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SARS-CoV-2-specific CD4 and CD8T cells have been shown to be present in individuals
with acute, mild, and asymptomatic Coronavirus disease (COVID-19). Toward the
development of diagnostic and therapeutic tools to fight COVID-19, it is important to
predict and characterize T cell epitopes expressed by SARS-CoV-2. Here, we use
RosettaMHC, a comparative modeling approach which leverages existing structures
of peptide/MHC complexes available in the Protein Data Bank, to derive accurate
3D models for putative SARS-CoV-2 CD8 epitopes. We outline an application of our
method to model 8–10 residue epitopic peptides predicted to bind to the common allele
HLA-A∗02:01, and we make our models publicly available through an online database
(https://rosettamhc.chemistry.ucsc.edu). We further compare electrostatic surfaces with
models of homologous peptide/HLA-A∗02:01 complexes from human common cold
coronavirus strains to identify epitopes which may be recognized by a shared pool of
cross-reactive TCRs. As more detailed studies on antigen-specific T cell recognition
become available, RosettaMHC models can be used to understand the link between
peptide/HLA complex structure and surface chemistry with immunogenicity, in the
context of SARS-CoV-2 infection.

Keywords: epitope-based vaccine, T cell epitopes, rosetta, SARS-CoV-2, MHC-I, epitope cross-reactivity

INTRODUCTION

An ongoing pandemic caused by the novel SARS coronavirus (SARS-CoV-2) has become the focus
of extensive efforts to develop vaccines and antiviral therapies (1). Immunemodulatory interferons,
which promote a widespread antiviral reaction in infected cells, and inhibition of pro-inflammatory
cytokine function through anti-IL-6/IL-6R antibodies, have been proposed as possible COVID-
19 therapies (2, 3). However, stimulating a targeted T cell response against specific viral antigens
is hampered by a lack of detailed knowledge of the immunodominant epitopes displayed by
Human Leukocyte Antigen (HLA) alleles across individuals. The molecules of the class I major
histocompatibility complex (MHC-I, or HLA in humans) display on the cell surface a diverse
pool of 8–15 amino acid peptides derived from the endogenous processing of proteins expressed
inside the cell (4). This MHC-I restriction of peptide antigens provides jawed vertebrates with an
essential mechanism for adaptive immunity: surveillance of the displayed peptide/MHC-I (pMHC-
I) molecules by CD8 cytotoxic T-lymphocytes allows detection of aberrant protein expression
patterns, which signify viral infection and can trigger an adaptive immune response (5). A recent
study has shown important changes in T cell compartments during the acute phase of SARS-CoV-2
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infection (6), suggesting that a more detailed analysis of antigen-
specific T cells would provide new avenues for understanding the
expansion and contraction of TCR repertoires in different clinical
settings. Given the reduction in breadth and functionality of the
naïve T cell repertoire during aging (7), identifying a minimal set
of viral antigens that can elicit a protective response will enable
the design of diagnostic tools to monitor critical gaps in the T
cell repertoire of high-risk cohorts, which can then be addressed
using peptide or epitope string DNA vaccines (8).

Human MHC-I molecules are highly polymorphic, with
thousands of known alleles in the classical HLA-A, -B, and -
C loci. Specific amino acid polymorphisms along the peptide-
binding groove (termed A-F pockets) define a repertoire of 104–
106 peptide antigens that can be recognized by each HLA allotype
(9, 10). Several machine-learning methods have been developed
to predict the likelihood that a target peptide will bind to a
given allele [reviewed in (11)]. Generally these methods make
use of available data sets in the Immune Epitope Database (12)
to train artificial neural networks that predict peptide processing,
binding and display, and their performance varies depending on
peptide length and HLA allele representation in the database.
Structure-based approaches have also been proposed to model
the bound peptide conformation de novo [reviewed in (13)].
These approaches utilize various algorithms to optimize the
backbone and side chain degrees of freedom of the peptide/MHC
structure according to a scoring function, derived from physical
principles (14–16), that can be further enhanced using modified
scoring terms (17) or mean field theory (18). While these
methods do not rely on large training data sets, their performance
is affected by bottlenecks in sampling of different backbone
conformations, and any possible structural adaptations of the
HLA peptide-binding groove.

