to reduce smoking and

excess adiposity at a population level may reduce this risk, but a large proportion of education’s effect on RA

remains unexplained. Further research into other risk factors that act as potentially modifiable mediators are required.
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Introduction

Socioeconomic deprivation is recognized to be associ-

ated with increased risk of RA [1], but observational

associations may have limited causal interpretation.

Indices of local deprivation correlate poorly with individ-

ual socioeconomic position and are prone to ecological

fallacy, while individual-level proxies such as income are

often subject to reporting bias [2]. Furthermore, the

causal direction is often difficult to establish; occupa-

tion, income and even area of residence (used to

derive local deprivation indices) can each be influenced

by work disability that can follow RA [3]. By contrast,

educational attainment is largely determined in early

life (predating, thus less likely influenced by, RA)

and less likely to change over time (unlike income or

occupation). Education is strongly correlated with

employment, income and other later life measures

of socioeconomic position, thus serves as a good

proxy [4].
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The mechanism through which higher educational at-

tainment protects against RA is not known; there have

been no studies of causal intermediates, or mediators,

to our knowledge. Education is intimately associated

with smoking [5] and adiposity (e.g. measured using

BMI) [6], but whether and to what extent these estab-

lished risk factors explain the total effect of education

on RA has not been investigated. Understanding the

population-level implications of changes to smoking be-

haviour and BMI are important for reducing the effect of

educational inequality on RA risk. Quantifying the pro-

portion of the total effect unaccounted for may addition-

ally highlight the need to study as yet undescribed

intermediate factors. Such mediators may be more

amenable to intervention, whereas efforts to improve

educational opportunities across the population require

intervention in early life and are beyond the scope of

most clinical practices.

Mendelian randomization (MR) mediation analysis can

be used to address these unmet research needs. MR is

an observational study design that uses genetic variants

as instrumental variables to estimate the causal effect of

the exposure on the outcome (a brief overview including

interpretation can be found in [7, 8]). Since variants are

randomly allocated at conception, MR is less suscep-

tible to confounding, measurement error and reverse

causation than many other observational designs. These

strengths also apply to mediation analysis; for example,

mediation analysis requires no unmeasured confounding

between any of the exposure, mediator and outcome,

which is difficult to achieve in traditional observational

approaches [9]. MR can also test reverse causation, e.g.

whether RA or smoking influence educational attain-

ment. Using two-sample MR, we aimed to investigate

the effect of educational attainment on the risk of RA

and quantify the roles of smoking and BMI as

mediators.

Methods

GWAS summary data

We obtained summary single nucleotide polymorphism

(SNP)–phenotype association data from genome-wide

association studies (GWAS) of each respective pheno-

type (summarized in Table 1). Educational attainment

(self-reported at age �30 years) was derived from the

Social Science Genetic Association Consortium GWAS

meta-analysis of years of schooling in 766 345 partici-

pants of European ancestry [10] (additional details of

each cohort are shown in Supplementary Table S1,

available at Rheumatology online). Each major educa-

tional qualification was mapped to the International

Standard Classification of Education to derive the

equivalent years-of-education. One S.D. represents

4.2 years of additional schooling. BMI data were

obtained from the Genetic Investigation of

Anthropometric Traits consortium GWAS meta-analysis

of 681 275 participants of European decent [11]. One

S.D. represents 4.8 kg/m2. Smoking was studied as

TABLE 1 Summary of each genome-wide association study

Study Study population Sample size One S.D.
No. of
SNPs

r2 F

Educational attainment [10] Lee et al. GWAS meta-
analysis

766 345 4.2 years 1265 5.9% 44.3

BMI [11] Yengo et al. GWAS meta-
analysis

681 275 4.8 kg/m2 517 5.3% 73.7

Lifetime smoking exposurea [12] UK Biobank 462 690 For example, smoking 20
cigarettes a day for
15 years and stopping
17 years ago

