
Research Article
Towards Fine Whole-Slide Skeletal Muscle Image
Segmentation through Deep Hierarchically
Connected Networks

Lei Cui ,1 Jun Feng ,1 and Lin Yang 2

1Department of Information Science and Technology, Northwest University, Xi’an, China
2"e College of Life Sciences, Northwest University, Xi’an, China

Correspondence should be addressed to Jun Feng; fengjun@nwu.edu.cn and Lin Yang; linyang@nwu.edu.cn

Received 19 November 2018; Accepted 14 March 2019; Published 27 June 2019

Academic Editor: Norio Iriguchi

Copyright © 2019 Lei Cui et al.-is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Automatic skeletal muscle image segmentation (MIS) is crucial in the diagnosis of muscle-related diseases. However, accurate
methods often suffer from expensive computations, which are not scalable to large-scale, whole-slide muscle images. In this paper,
we present a fast and accurate method to enable the more clinically meaningful whole-slide MIS. Leveraging on recently popular
convolutional neural network (CNN), we train our network in an end-to-end manner so as to directly perform pixelwise
classification. Our deep network is comprised of the encoder and decoder modules. -e encoder module captures rich and
hierarchical representations through a series of convolutional and max-pooling layers. -en, the multiple decoders utilize
multilevel representations to performmultiscale predictions. -e multiscale predictions are then combined together to generate a
more robust dense segmentation as the network output. -e decoder modules have independent loss function, which are jointly
trained with a weighted loss function to address fine-grained pixelwise prediction. We also propose a two-stage transfer learning
strategy to effectively train such deep network. Sufficient experiments on a challenging muscle image dataset demonstrate the
significantly improved efficiency and accuracy of our method compared with recent state of the arts.

1. Introduction

Skeletal muscle accounts for approximately 40% body
mass. As the largest body tissue, skeletal muscle has been
extensively recognized as the biomedical health biomarker
related to many diseases such as cancer cachexia, heart
failure, and chronic obstructive pulmonary disease
(COPD) [1–3]. In recent years, the growing attentions, in
the muscle biology community, have been paid to the
analysis of histological images of skeletal muscle to assist
the diagnosis of relevant diseases [1].

-e quantification of morphological characteristics of
muscle fibres plays an important role in the assistance of
disease diagnosis and clinical studies. Critical morphological
characteristics, including cross-section area, fiber type and
shape, and the minimum Feret diameter, are closely related
to the functionality and health of muscle [4, 5]. To accurately
quantify these morphological characteristics of muscle

fibres, an accurate skeletal muscle image segmentation (MIS)
system is the prerequisite.

Currently, the segmentation for muscle fibres in routine
practice still highly relies on experts’ manual labors or
semiautomatic process [6], which are not only expensive but
also contain large interobserver variations. -e increasing
demand of a fast and accurate automatic MIS attracts many
attentions recently. Various approaches have been proposed
to address this task [4, 7–9].

-e difference between MIS and standard histological
image cell segmentation is attributed to the specific mor-
phology of skeletal muscle. Skeletal muscle is composed of
long, multinucleated cells (fibres) tightly grouped into fas-
cicles, interspersed with other mononucleated cell types and
surrounded by connective tissues and fat. -is tightly
grouped anatomical structure, coupled with artifacts and
staining variances introduced during sample preparation,
generates confusing and overlapping cell boundaries.
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Although histological cell segmentation research has a rich
history, few have been successfully applied to MIS. -ere are
still several challenges which remain to be solved to achieve a
robust and automatic MIS system. First, all exiting MIS
methods can only handle small image patches with the size
smaller than 1000 × 1000 cropped from whole-slide muscle
images. -e main reason is that supervised methods usually
rely on handcrafted features and pretrain classifiers to dis-
tinguish cell or noncell regions or pixels. However, the
computation of well-designed handcrafted features and
regionwise classification is usually expensive and the time cost
is proportional to the image scale. -erefore, this limitation of
existingmethodsmakes them hardly be applied for large-scale,
whole-slide muscle images.