Predicting the bound peptide conformation whose N- and
C- termini are anchored within a fixed-length groove is a
tractable modeling problem that can be addressed using standard
comparative modeling approaches (19). For HLA-A∗02:01, the
most common HLA allele (Supplementary Figure 1) among
disease-relevant population cohorts (20), there is a large number
of high-resolution X-ray structures available in the PDB (21),
suggesting that such methods can be applied to produce models
of candidate epitopes identified in the proteome of a pathogen of
interest. Here, we apply RosettaMHC, a comparative modeling
and side chain optimization approach to model all HLA-A∗02:01
epitopes predicted directly from the ∼30 kbp SARS-CoV-2
genome, and make our models publicly available through an
online database. Previous studies have shown evidence for T
cell cross-reactivity (22, 23) for SARS-CoV-2 viral peptides in
healthy individuals (24, 25). Analysis of electrostatic surfaces
of our models, relative to models of homologous peptide/HLA-
A∗02:01 complexes derived from four strains of human common
cold coronavirus (229E, HKU1, NL63, OC43) allows us to
determine epitopes that can elicit SARS-CoV-2 specific and
cross-reactive T cell responses. As more data from high-
throughput tetramer staining (26–28) and T cell functional
screens (29) become available, the models provided here can
serve as a toehold for understanding the structural basis of
immunogenicity, with actionable value for the development of

tetramer-based diagnostics and peptide vaccines to monitor and
combat the disease.

METHODS

Identification of SARS-CoV-2 Peptide
Epitopes
The SARS-CoV-2 protein sequences (https://www.ncbi.nlm.nih.
gov/nuccore/NC_045512.2) were obtained from NCBI and used
to generate all possible peptides of lengths 8, 9, and 10 (9,631
8, 9,621 9, and 9,611 10 mer peptides). We used NetMHCpan-
4.0 (30) to derive binding scores to HLA-A∗02:01, and retained
only peptides classified as strong or weak binders [selected using
the default percentile (%) rank cut-off values]. The binding
classification was performed using eluted ligand likelihood
predictions. While in this study we use NetMHCpan-4.0
predictions to select candidate epitopes for structure modeling,
our workflow is fully compatible with any alternative epitope
prediction method.

Selection of PDB Templates
To model SARS-CoV-2/HLA-A∗02:01 antigens, we identified
3D structures from the PDB that can be used as templates for
comparative modeling. First, we selected all HLA-A02 X-ray
structures that are below 3.5 Å resolution and retained only
those that have 100% identity to the HLA-A∗02:01 heavy chain
sequence (residues 1–180). We obtained 236 template structures
bound to epitopes of lengths from 8 to 15 residues (of which
1 is an 8 mer, 165 are 9 mers, and 61 are 10 mers). For each
SARS-CoV-2 target peptide of (i) length 8, we selected a set
of candidate templates of lengths 8–9 by matching the target
peptide anchor positions (P1 and P8 in the 8 mer, P2, and P9
in the 9 mer templates), and (ii) lengths 9 and 10, we selected
candidate templates of the same peptide length, by matching
the target peptide anchor positions (P2 and P9/P10) to each
peptide in the template structures. Then, we used the BLOSUM62
(31) substitution matrix to score all remaining positions in the
pairwise alignment of the target/template peptide sequences, and
the structure with the top score was selected as a template for
modeling. For target peptides where we found no templates
which matched both peptide anchors, we scored all positions
in the pairwise alignment and selected the top scoring template
for modeling.