124 0.5% 41.4

RAb [13] Okada et al. GWAS meta-
analysis

58 284 n/a 46 n/a n/a

Educational attainment [14] Okbay et al. GWAS 293 723 3.7 years 73 0.9% 38.3
Alcoholic drinks per week [15] Liu et al. GWAS 335 394 9 additional drinks per

week
35 0.6% 96.5

Number of days/week of
vigorous physical activity [16]

UK Biobank 440 512 1.95 days 11 0.4% 150

Dietary protein Meddens et al. GWAS [17] 268 922 102 kcalc 7 0.2% 58.2

Dietary fat 268 922 270 kcalc 5 0.2% 95.6
Dietary carbohydrate 268 922 334 kcalc 12 0.2% 41.2

aDerived from smoking status (current, former, never), age at initiation in years, age at cessation in years and number of
cigarettes smoked per day. bUse in reverse MR of RA’s effect on education. cOne S.D. increase in the context of mean

total energy intake of 2064 kcal. Dietary components as percentage of total energy intake measured using the food
frequency questionnaire. GWAS: genome-wide association study; n/a: effect allele frequency not available for RA to allow

estimation of r2 and F-statistic; SNP: single nucleotide polymorphism.
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‘lifetime smoking exposure’ in a GWAS of 462 690 par-

ticipants of European ancestry in the UK Biobank. The

mean value of lifetime smoking score was 0.359 (S.D.

0.694). Rather than using binary smoking status, which

may present methodological challenges [18], the smok-

ing index takes into account smoking status (current/for-

mer/never), and exposure (duration/heaviness/cessation)

among ever smokers, i.e. (1 – 0.5smoking-duration/half-life)

(0.5time-since-cessation/half-life)ln(cigarettes per dayþ1). This

GWAS has been described in detail [12]. The index

ranged from 0.007 (1 cigarette per day for 1 year) to

4.169 (currently smoking 140 a day and starting from

age 11); one S.D. increase in the smoking index is

equivalent to, for example, an individual smoking 20 cig-

arettes a day for 15 years and stopping 17 years ago or

an individual smoking 60 cigarettes a day for 13 years

and stopping 22 years ago [12].

RA genetic associations were obtained from a GWAS

meta-analysis of 14 361 RA cases and 43 923 controls

[13]. All cases fulfilled the 1987 American College of

Rheumatology criteria or were diagnosed with RA by a

rheumatologist; 91% were seropositive for anti-CCP anti-

bodies or rheumatoid factor. Additional details of each co-

hort reported by Okada et al. [13] are shown in

Supplementary Table S2, available at Rheumatology online.

Instrumental variable selection and data
harmonization

Genetic instruments for educational attainment were

selected as the 1265 independent genome-wide signifi-

cant (P<5� 10�8) SNPs that were not shared with var-

iants instrumenting BMI or smoking. Instruments for BMI

and smoking exposure were identified as the lead SNPs

reaching genome-wide significance after removing SNPs

in linkage disequilibrium (r2< 0.001 or distance >10

000 kb) or shared with instruments for education. For all

analyses, alleles were aligned to correspond to an in-

crease in educational attainment. All effect alleles were

checked to be on the forward strand. Where SNPs were

absent in one of the exposure-outcome sets, SNPs in

linkage disequilibrium (r2> 0.9) were used as proxies.

We calculated F-statistics for each exposure in univari-

able MR, and conditional F-statistics in MVMR, with F-

statistics >10 considered suggestive of adequate instru-

ment strength [19]. The F-statistic is derived from the

variance explained (R2) by SNPs for each exposure by

(R2/K)/[(1 – R2)(N – K – 1)], where K is the number of SNPs

and N the sample size.

Effects of education on RA, smoking exposure and
BMI

A graphical summary of analyses is given in Fig. 1. First,

we performed univariable two-sample MR to estimate

the effect of educational attainment on RA (c in

Fig. 1A)—referred to as the total effect—and effect of

education on each mediator (a in Fig. 1B). We then used

multivariable MR (MVMR) to estimate the effect of each

mediator on RA (b in Fig. 1B), adjusting for education.