Second, the special muscle cell shape and size as
abovementioned make the segmentation methods hardly be
generalized. For example, unsupervisedmethods, such as the
deformable model [10, 11] and shape prior-based methods
[12, 13], have been widely used in histological and mi-
croscopy cell segmentation. However, the arbitrarily
transformed cell shapes and size increase the difficulty to use
shape information for MIS.

-ird, the densely touching fibres and staining artifacts
make the fiber boundaries unclear and broken, which in-
creases the difficulties for methods to separate multiple
touching fibres by using boundary information. Fourth,
current methods usually contain multiple mutually de-
pendent steps; the failure of either step will largely affect
other steps and the final results. On the other hand, the
complex pipeline largely decreases the speed of MIS.

-is paper addresses these challenges to achieve a both
efficient and effective MIS method based on recently popular
convolutional neural network (CNN). CNN-based methods
have achieved unprecedented performance in variousmedical
image applications. Different from conventional computer
vision methods, CNN has strong capability to learn com-
prehensive representations via a deep architecture for effective
classification. When using CNN for pixelwise classification,
conventional CNN shows the efficiency shortcomings [14].
-e end-to-end CNN training strategy has recently attracted a
lot of research interest [15, 16]. However, a common problem
is that the dense output is relatively coarse, and it is difficult to
accurately classify each pixel [16, 17]. To generate more ac-
curate and fine outputs, a refinement procedure needs to be
considered.

In this paper, we propose a novel MIS method based on
CNN trained in an end-to-end manner [16], which enables
the CNN to better utilize the rich representations and directly
predict fine-grained segmentation given an arbitrarily sized
input image. Figure 1 shows some segmentation results of
different image scales. Specifically, the main contributions of
this paper are summarized as follows:

(i) We propose a network whose architecture mainly
contains two modules: the encoder and the decoder.
-e encoder captures rich representations through a
very deep CNN architecture. -e decoder leverages
on the hierarchy characteristic of the encoder to
enable multiscale prediction independently. A

refinement procedure of the decoder automatically
addresses the fine-grained dense outputs. Figure 2
illustrates our network.

(ii) We propose a novel spatially weighted loss
function to take care of the unbalanced class issue
and unavoidable errors happened in ground
truth, which encourage the convergence of the
network.

(iii) We propose a two-stage training approach to train
the proposed very deep network, which facilitates
the network to better use pretrained CNN for better
convergence and preserve the weak boundary in-
formation of muscle cells.

(iv) We conduct sufficient experiments on an expertise-
annotated skeletal muscle image dataset demon-
strating the significantly improved efficiency and
accuracy compared with other state of the arts.

2. Related Works

-e growing interest in the computer-aided histological
image diagnosis entails rich research literature. As one
of the histological image analysis family, skeletal muscle
image analysis is a new yet recently popular application
which has built successful cooperations with clinics to
accelerate their research and clinical trials [1–3, 18, 19].

As the prerequisite of skeletal muscle image analysis,
various methods have been proposed for MIS. Klemencic
et al. [10] proposed a semiautomatic muscle image seg-
mentation approach based on the active contour model.
Janssens et al. [8] proposed a top-down cell segmentation
framework using supervised learning and clump splitting,
which requires a long pipeline with the help of several low-
level image processing techniques. However, the perfor-
mance of these image processing techniques can be easily
influenced by imaging artifacts and cell clumps. Smith and
Barton [6] proposed SMASH—semiautomatic muscle image
analysis software. Some other software applications such as
CellProfiler [9] have obtained high exposure in histological
image analysis community. However, these software ap-
plications show nonsatisfactory results for challenging
muscle images. Practically, time-consuming manual ad-
justment is still needed. Liu et al. [4] proposed a deformable
model-based segmentation algorithm. -e success relays
largely on the initial centers of the muscle cells. It is not able
to handle cells with arbitrarily transformed fiber shape, and
it requires complex postprocessing to refine the results,
which is not robust in practice. Recently, Liu et al. [7]
proposed a hierarchical tree-based region selection method
to segment muscle fibres, which relies on elaborately
designed features and high-level machine learning tech-
niques. -is method first detects fiber boundaries by using
structured random forest [20]; then, it builds a hierarchical
region tree based on the detected edge map. Finally, the
dynamic programming is performed to select candidate
regions from the tree structure [21]. -is method shows
obvious improvement compared with previous MIS ap-
proaches. However, this method still suffers from relatively
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expensive computation, so it is unable to be applied onto
whole-slide images.