RosettaMHC Modeling Framework and
Database
A detailed description and commands to execute our workflow is
available in Supplementary Methods. RosettaMHC (manuscript
in preparation) is a comparative modeling protocol developed
using PyRosetta (32) to model pMHC-I complexes. The program
accepts as input a list of peptide sequences, an HLA allele
definition and a template PDB file (selected as described in
the previous step). To minimize “noise” in the simulation from
regions of the MHC-I structure that do not contribute to peptide
binding, only the α1 and α2 domains are considered in all
steps. For each peptide, a full alignment between the target and
template peptide/MHC sequences is performed using Clustal
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Omega (33). The alignment is used as input to Rosetta’s threading
protocol. From the threaded model, all residues in the MHC-
I groove that are within a heavy-atom distance of 3.5 Å from
the peptide are subjected to 10 independent all-atom refinement
simulations using the FastRelax method (34) and a custom
movemap file. Binding energies (dG_separated score terms) are
extracted from the refined structures using the interface analyzer
protocol. The top three models are selected based on binding
energies, and used to compute an average energy for each peptide
in the input list. RosettaMHC models of SARS-CoV-2/HLA-
A∗02:01 epitopes are made available through an online database
(see Data Availability). The website that hosts our database was
constructed using the Django web framework.

Electrostatic Classification of SARS-CoV-2
Peptide/HLA-A∗02:01 Complexes
To perform a structure-based classification of SARS-CoV-
2 peptide/HLA-A∗02:01 complexes according to their TCR
interaction features and compare their surfaces to homologous
peptides from common cold coronavirus strains, we (i) aligned
respective protein sequences (specifically, orf1ab, membrane,
spike, envelope, and nucleocapsid proteins) from all strains using
Clustal Omega, (ii) extracted 395 (out of 439) epitopes of length
9 from common cold coronavirus strains based on sequence
homology with SARS-CoV-2 binders predicted by NetMHCpan-
4.0 using default %rank cut-off values (44/439 SARS-CoV-2
epitope sequences are from proteins not considered), (iii) filtered
out 141 epitopes containing insertions and deletions in the
sequence alignment and those that do not have homologous
sequences across all strains of common cold coronaviruses,
(iv) modeled structures of the remaining 254 peptide/HLA-
A∗02:01 complexes from each strain using RosettaMHC,
and (v) performed a comparison of surface electrostatic
potentials between each SARS-CoV-2 pMHC structure and
its corresponding common cold coronavirus homologs using
multipipsa4.0.2 (35). The multipipsa4.0.2 software applies the
Adaptive Poisson-Boltzmann Solver (or APBS) (36) method
to first compute electrostatic potentials, and then compares
the potentials using the Protein Interaction Property Similarity
Analysis (or PIPSA) protocol (37). The side chains of themodeled
complexes are protonated using PROPKA (38), followed by
assignment of atom charges and radii using the Amber force field
(39) at a pH of 7.2. The electrostatic potentials of the structures
are calculated by solving a linear Poisson-Boltzmann equation for
129 points on a cubic grid using 150mM ionic strength at 298.15
Kelvin with protein dielectric of 1.0, and solvent dielectric of 78
using a probe radius of 1.4 Å. Next, the PIPSA protocol compares
the electrostatic potentials quantitatively using grid points on the
superimposed regions (regions are at a distance of σ from the
van der Waals surface and are of thickness δ) around the pMHC
complexes. The similarity between any two electrostatic surfaces
is captured by the Hodgkin similarity index (HSI, ranges from−1
to 1, where −1, 0, and 1 indicate electrostatic anticorrelation, no
correlation, and electrostatic identity respectively) (40), which is
converted into a distance measure, D (D =

√
(2− 2HSI)), that

assigns values between 0 and 2 (0: identity, 1: no correlation and

2: anticorrelation). For our study, we have used 4 Å thickness (δ)
and a distance of 3 Å from the molecular surface (σ) (41).