Decomposing mediated effects

The total effect of an exposure on an outcome can be

decomposed into indirect (i.e. effect mediated through a

causal intermediate) and direct (i.e. not through the me-

diator) effects [9]. The total effect of educational attain-

ment on RA risk was decomposed into (i) the direct

effect of education on RA after adjusting for each medi-

ator (c0 in Fig. 1C), and (ii) the indirect effect of educa-

tion through each mediator individually. The indirect

effect of each mediator was derived using the product

method; for example, the indirect effect of education on

RA, through smoking, was obtained by multiplying the

effect of education on smoking and the effect of smok-

ing on RA (a�b in Fig. 1B).

To derive the indirect effect by smoking and BMI

combined, the difference method was used (c – c0),

where the direct effect, c0, was the effect of education

adjusting for both smoking and BMI in an MVMR model.

For all mediators individually and combined, we quan-

tified the proportion mediated by dividing indirect effect

by the total effect. Confidence intervals were estimated

using the delta method.

Univariable and multivariable MR methods

We used the inverse-variance weighted method for the

main univariable analysis, which combines results

from each SNP using multiplicative random-effect meta-

analysis [20]. Heterogeneity—a potential indicator of hori-

zontal pleiotropy (and violation of MR assumptions)—was

assessed using Cochran’s Q-statistic. To test for potential

bias from horizontal pleiotropy, we performed a series of

sensitivity analyses using the weighted median [21] and

mode-based estimators [22], MR-Egger regression [23]

and MR-PRESSO (Pleiotropy RESidual Sum and Outlier)

[24]. Each method relaxes certain MR assumptions such

that a consistent effect across the multiple methods

should be more robust against bias from horizontal plei-

otropy (summarized in Table 2).

For MVMR, we used the inverse-variance weighted

method, with MR-Egger as sensitivity analysis [25]. The

pairwise covariance between SNP associations was

assumed to be zero in the primary analysis. We tested

this assumption using a range of covariance values.

Conditional instrument strength was quantified using the

modified F-statistic and heterogeneity was assessed

using modified Cochran’s Q-statistic [25].

Sensitivity analyses

First, we tested for potential mis-specification of the ex-

posure (i.e. whether SNPs influence the exposure first

and then the outcome) using Steiger filtering [26]. We

also tested potential for reverse causation, that is, using

genetic instruments for RA, smoking exposure and BMI

to examine their effects on educational attainment; gen-

etic instruments were chosen using the same approach

as above. Second, we tested potential bias from over-

lapping samples [27] (GWAS meta-analyses for educa-

tion, smoking and BMI all contain UK Biobank

The impact of education inequality on RA risk is mediated by smoking and BMI
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participants) using an earlier GWAS of educational at-

tainment without UK Biobank participants [14]. Third, to

address weak conditional instrument strength in MVMR

analyses including smoking we: (i) restricted analyses to

the 10% most strongly associated SNPs for each ex-

posure where conditional instrument strength was weak

(this reduces bias from weak instruments but also

reduces precision) and (ii) used the weak instrument ro-

bust estimator [28].

Although smoking and BMI are the leading modifiable

risk factors for RA, prior studies have also proposed

several related lifestyle factors as risk factors [29]. We

additionally considered physical activity (number of days

per week of vigorous physical activity lasting >10 min)

[16], alcohol consumption (drinks per week) [15], and

dietary composition (self-reported relative fat, protein,

carbohydrate intake) [17] as risk factors for RA. All

analyses were performed in R using the TwoSampleMR

and MVMR packages [25, 30].

Results

Genetic instruments for educational attainment

explained 5.9% of its variance, with an univariable F-

statistic of 38. The variance explained by, and F-statistic

for, SNPs instrumenting smoking exposure were 0.5%

and 37, and BMI 5.3% and 74.