As a matter of fact, whole-slide MIS is still an unsolved
problem. Although some literature discusses the usage of
distributed computing [22–24] to accelerate process for
large-scale histological images, distributed computing is
usually difficult to be deployed for practical usage in clinical
practice.

Convolutional neural network (CNN) [25] is one major
branch of the deep learning family. Its applications in pa-
thology and histological image analysis domain became in-
creasingly popular very recently [14, 26–28]. CNN has shown
strong ability to handle complex classification problem [29].
Recently, end-to-end CNN training concept is introduced for
semantic image segmentation, termed fully convolutional
neural network (FCN) [16]. Instead of performing patch-to-
pixel prediction, it enables the network to perform spatial
dense classification (i.e., a segmentation mask) given a test
image. By taking advantaging of this strength, several
methods have been proposed to handle various pixelwise
classification tasks [15, 30–34]. Our paper shares some
similarity with the previous works of how to enable CNN
to be trained in an end-to-end manner. Different from
previous works, we have made several specific designs to

handle fine-grained prediction, unbalanced class, multiscale
features, and transfer learning from pretrained model for
MIS. More details are discussed in the rest of the paper.

3. Methodology

In this section, we begin by introducing the proposed
network architecture and then present proposed loss
function for training the network. Finally, we introduce the
two-stage learning to train the overall network.

3.1. Network Architecture. We briefly introduce the con-
volutional neural network (CNN) at first. CNN [25] is a
variant of multilayer perception (MLP), which is mainly
composed of multiple stacked computation layers from
bottom to top, including convolutional, max-pooling and
fully connected layers, activation layer, etc. -e convolu-
tional layer uses learnable convolutional filters to extract
representations from locally connected image regions (re-
ceptive fields). -e max-pooling layer reduces the di-
mensionality of the obtained representations from
convolutional layers while keeping the feature translation
invariance. -e fully connected layer uses all features for

Ground truth

Segmentation mask Boundary map

Input image

Segmentation result

Multiscale outputs of decoders

Concat FCN

Figure 2: -e illustration of the network architecture. -e input image has a ground truth segmentation mask and a boundary map. Black
boxes indicate the encoder module while colored boxes indicate the decoder module. One decoder takes the feature maps of one encoder
layer as input and outputs one segmentation results. -e multiscale outputs of all encoders are concatenated to generate the final seg-
mentation result.

OverlayImage

1X: 1.1s 2X: 1.8s 4X: 8.8s 6X: 20.9s 8X: 36.4s

Figure 1: Illustration of the segmentation results of different scale (1x � 1000 × 1000 pixels to 8x � 8000 × 8000 pixels) whole-slide muscle
images (best viewed in electronic form). For each image, the right half side represents the segmentation results overlaid by the colored
masks. -e runtime is the result tested on a single GPU.
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high-level classification. From bottom layers to top layers,
CNN gradually captures rich representations of input image
from pixel level to content level so as to make accurate
classification. Conventional CNN is used to perform high-
level classification, i.e., assigning a category label to an input
image patch. When it is applied to pixelwise prediction MIS
task, extensive patch-to-pixel level prediction (CNN feed-
forward) is required, which will extensively limit the seg-
mentation efficiency [14, 35].

To solve this problem, we train our network in an end-
to-endmanner, which enables the network to directly output
the image segmentation given an input image. In this way,
we no longer need to use patchwise classification to assign
labels to all pixels via millions of CNN feedforward. Only
one-time feedforward is needed to obtain the final seg-
mentation. End-to-end training of CNN is used to enable the
network to directly output dense image segmentation for a
given input image [15, 16, 32].

However, modifying conventional CNN to perform end-
to-end training brings a major side effect, i.e., substantial
pixel-level information loss at top layers makes the pixelwise
prediction inaccurate [17, 30]. It is because multiple max-
pooling layers will dramatically decrease the spatial size of
the output, so the predicted segmentation output is very
coarse. Most proposed end-to-end CNN methods use
upsampling [16, 17] or deconvolution operations [15] to
resize back the output to the spatial size of the input image.
Nevertheless, the max-pooling layer is essential to abstract
the content-level representations for high-level category
classification [25, 29, 36] and decrease the computation
space of CNN.