RESULTS AND DISCUSSION

Template Identification and Structure
Modeling Using RosettaMHC
Our full workflow for template identification and structure
modeling is outlined in Figure 1A, with a flowchart shown in
Figure 1B. To predict all possible peptides expressed by SARS-
CoV-2 that can bind to HLA-A∗02:01, we used a recently
annotated version of all open reading frames (ORFs) in the
viral genome from NCBI (42), made available through the
UCSC genome browser (43). We used 8-, 9-, and 10-residue
sliding windows to scan all protein sequences, since these
are the optimum peptide lengths for binding to the HLA-
A∗02:01 groove (44). The limited availability of templates for
peptides of lengths >10 (9 total in the PDB) suggests that
such peptides are likely to represent a small fraction of the
displayed peptide repertoire, and were not considered here.
While spliced peptide epitopes (45) were not considered in
the current study, this set can be added to our workflow
in future studies. NetMHCpan-4.0 (30) predicted 54 8, 439
9, and 256 10 mer epitopes that can bind to HLA-A∗02:01
(classified as both weak and strong binders), with the majority
of peptides originating from the nsp3 protein encoded by orf1ab
(NCBI Reference YP_009724389.1) (Supplementary Figure 2).
A sequence analysis of all 9 mer peptides predicted by
NetMHCpan-4.0 to peptides bound to HLA-A02 structures
in PDB showed similar motifs (Supplementary Figure 3). In
general, binders predicted by NetMHCpan-4.0 exhibit higher
sequence similarity to peptides present in the PDB HLA-A02
structures, relative to non-binders (Supplementary Figure 4).

To further validate the NetMHCpan-4.0 predictions and
to derive plausible 3D models of the peptide/HLA-A∗02:01
complexes, we used a structure-guided approach, RosettaMHC,
which aims to derive an accurate fitness score for each peptide in
the HLA-A∗02:01 binding groove using an annotated database of
high-resolution structures and Rosetta’s all-atom energy function
(46). RosettaMHC leverages a database of 236 HLA-A∗02:01 X-
ray structures, to find the closest match to each target epitope
predicted from the SARS-CoV-2 proteome. Here, the range of
available structures in the PDB provides a natural sampling
of different possible backbone conformations within the highly
restrictive environment of the peptide-binding groove, as shown
by a structural alignment of all 9 mer templates (Figure 2A). To
identify the best template for modeling of each target peptide, we
use sequence matching criteria which first consider the peptide
anchors (positions P1/P2/P2 and P8/P9/P10 for 8/9/10 mer
epitopes), followed by similarity of the full alignment between
the template and target peptide sequences. To demonstrate the
accuracy of RosettaMHC, we performed benchmark calculations
using a non-redundant set of 90 9-mer peptide/HLA-A02
complex structures. Each epitope was modeled from the closest
template with identical anchor residues present in the benchmark
set, while homologous peptide sequences were excluded from
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FIGURE 1 | Structure-guided modeling of T cell epitopes in the SARS-CoV-2 proteome. (A) General workflow of our pipeline for structure-guided epitope ranking. (B)
Protein sequences from the annotated SARS-CoV-2 proteome are used to generate peptide epitopes with a sliding window covering all frames of a fixed length
(9,631 8, 9,621 9, and 9,611 10 mer possible peptides). Candidate peptides are first filtered by NetMHCpan-4.0 (30) to identify all predicted strong and weak binders
(54 8, 439 9, and 256 10 mer epitopes). For rapid template matching and structure modeling, we use a local database of 236 HLA-A*02:01 X-ray structures with
resolution below 3.5 Å from the Protein Data Bank (21). Each candidate peptide is scanned against all peptide sequences of the same length in the database, and the
top-scoring template is used to guide the RosettaMHC comparative modeling protocol and to compute a binding energy.

template selection. From these results, we find that (i) the binding
energies of RosettaMHCmodels fall within the distribution of the
native PDB templates (Supplementary Figure 5), and (ii) models
generated for 75 and 98% of peptides are within 1.5 and 2 Å
backbone heavy-atom RMSD from their native X-ray structures,
respectively (Supplementary Figure 5). These results suggest
that RosettaMHC can provide accurate models of peptide/HLA-
A02 complexes for a range of peptide sequences using a simple
threading approach which takes into account the peptide anchor

positions as themain criterion for identifying the closest template
in the database.