Effects of education on RA, BMI and smoking
behaviour

For each S.D. (4.2 years) increase in educational attain-

ment, the relative odds of RA were 63% lower [odds

ratio (OR) 0.37; 95% CI: 0.31, 0.44]. Higher educational

FIG. 1 Diagrams illustrating associations examined in this study

(A) The total effect of educational attainment (EA) on RA, c, was derived using univariable MR (i.e. genetically pre-

dicted EA as exposure and RA as outcome). (B) The total effect was decomposed into: (i) indirect effect using a two-

step approach (where a is the total effect of EA on smoking, and b is the effect of smoking on RA adjusting for EA)

and the product method (a�b) and (ii) direct effect (c0 ¼ c – a�b). The same process applied to mediation analysis

of BMI. (C) For mediation by both smoking and BMI combined (arrows represent their bidirectional causal relation-

ship), the indirect effect was derived using the difference method (c – c0). Proportion mediated was the indirect effect

divided by the total effect.
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attainment was associated with lower smoking exposure

(b¼�0.25 S.D.; 95% CI: �0.26, �0.23) and lower BMI

(b¼�0.27 S.D.; 95% CI: �0.31, �0.24; i.e. one S.D. in-

crease in education was associated with 1.3 kg/m2 lower

BMI).

Effect of BMI and smoking behaviour on RA

In univariable MR, each S.D. increase in smoking expos-

ure (OR 2.13; 95% CI: 1.25, 3.62) or in BMI (OR 1.14;

95% CI: 0.95, 1.36) led to a higher relative odds of RA

(Fig. 2).

There were bidirectional positive effects between

smoking and BMI: smoking exposure increased BMI

(b¼0.59 S.D.; 95% CI: 0.34, 0.84), while BMI increased

smoking exposure (b¼0.11 S.D.; 95% CI: 0.10, 0.13)

Mediation by smoking and BMI behaviour

In the MVMR analysis of education–smoking–RA, the

conditional F-statistics for educational attainment and

smoking exposure were 25 and 8.4, respectively. The

direct effect of educational attainment on RA was OR

0.50 (95% CI: 0.42, 0.59) after accounting for smoking

(Fig. 2). The direct effect of smoking on RA was OR

2.61 (95% CI: 1.77, 3.84) after accounting for education.

The proportion mediated by smoking was 24% (95% CI:

13%, 35%) (Fig. 3).

Conditional F-statistics for educational attainment and

BMI were 29 and 20, respectively, in the MVMR analysis

of education–BMI–RA. The direct effect of educational

attainment on RA was OR 0.54 (95% CI: 0.46, 0.63) after

accounting for BMI (Fig. 2). After accounting for educa-

tion, the direct effect of BMI on RA was OR 1.85 (95%

CI: 1.53, 2.24). The proportion mediated by BMI was

17% (95% CI: 11%, 23%) (Fig. 3).

When both smoking and BMI were entered into the

MVMR model, conditional instrument strength was further

reduced (education 18, smoking 5.8, BMI 10). Effect sizes

for education (OR 0.59; 95% CI: 0.50, 0.70), BMI (OR

1.60; 95% CI: 1.30, 1.98) and smoking exposure (OR

1.62; 95% CI: 1.03, 2.54) were attenuated (Fig. 2).

Combined, BMI and smoking mediated 47% (95% CI:

11%, 82%) of the effect of education on RA (Fig. 3).

Sensitivity analyses

MR sensitivity methods had reduced precision, but gen-

erally did not change the causal direction of estimates

(Supplementary Tables S3 and S4, Figs S1–S5, available

at Rheumatology online). There was significant hetero-

geneity for all MR analyses (Supplementary Table S5),

but no evidence of directional pleiotropy (Supplementary

Table S6). There was no evidence of reverse causation

in reverse MR (Supplementary Table S7), except the

recognized bidirectional relationship between BMI and

smoking reported above.

Using a smaller education GWAS without UK

Biobank, the total effect of education (where one S.D.

was 3.6 years of schooling) on RA was similar to the pri-

mary analysis (Supplementary Fig. S6, available at

Rheumatology online). The proportions mediated by

smoking (28%; 95% CI: 10%, 46%) and BMI (29%;

95% CI: 8%, 49%) were similar but lacked precision;

the estimate for BMI and smoking combined was 45%

with CI out of bounds (Supplementary Fig. S7).