As a matter of fact, when we generalize end-to-end
CNN to MIS, content-level information becomes less
important because the label of a single pixel does not rely
on the knowledge of the whole muscle image. Different
from semantic segmentation [16, 32] which needs content-
level information to predict the category label per pixel, we
are more interested in the fine-grained pixelwise pre-
diction by taking advantage of the hierarchical repre-
sentations of the encoder to improve the prediction
accuracy. -e hierarchy characteristic can be achieved by
gradually enlarging the receptive field size after each max-
pooling layer. To this end, we propose a novel network
architecture, which is composed by one encoder module
and multiple decoder modules. Generally, the decoder
aims to use the rich and hierarchical representations
obtained from the encoder for pixelwise classification.

3.1.1. Encoder Module. -e encoder architecture is mostly
identical to the conventional neural network. Instead of
building our own layer combinations, we borrow the well-
known VGG net [29] with fully connected layers trun-
cated to capture the rich and hierarchical representations
from pixel level at bottom layers to content level
(i.e., category-specific knowledge) at top layers. VGG net
is composed of a series of convolutional sets with each set
having multiple convolutional layers followed by a max-
pooling layer. VGG has two variants (one has 16 layers

and the other has 19 layers); we use 16-layer VGG for
efficiency consideration. We choose VGG for two reasons:
(1) we can transfer the pretrained VGG model to help
train our very deep network as described in the next
section; (2) VGG net is very deep which extracts five
different-scale feature maps, containing very rich multi-
scale representations for the usage of decoders.

3.1.2. Decoder Module. -e decoder has two main purposes:
(1) it utilizes the rich representations obtained from the
encoder for pixelwise classification. So, the output of one
decoder is a dense segmentation mask with each spatial
position assigning a label to the corresponding pixel of the
input image (cell or noncell in our case); (2) it refines the
low-rescale coarse segmentation mask to efficiently generate
fine-grained high-scale segmentation mask. -e refinement
procedure is achieved by multistep deconvolution and
successive usage of same-scale feature maps obtained from
other decoders.

We propose to connect multiple decoders prior to
every max-pooling layer of the encoder; thus, the decoders
can easily utilize the multiscale representations as input
features as inspired by [15, 16, 31]. -e decoder can be
viewed as a small pixelwise classification network, which
has an independent loss to update its parameters during
training. Hence, the overall architecture is multitask
CNN.

Our design of the decoder includes convolutional
layers with intermediate deconvolution layers [15]. Spe-
cifically, the deconvolution is the backward convolution
operation, which performs elementwise product with its
filters (please note that some controversies arise in the
naming of “deconvolution” in recent literature as the
deconvolution layer used here is different from the pre-
vious definition of the deconvolution [37]; we maintain
the same definitions as most of the literatures on end-to-
end CNN). -e output size of deconvolution will be en-
larged by a factor of the stride. -e filters of the decon-
volution layers are learnable and updated by the loss of the
decoder.

In this way, rather than enlarging the image with a
large stride through a skip connection [16, 31, 38], our
approach enlarges the feature map in multiple steps and
progressively refines the feature maps at different scales
via convolutional kernels, with the purpose of reducing
the effects of pixel-level information loss. We use 3 × 3
filter size as this small size has been proven effective
widely. In the end, we concatenate multiscale predictions
of all decoders, which generates a 5-dimensional feature
map; we apply a 1 × 1 convolutional layer to merge the
feature map to generate the final output. Compared with
how recent architecture [35, 39] uses multiscale in-
formation (resize input patch size and feed into multiple
CNNs and merge all predictions [35, 39]), our approach
enables multiscaling inside the network, requiring a
single arbitrarily sized input and outputting the final
segmentation result. Figure 3 specifies the parameters of
each layer.
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3.2. Spatially Weighted Loss for Backpropagation. -is sec-
tion describes the loss function training network through
backpropagation. Our proposed spatially weighted loss plays
an important role in network training.