The template assignment statistics for the six different classes
of SARS-CoV-2 epitopes in our set are shown in Figure 2B. We
find that we can cover the entire set of 749 predicted 8, 9, and 10-
residue binders using a subset of 123 HLA-A∗02:01 templates in
our annotated database of PDB-derived structures (Figure 2C).
Each target peptide sequence is then threaded onto the backbone
of its best identified template, followed by all-atom refinement of
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FIGURE 2 | Coverage of predicted HLA-A02 epitopes by structural templates in the PDB. (A) Structural overlay of HLA-A02 PDB templates displaying 9-residue
peptides, with the different peptide backbone conformations shown in magenta. (B) Matching statistics for all predicted SARS-CoV-2 strong (SB) and weak binder
(WB) peptides of lengths 8, 9, and 10, against an annotated database of 236 HLA-A02 X-ray structural templates derived from the Protein Data Bank (21). (C) Plot
showing cumulative distributions (CDF) for strong and weak binder peptides of lengths 8, 9, and 10, as a function of the total number of matching templates used for
modeling.

the side chain and backbone degrees of freedom using Rosetta’s
Ref2015 energy function (46), and binding energy calculation.

RosettaMHC Models Recapitulate
Features of High-Resolution X-Ray
Structures
The sequence logos derived from 9 and 10 mer peptides with
good structural complementarity to the HLA-A∗02:01 groove
according to Rosetta’s binding energy (see below) adhere to the
canonical binding motif, with a preference for hydrophobic,
methyl-bearing side chains at the peptide anchor residues P2 and
P9/P10 (Figure 3A, Supplementary Figure 6A). In addition, the
sequences of high-affinity binders, show preferences for specific
amino acids at positions P1, P3, P6/P7, P7/P8 for 9 and 10 mer
peptides, respectively (Figure 3A, Supplementary Figure 6A).
These preferences are recapitulated in representative 9 and
10 mer models of the two top binders in our set as ranked
by Rosetta’s energy (Figure 3B, Supplementary Figure 6B),
corresponding to epitopes TMADLVYAL and FLFVAAIFYL
derived from the RNA polymerase and nsp4 proteins,
respectively, both encoded by orf1ab. In accordance with
features seen in high-resolution structures of HLA-A∗02:01-
restricted epitopes, the peptides adopt an extended, bulged
backbone conformation. The free N-terminus of both peptides is
stabilized by a network of polar contacts with Tyr 7, Tyr 159, Tyr
171, and Glu 63 in the A- and B- pockets of the HLA-A∗02:01
groove. The Met (9 mer) or Leu (10 mer) side chain of P2 is
buried in a B-pocket hydrophobic cleft formed by Met 45 and
Val 67. Equivalently, the C-terminus is coordinated through
polar contacts with Asp 77 and Lys 145 from opposite sides of
the groove, with the Leu P9/P10 anchor nestled in the F-pocket
defined by the side chains of Leu 81, Tyr 116, Tyr 123, and Trp
147. Residues P3-P8 form a series of backbone and side chain
contacts with pockets C, D, and E, while most backbone amide
and carbonyl groups form hydrogen bonds with the side chains

of residues lining the MHC-I groove. These high-resolution
structural features are consistent across low-energy models
of unrelated target peptides in our input set, suggesting that,
when provided with a large set of input templates, a combined
threading and side chain optimization protocol can derive
accurate models (within 2 Å RMSD), as also shown in our
benchmark calculations.

The Rosetta Energy Function Generally
Distinguishes High-Affinity Peptides
To evaluate the accuracy of our models and fitness of each
peptide within the HLA-A∗02:01 binding groove, we computed
Rosetta all-atom binding energies across all complexes modeled
for different peptide sets. High binding energies can be used
as an additional metric to filter low-affinity peptides in the
NetMHCpan-4.0 predictions, with the caveat that high energies
can be also due to incomplete optimization of the Rosetta
energy function as a result of significant deviations between the
target and template backbone conformations, not captured by
our protocol. We performed 10 independent calculations for
each peptide which may allow Rosetta’s optimization protocol
to sample slight changes in peptide backbone (up to 1 Å
from starting structure), and the 3 lower-energy models were
selected as the final ensemble and used to compute an average
binding energy. The results for all 9 and 10 mer peptides
are summarized in Figures 3C,D, Supplementary Figures 6C,D