Restricting to the 10% most strongly associated SNPs

for each exposure in the MVMR models of education–

smoking (conditional F¼ 48 and 14, respectively) and

education–smoking–BMI (F¼ 17; 95% CI: 12, 20) led to

point estimates within CIs of the primary analysis, but

TABLE 2 Summary of each Mendelian randomization method

MR method Strengths and weaknesses

Inverse-variance
weighted

A weighted mean of individual variant effects on the outcome, which provides an estimate equivalent
to MR using individual-level data, assuming the genetic variants are uncorrelated. The inverse-vari-
ance weighted method has optimal statistical power, but assumes all variants are valid instruments.
Estimates are biased if there is directional pleiotropy (when the average value of the pleiotropy dis-
tribution is non-zero) [20].

MR-Egger Quantifies directional pleiotropy and accounts for it to provide an unbiased estimate even if all SNPs
have pleiotropic effects. It requires the size of pleiotropic effects to be independent of the size of
the variants’ effects on the exposure (the InSIDE assumption), which is not verifiable. It is sensitive
to outliers and less efficient (results in wide CIs) [23].

Weighted median Robust to outliers; it provides unbiased estimate when up to half of the SNPs violate the instrumental
variable assumptions, but may be less efficient [21].

Mode-based estimation Robust to outliers; it assumes SNPs in the largest cluster are valid instruments and provide an un-
biased estimate even if most other SNPs are invalid [22].

MR-PRESSO Identifies and removes potentially pleiotropic outliers, but may have high false-positive rate when
there are several invalid IVs [24].

Multivariable MR Extension of univariable MR that estimates the effect of two or more exposures on an outcome, where
a secondary exposure can act as a confounder, a mediator, a pleiotropic pathway or a collider [25].
It relies on knowledge of the covariance between the effect of the SNP on each exposure, which is
not always available in conventional GWAS results.

IV: instrumental variable; MR: Mendelian randomization; MR-PRESSO: Mendelian Randomization Pleiotropy RESidual Sum
and Outlier; SNP: single nucleotide polymorphism.
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with reduced precision (Supplementary Fig. S6). Effect

estimates were again similar using the weak instrument

robust estimator irrespective of covariance

(Supplementary Fig. S6). There was no evidence of a

total effect of alcohol consumption, physical activity, or

dietary composition on RA risk in univariable MR

(Supplementary Table S8); therefore mediation was not

tested. All SNPs and proxies used are shown in

Supplementary Table S9.

Discussion

Genetically predicted higher educational attainment led

to lower relative odds of RA (63% lower for every

additional 4.2 years of education). One quarter of this ef-

fect was mediated through smoking, and 17% through

BMI. In this study, these two leading risk factors for RA

accounted for 47% of the total effect of education, sug-

gesting that over half of the effect of education on RA

remains unexplained.

This is the first application of MR mediation analysis

to study mediators of education and RA risk. The pro-

tective effect of higher educational attainment is congru-

ent with findings from traditional observational designs.

Each of the following studies also used education as a

proxy of wider socioeconomic inequality. Bengtsson

et al. showed that Swedish patients with university (vs

no university) degree had 29% lower relative risk (in-

verse of the reported relative risk 1.4) of RA [31]. The

FIG. 3 Estimate of the effect of education on RA explained by each mediator and by both combined

PM: proportion mediated.