Denote the training data as D � (X, Y) ∈ X × Y ,
where X,Y ∈ RN and N is the total number of pixels
in the training image X. Y is the corresponding ground
truth segmentation mask with each pixel Yi ∈ 0, 1{ }

(i.e., pixels inside and on the boundary the muscle cell and
background otherwise). For an input image X, the main
objective of our network is to obtain the pixelwise pre-
diction Y⋆:

Y
⋆

� arg max
Y

P(Y ∣ X, θ),
(1)

where P(Yi ∣ X; θ) is the prediction probability of pixel Xi,
i.e., the sigmoid function output of the network (denoted as
Pi afterwards for brevity). θ represents all parameters of our
network.

Our network has multiple decoders with each having
independent loss to update their parameters (see Section
3.1.2 for details). Denote the loss function of i-th decoder as
Jde

i . -e extra 1 × 1 convolutional layer after the concat
layer is updated by another loss (see Figure 3), denoted as

Jc. Learning θ is achieved by minimizing the loss function
J, which is defined as

J(θ) � 
M

i�1
J

de
i (θ) + J

c
(θ), (2)

where M is the number of the decoder. Note that sinceJde
i

and Jc are both spatially computed on pixels of the dense
output, both have the same formulation. -e overall loss
J can be jointly minimized via backpropagation (spe-
cifically, when a layer has more than one path, such as the
conv1-2 layer in Figure 3 which has two successive layers
(decoder-1 and pool1), the gradients will be accumulated
from multiple successive paths during backpropagation
[40]).

In skeletal muscle images, there are several common
problems which affect the network training: (1) the large
proportion of pixels inside cell pixels will cause an un-
balanced class such that the error effects occurred at the
margins will be diminished during backpropagation; (2)
usually cells are densely distributed and the boundaries
between touching cells are thin and often unclear or
broken due to muscle’s unique anatomy; based on our
observations, the network often misclassifies the pixels at
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Figure 3: -e detailed network configuration. -e convolutional, max-pooling, deconvolutional, and concat layers are denoted by conv,
pool, deconv, and concat, respectively. Each convolutional layer of the encoder is followed by a ReLU layer which is hidden in the tables.
-ere are 5 decoders connected inside the architecture of the encoder. -e (black solid and gray dotted) arrows point to the layer where the
output of the corresponding layer goes.-e last column of each table shows the feature map size (height× width× dimension) of each layer.
In the tables of decoders, “†” indicates that a crop layer is connected after that to force the output size to be the same as the input image size
(i.e., 1000 × 1000 in the table).
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margins between fiber boundaries; (3) due to the staining
issue, the boundary pixels are not smooth and continuous,
so it is very difficult to ensure that annotations accurately
label each pixel. It is necessary to reduce the ambiguity for
network training.

We propose a loss function to ameliorate these problems
by assigning different weights to the loss of each pixel. -e
loss function of a training data X, which is based on the
cross-entropy loss, is defined as

J
de

(θ) � 
N

i�1
f Xi(  1 Yi � 1 logPi + 1 Yi � 0 log 1−Pi( ( .

(3)

-e pixelwise weights are defined by the weight-
assigning function f, which is defined as

f Xi(  � C Yi( 
−1

× exp
Ω Xi( 

η1
× 1 Yi −Pi


< η2 . (4)

-e pixelwise weight-assigning function f has three
terms, which play different roles to address the above-
mentioned three problems.-e specific considerations make
our proposed loss different from [16, 30].

In the first term, C(Yi) is the label frequency, which is a
global term having the same value for same-class pixels. In
second term, Ω is the Euclidean distance of pixel Xi to the
boundary of the close cell. Similar to [30], the intention of f is
to assign relatively high weights to pixels adjacent to
boundaries to amplify the error penalty occurred at the
margins and pixels close to fiber boundaries and 1 otherwise
(Ω � 0 if Ω(Xi)> ε ). We set η � 0.6 and ε � 10 empirically.
Compared with the “hard” error-balancing strategy in
[16, 31], f produces soft error penalty so as to encourage
better optimization convergence and enhance fine-grained
prediction. -e third term aims to reduce the reliability of
the ground truth when the network predicts an opposite
label with high probability. -is term is a switch, so it forces
the weight of the corresponding pixel to zero when the
condition is not satisfied. In practice, we preserve this value
during network feedforward, while the loss of the corre-
sponding pixels does not get involved during network
backpropagation.