while additional results for 8 mers are provided through
our web-interface and outlined in Supplementary Table 1.
As a positive binder reference set, we used the binding
energies of the idealized and relaxed PDB templates, which
are at a local minimum of the Rosetta scoring function.
As a reference set for sub-optimal binders, we modeled
structures of peptides from SARS-CoV-2 proteome that are
classified as poor binders according to NetMHCpan-4.0 (highest
%rank values).
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FIGURE 3 | Summary of RosettaMHC modeling results for SARS-CoV-2 peptide epitopes. (A) Sequence logo from the 164 top ranking epitopes in the SARS-CoV-2
genome, predicted by NetMHCpan-4.0 (30). (B) Model generated for the top 9 mer epitope in our refined set, TMADLVYAL, derived from RNA polymerase. Dotted
lines indicate polar contacts between peptide and heavy chain residues, with peptide residues labeled. The template PDB ID and original peptide used for modeling
the target peptide is indicated below the model. (C) Density plot showing the distribution of average Rosetta binding energies (kcal/mol) for all epitopes of length 9.
Distributions reflect 93 PDB templates (green), 164 strong binder epitopes [according to NetMHCpan-4.0 (30)] (blue), and 100 SARS-CoV-2 peptides classified as
poor binders by NetMHCpan-4.0 modeled using the PDB templates and used as a reference set for sub-optimal binders (Poor binders; pink). The binding energies of
models generated for 28 confirmed SARS T cell epitopes from the IEDB and ViPR (47–49) are indicated by circles at the bottom of the plot. Red circles indicate
epitopes that lie within the distribution of refined PDB templates. (D) Box plots showing distribution of average binding energies for 93 PDB templates, 100
sub-optimal SARS-CoV-2 peptides, 28 confirmed epitopes (47–49) and RosettaMHC models for 164 strong (SB) and 275 weak (WB) binder 9 mer epitopes predicted
from the SARS-CoV-2 proteome using NetMHCpan-4.0 (30). An unpaired Mann-Whitney U-test was performed for relevant pairs of distributions and their statistical
significance described by the p-values (where, p < 0.1 is considered statistically significant) are (i) PDB templates and strong binders: p < 0.15 (ii) PDB templates and
confirmed binders: p < 0.39 (iii) PDB templates and weak binders: p < 0.00002 (iv) confirmed epitopes and strong binders: p < 0.39, and (v) confirmed epitopes and
weak binders: p < 0.02, and (vi) strong and weak binders: p < 0.00004, are shown inside the plot. The sequence logo was generated using Seq2Logo (50).

We observe a significant, favorable (∼−15 kcal/mol) energy
gap between the average binding energies computed from
the refined PDB templates relative to models obtained
for poor binder peptides. The binding energies for all
predicted 9 mer and 10 mer binders show a significant
overlap with the refined PDB template energies (Figure 3C,

Supplementary Figure 6C). Comparison of energy distributions
of epitopes that are classified as strong vs. weak binders
by NetMHCpan-4.0 shows a moderate bias toward lower
binding energies for the strong binders and a larger spread
in energies for weak binders, likely due to suboptimal
residues at the P2 and P9/P10 anchor positions (Figure 3D,

Frontiers in Medical Technology | www.frontiersin.org 6 November 2020 | Volume 2 | Article 553478

https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org
https://www.frontiersin.org/journals/medical-technology#articles


Nerli and Sgourakis RosettaMHC Models of SARS-CoV-2 Antigens

Supplementary Figure 6D, with a significance level, p <

0.1 between strong and weak binders for both 9 and 10-
mers). As an intendent positive set, we also modeled 28 9
and 5 10 mer peptides that are homologous to peptides in

the SARS viral genome and have been previously reported
to bind HLA-A∗02:01 in the IEDB and ViPR (12, 47–49)
databases (Supplementary Table 2). Inspection of Rosetta
binding energies derived from models in this set shows a