FIG. 2 Effect of one S.D. increase in each exposure on odds of RA in uni- and multivariable models

Univariable MR models provide effect estimates for each exposure on the outcome, e.g. each S.D. increase in smok-

ing exposure increases odds of RA by over 2-fold. Multivariable models present estimates adjusting for other factors

in the model, e.g. one S.D. increase in educational attainment reduces odds of RA by 50% when accounting for smok-

ing; this effect is attenuated to 41% when adjusting for both smoking and BMI. OR: odds ratio.
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effect size was largely unchanged (RR 1.5) when add-

itionally adjusting for smoking status. This small change

from unadjusted (total) to adjusted (direct) effects may

be explained by the imprecision with which smoking ex-

posure was measured. Pedersen et al. showed those

with ‘long term advanced studies’ (formal education

>4 years) had lower odds of RA compared with those

with no formal education (OR 0.30; 95% CI: 0.18, 0.51);

the effect size was reduced (OR 0.43; 95% CI: 0.24, 0.76)

after adjusting for smoking, BMI and physical activity [32].

These results are difficult to interpret since years of

schooling was also included in models. Both studies

were case–control in design with low response rates that

differed between the groups—a key source of bias.

Neither formally considered a mediation approach to

quantify the relative contribution of different risk factors.

Higher educational attainment has been shown to be

protective for a range of health outcomes, the effect

sizes of which attenuate with adjustment for (i.e. sug-

gestive of mediation by) smoking and BMI [33]. For ex-

ample, smoking mediated 28% and BMI mediated 18%

of education’s effect on myocardial infarction [34]. This

suggests that public health interventions to reduce

smoking and excess adiposity would have widespread

benefits on many prevalent comorbidities in RA that

drive mortality and additional morbidity.

Our results also suggest that education (and potential-

ly the socioeconomic deprivation that it proxies) may be

associated with other important environmental risk fac-

tors that increase RA risk. In our analysis, over half of

the effect of education remains unaccounted for.

Alcohol consumption, physical activity and dietary com-

position did not appear to have meaningful causal

effects on RA risk in our sensitivity analyses. These null

results contrast with a host of observational studies that

show associations with RA risk, which may reflect un-

measured confounding, measurement error or other

biases [35–37]. For example, the allegedly protective

properties of alcohol could be due to reverse causation

[38]. Null results may also be explained by the difficulty

in accurately measuring these exposures in GWASs.

Although educational attainment is commonly used as

a proxy for socioeconomic position, it is important to

note that they are not interchangeable. Socioeconomic

position encapsulates many more factors than educa-

tion; equally, education may affect health outcomes

through mechanisms independent of socioeconomic

position. Other measures of socioeconomic position

may produce different results from those found here.

Genetic instruments for education often do not have a

clear biological basis and may instead causally influence

related traits closely correlated with education (e.g.

other proxies for socioeconomic position).

A key strength of this study is the ability of MR to pro-

vide causal estimates. In the context of mediation, MR

provides further robustness to non-differential measure-

ment error in the mediator [39]. We used lifetime smok-

ing exposure, which captures dimensions of smoking

behaviour overlooked when studying smoking status

[12]. An additional strength of MVMR is that it accom-

modates the joint effects of multiple mediators even in

the presence of bidirectional relationships [9], which was

shown for smoking and BMI. There were also limitations.

A main source of potential bias in MR studies is horizon-

tal pleiotropy; we examined this using myriad MR meth-

ods that provided consistent results to the main

analysis. We were not able to examine potential for

exposure-mediator interaction; estimates would be

biased if smoking behaviour interacts with causal effect

of education on RA risk. The current analysis assumes a

linear effect of education on each outcome; it is never-

theless a valid test of the causal null hypothesis even

should this assumption not hold [40]. Prior observational

studies of deprivation and education showed a particu-

larly strong association with seropositive RA [32]; we

were not able to examine serostatus in the current

study. Inferences drawn from our results apply to RA

onset, and may not be extrapolatable to RA prognosis

(indeed, MR studies of disease progression may be sub-

ject to additional biases [41]). Instrumental variable

methods (including MR) estimate the ‘local average

treatment effects’ not population average effects; here it

is the average effect of education for individuals whose

educational attainment was increased by the SNPs (i.e.

a subgroup). This further requires the direction of SNP

effects on education, and indeed the SNP effects on

each mediator, to be in the same direction for all individ-

uals (‘monotonicity’). Neither the subgroup proportion

nor monotonicity can be empirically verified. MR is less

susceptible to confounding than other observational

designs (as genetic variants are predetermined) but not

immune; one potential confounder which can occur at a

sample level is population stratification (i.e. correlation

arising from sub-populations with different distributions

of both genetic variants and the exposure/outcome) [42,

43]. This would be interesting to investigate in future

studies using within-family data. GWA studies providing

summary statistics for this analysis were limited to those

of European descent and each attempted to adjust for

population structure, e.g. using principal components.