3.3. Two-Stage Training. Training our deep network has
some common difficulties:

(i) -e large number of parameters in both convolu-
tional layers and deconvolutional layers makes the
training difficult to achieve proper convergence
[15, 41].

(ii) Successful training from scratch requires extensive
labeled data which are extremely difficult to obtain in
medical image domain.

One typical solution is to apply transfer learning to
reduce the training difficulty [41, 42], which reduces the
difficulties of the tricky parameter initialization and
tuning [25, 29] and heavy data acquirement procedure.
-e core idea behind is to use a pretrained model as the

initialization and fine-tune the CNN to make it adapt to
targeting tasks with new training data. -e encoder of our
network partially inherits the architecture of VGG [29],
which is, however, trained on a large set of natural images
for image classification. Transferring its knowledge to
benefit the totally unrelated biological image analysis
problem (i.e., MIS) seems impracticable. However, a re-
cent literature coincides with our experiments. It dem-
onstrates the advantage [41] using various biological
imaging modalities transferring from AlexNet [25], a
relatively shallow CNN for natural image classification. In
terms of our MIS case segmentation, the network archi-
tecture is much more deeper with many new parame-
terized layers in decoders. More specific treatment needs
to be considered.

It is well known that the bottom layers of CNN can
be understood as various feature extractors attempting
to capture the low-level image features such as edges
and corners [25, 37, 41]. Actually, those low-level fea-
tures are common between natural images and muscle
images, of which the most common feature is image
gradients (i.e., boundaries). In practice, we find that
training the network to detect boundaries is relatively
easier than directly training the network to segment
muscle fibres.

We propose a two-stage training strategy to pro-
gressively train our network so as to utilize the powerful
feature extractors of VGG and overcome the above-
mentioned problems. In the first stage, we apply transfer
learning to use pretrained VGG to initialize the param-
eters of the encoder and randomly initialize the param-
eters of decoders. We then train the network to detect
fiber boundaries, which is achieved by feeding the network
with training muscle images associated with the ground
truth boundary map (see Figure 2). -is strategy will
facilitate the network to converge swiftly. After the net-
work becomes adapted to new muscle images, in the
second stage, we fine-tune the model using the original
training data D (i.e., Y is the segmentation mask) to train
the network to automatically segment muscle fibres,
assigning in-cell pixels to 1 and other pixels to 0. More
implementation details are described in the experimental
section.

Another advantage of our proposed training strategy is
that it further helps reduce the touch objects (due to thin
boundaries) problem [30, 34] commonly occurred in end-
to-end CNN segmentation (besides the pixel weight-
assigning function f ). -e strategy of this literature [34] is
to predict both a segmentation map and boundary map and
merge two maps to solve touching glands. While in our
method, the first stage training makes the network detect the
cell boundaries. -e second stage training is able to preserve
this boundary information.

4. Experimental Results

4.1. Dataset. Our expert annotated skeletal muscle image
dataset with H&E staining contains 500 annotated images,
which are captured by the whole-slide digital scanner from
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the cooperative institution Muscle Miner. -e images ex-
hibit large appearance variances in color, fiber size, and
shape. -e image size roughly ranges from 500 × 500 to
1500 × 1500 pixels. We split the dataset into 100 testing
images and 400 training images.

In order to evaluate the proposed method to handle
large-scale images, we evaluate the runtime on a whole-slide
image. Note that we use small image patches for segmen-
tation accuracy evaluation because some comparative
methods in the literature cannot handle whole-slide images.
However, our proposed network is flexible to the input size
during the testing stage because the decoder is able to
adaptively adjust the output size to be consistent with the
input size.

4.2. Implementation Details. Our implementation is based
on the Caffe [40] framework with modifications for our
network design. All experiments are conducted on a
standard desktop with an Intel i7 processor and a single
Tesla K40c GPU. -e optimization is driven by stochastic
gradient descent with momentum. For the first stage
training, the network parameters are set to learning
rate � 1e− 6 (divided by 10 every 1e4 iteration), mo-
mentum � 0.9, and minibatch size � 2. In the second stage,
we use the learning rate � 1e− 7 and keep the others the
same.