FIGURE 4 | Electrostatic surface similarity scores of SARS-CoV-2 epitopes to peptides derived from four common cold coronavirus strains. (A) Flow diagram outlining
the comparison of pMHC models for SARS-CoV-2 epitopes, relative to their homologous epitopes in four human Common Cold Coronavirus (CCC) strains based on
model electrostatic surface potentials. (B) A bar plot (top) showing the average electrostatic similarity score obtained using PIPSA (37) (Y-axis) measured between
SARS-CoV-2 epitopes and their homologous common cold coronavirus peptides. Distance scores range between 0 and 2, where 0 indicates electrostatic identity, 1
indicates no correlation and 2 indicates electrostatic anticorrelation. A heat map (bottom) showing individual distance scores between SARS-CoV-2 epitopes (X-axis)
and homologous peptides from each strain of common cold coronavirus (Y-axis). The distance scores are indicated by the colored scale (from 0 to 1.2). The
SARS-CoV-2 epitopes SLAIDAYPL, AIMTRCLAV, YLGGMSYYC, FVDGVPFVV, RIIPARARV, RILGAGCFV, RLANECAQV, SVFNICQAV, IFVDGVPFV, GVAPGTAVL that
share similar electrostatic surfaces with homologous peptides from common cold coronaviruses are highlighted using red dots on the left in top and bottom plots.
Similarly, epitopes ALLSDLQDL, QLNRALTGI, MLAKALRKV (blue dots) and KIYSKHTPI (orange dot) that exhibit no apparent correlation or are electrostatically
dissimilar are shown on the right in top and bottom plots. (C) Structure diagram of SARS-CoV-2 epitope, KIYSKHTPI from surface/spike glycoprotein, showing the
maximum electrostatic surface distance to homologous coronavirus epitopes (orange dot in B). Homologous peptide sequences in each strain are indicated in each
plot. Solvent-accessible surfaces with electrostatic potential representations in the indicated ranges [down to −61 kcal/(mol·e) in red and up to +61 kcal/(mol·e) in
blue] were calculated using the APBS solver (57) in multipipsa4.0.2 (35). All calculations were performed at 150mM ionic strength, 298.15 Kelvin, pH 7.2, protein
dielectric 1.0, and solvent dielectric 78 with a probe radius of 1.4 Å. Graphics were generated using Pymol (58).
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similar distribution to the epitopes predicted by NetMHCpan-
4.0, with the energies of all the peptides falling well within
the distribution of the refined PDB templates (red dots in
Figure 3C, Supplementary Figure 6C). Finally, to enrich
our set of potential binder peptides, we used a higher
NetMHCpan-4.0 cut-off value and modeled structures for
627 additional SARS-CoV-2 epitopes (Supplementary Table 3,
Supplementary Figure 7). The analysis of these models is
discussed in the Supplementary Results section.

Comparison of Surface Features of
Peptide/HLA-A∗02:01 Models Relative to
Homologous Peptides From Common Cold
Coronavirus Strains
Visualization of our models through an interactive online
interface provides direct information on SARS-CoV-2 peptide
residues that are bulging out of the MHC-I groove, and
are therefore accessible to interactions with complementarity-
determining regions (CDRs) of T cell receptors (TCRs). Given
that αβ TCRs generally employ a diagonal binding mode to
engage pMHC-I antigens where the CDR3α and CDR3β TCR
loops form direct contacts with key peptide residues (51, 52),
knowledge of the surface features for different epitopes allows
us to interpret sequence variability between different viral
strains. For other important antigens with known structures
in the PDB, such features can be derived from an annotated
database connecting pMHC-I/TCR co-crystal structures with
biophysical binding data (53), and were recently employed in an
artificial neural network approach to predict the immunogenicity
of different HLA-A∗02:01 bound peptides in the context of
tumor neoantigen display (54). The electrostatic compatibility
between self vs. foreign HLA surfaces has been shown to define
antibody alloimmune responses (41). Given that antibodies
and TCRs use a common fold and similar binding mode to
engage pMHC-I molecules (51), surface electrostatic features
also play an important role in recognition of peptide/HLA
surfaces by their cognate TCRs in the context of SARS-CoV-
2 infection.