Lastly, MR may not capture time-varying nature of the

exposures; a snapshot BMI measurement may not fully

represent BMI over the life course [44]. This is particu-

larly relevant to genetic instruments for physical activity,

diet and alcohol intake, which we considered in sensitiv-

ity analyses.

In conclusion, we showed a protective effect of higher

educational attainment on RA risk; interventions to re-

duce smoking and excess adiposity at a population level

may reduce much of this risk. This is particularly rele-

vant for those with high risk of developing RA (e.g. those

with strong family history). However, the majority of edu-

cation’s effect on RA remain unexplained. Broader

efforts to improve socioeconomic inequalities and ac-

cess to education are required, as well as further re-

search into other environmental risk factors that act as

potentially modifiable mediators of socioeconomic

deprivation.
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Larsson SC. Health-related effects of education level: a

Mendelian randomization study. medRxiv, doi: 10.1101/

2020.02.01.20020008, 13 September 2020, preprint: not

peer reviewed.

34 Carter AR, Gill D, Davies NM et al. Understanding the

consequences of education inequality on cardiovascular

disease: Mendelian randomisation study. BMJ 2019;365:

l1855.

35 Liu X, Tedeschi SK, Lu B et al. Long-term physical

activity and subsequent risk for rheumatoid arthritis

among women: a prospective cohort study. Arthritis

Rheumatol 2019;71:1460–71.

36 Giuseppe DD, Alfredsson L, Bottai M, Askling J, Wolk A.

Long term alcohol intake and risk of rheumatoid arthritis

in women: a population based cohort study. BMJ 2012;

345:e4230.

37 Cutolo M, Nikiphorou E. Don’t neglect nutrition in

rheumatoid arthritis! RMD Open 2018;4:e000591.

38 Baker JF, England BR, Mikuls TR et al. Changes in

alcohol use and associations with disease activity, health

status, and mortality in rheumatoid arthritis. Arthritis

Care Res 2020;72:301–8.

39 Carter AR, Sanderson E, Hammerton G et al. Mendelian

randomisation for mediation analysis: current methods

and challenges for implementation. Eur J Epidemiol

2021;36:465–78.

40 Burgess S, Davies NM, Thompson SG; EPIC-InterAct

Consortium. Instrumental variable analysis with a

nonlinear exposure-outcome relationship. Epidemiology

2014;25:877–85.

41 Paternoster L, Tilling K, Smith DG. Genetic epidemiology

and Mendelian randomization for informing disease

therapeutics: conceptual and methodological challenges.

PLoS Genet 2017;13:e1006944.

42 Sanderson E, Richardson TG, Hemani G, Davey Smith

G. The use of negative control outcomes in Mendelian

randomization to detect potential population

stratification. Int J Epidemiol 2021 (in press), doi:

10.1093/ije/dyaa288.

43 Brumpton B, Sanderson E, Heilbron K et al.; 23andMe

Research Team. Avoiding dynastic, assortative mating,

and population stratification biases in Mendelian

randomization through within-family analyses. Nat

Commun 2020;11:3519.

44 Labrecque JA, Swanson SA. Commentary:

Mendelian randomization with multiple exposures: the

importance of thinking about time. Int J Epidemiol 2020;

49:1158–62.

The impact of education inequality on RA risk is mediated by smoking and BMI

https://academic.oup.com/rheumatology 2175


	tblfn1
	tblfn2
	tblfn3
	tblfn4