T-cell responses to megapools of viral peptides have been
observed in individuals not exposed to SARS-CoV-2, thus
providing evidence for cross-reactivity of T cells with similar
epitopes expressed by homologous coronavirus strains (55, 56).
To characterize SARS-CoV-2 specific and cross-reactive epitopes
(according to this definition), we obtained homologous peptide
sequences from four human common cold coronavirus strains
with annotated genomes (229E, HKU1, NL63, and OC43),
for all 395 predicted SARS-CoV-2 strong binders of length
9. From this set, 141 peptides are exclusive to SARS-CoV-
2, since there are no homologous sequences present in the
four common coronavirus strains considered here, or the
corresponding sequences in the other four genomes have
insertions or deletions (Supplementary Table 5). To identify
cross-reactivity according to molecular surface features, we first
used RosettaMHC to model peptide/HLA-A∗02:01 complex
structures for all homologous peptides, in addition to our
previously described models for SARS-CoV-2 (Figure 4A).

We then computed surface electrostatic potentials for each
model using APBS (36), followed by a pairwise comparison
of potentials computed for the four homologous structures
relative to each SARS-CoV-2 peptide using PIPSA (37), which
provides four distance scores for each peptide (Figure 4B).
From the examination of similarity scores of models, we
found that (i) peptide SLAIDAYPL from orf1ab has conserved
sequence and surface features across all coronavirus strains
(distance score = 0), and therefore T cells specific for this
epitope should be highly cross-reactive across different strains
(ii) epitopes AIMTRCLAV, YLGGMSYYC, FVDGVPFVV,
RIIPARARV, RILGAGCFV, RLANECAQV, SVFNICQAV,
IFVDGVPFV, and GVAPGTAVL from orf1ab are conserved with
one or more common strains, and are putatively cross-reactive
(distance score ≤ 0.3) (Figure 4B, Supplementary Table 4),
and (iii) there is no apparent correlation between SARS-CoV-2
and common cold coronavirus pMHC surface features for
ALLSDLQDL (orf1ab), QLNRALTGI (spike), MLAKALRKV
(orf1ab), and KIYSKHTPI (spike) epitopes (distance score
> 0.8) (Supplementary Table 4). In particular, peptide
KIYSKHTPI shows the most dissimilar electrostatic surface
to the homologous strains among all high-affinity binders,
suggesting that this epitope can be used to detect exclusive
TCRs to SARS-CoV-2 (Figure 4C). The six epitopes in our set
that are known to induce CD8T cell responses in COVID-19
patients and healthy donors have distance scores ranging from
0.5 to 0.9 (Supplementary Table 6) (24, 25), suggesting that their
TCRs can cross-react with homologous epitopes from common
cold coronaviruses.

Electrostatic potentials calculated from our models further
allow us to compare distinct surfaces for TCR recognition
between different high-affinity epitopes, as demonstrated
for the four top-scoring models by Rosetta binding energy
(Supplementary Figure 8A). Here, PIPSA analyses of
electrostatic potentials of these models allowed us to cluster
them into two groups, (i) TMADLVYAL and NLIDSYFVV,
and (ii) KLWAQVCQL and FLAFVVFLL, where the surface
exposed residues at P2-P8 positions of the (i) and (ii) groups
exhibit moderately negative and positive charges, respectively
(Supplementary Figure 8). Full classification and ranking of
all binders in our set on the basis of their molecular surface
features would further enable the selection of a diverse panel
of peptides for high-throughput pMHC tetramer library
generation which can be used to identify immunodominant
epitopes (28). Tetramer analysis of T cells from COVID-
19 patients, recovered individuals, and healthy donors can
help identify critical gaps in the T cell repertoire of high-
risk groups, toward the design of epitope DNA strings for
vaccine development.
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