Augmenting dataset is a normal step for training CNN.
We apply a simple approach by randomly cropping 30
300 × 300 image patches from each of the training images
to generate totally 1.2e4 training data. We choose this
patch size to take the memory capacity of GPU into ac-
count. Based on our observations, the segmentation ac-
curacy will not be affected by increasing input size of test
images. To simplify the computation of the weighting
function f during training, we take another per-computed
weighting map associated with each training data (X, Y) as
network inputs.

4.3. Segmentation Accuracy Evaluation. For quantitative
evaluation, we report Precision � (|S∩G|/|S|), Recall �

(|S∩G|/|G|), and F1-score � (2 · Prec. · Rec./Prec. + Rec.),
where |S| is the segmented cell region area and |G| is the
corresponding ground truth region area. For each test
image, Precision and Recall are computed by averaging the
results of all fibres inside. We report the three values with a
fixed threshold (FT), i.e., a common threshold produces
the best F1-score over the test set, and dynamic thresholds
(DT) produce the best F1-score per image.

In Table 1, we compare the segmentation performance of
our approach to several state-of-the-art methods. DC [43]
and multiscale combinatorial grouping (MCG) [44] are
recently proposed learning-based image segmentation
methods. U-Net [30] is an end-to-end CNN for biomedical
image segmentation. We use their public codes and carefully
train the models over our training data with the same
amount. DNN-SNM [14] is a well-known CNN-based image
segmentation method. We regard it as a generic CNN for
comparison with our end-to-end CNN approach. For our

method, we directly use the network output as the seg-
mentation results for evaluation without any extra post-
processing efforts.

As shown in Table 1, our method achieves much better
results than comparative methods. Although [7] has better
Recall (FT), our method has around 10% improvement on
Precision (FT). DC and MCG are not robust to the image
artifacts, which decreases their segmentation performance.
Our method largely outperforms DNN-SNM and U-Net
because (1) our network is deeper than DNN-SNM to
capture richer representations, (2) the decoder better
utilizes the multiscale representations than U-Net and is
able to reduce the effects of the pixelwise information loss,
and (3) two-stage training takes advantage of VGG for
better training effectiveness rather than training from
scratch as U-Net does. -e outstanding Precision result
demonstrates that our method produces more fine-grained
segmentation than others. -is superiority is better
demonstrated by the qualitative evaluation as shown in
Figure 4.

4.4. Whole-Slide Segmentation Runtime. In Table 2, we
compare the runtime of our method to the comparative
methods on images of different sizes cropped from a whole-
slide image (see Figure 1). -e runtime of non-deep
learning-based methods (1st block) depends on both pixel
and fiber quantities, so they cannot handle large-scale im-
ages. In contrast, deep learning-based methods (2nd and 3rd
blocks) depend on the pixel quantity, so they have close-to-
linear time complexity with respect to the image scale. We
also implement a fast scanning version [45] of DNN-SNM
on GPU. Although the speed has a large improvement, it is
still much slower than ours. U-Net has more complicated
layer connection configuration, so it is slower than ours,
especially in large-scale cases. -e significant speed im-
provement demonstrates the scalability of our proposed
method to the application of whole-slide MIS with even
larger scales.

5. Conclusion

-is paper presents a fast and accurate whole-slide MIS
method based on CNN trained in the end-to-end manner.
Our proposed network captures hierarchical and compre-
hensive representations to support multiscale pixelwise
predictions inside the network. A two-stage transfer learning
strategy is proposed to train such a deep network. Superior
accuracy and efficiency are experimentally demonstrated on
a challenging skeletal muscle image dataset. In general, our
approach enables multiscaling inside the network, while just
requiring a single arbitrarily sized input and outputting fine
outputs. However, during the downsampling process of the
encoding, due to the limitation of resolution of feature layer
after downsampling, many important features, such as edge
features of cells, are still lost. To further improve decoding
efficiency, in the future work, we can design a module that
complements important features to better improve network
performance.
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Test image Ground truth DNN-SNM Liu et al. [7] Ours

Figure 4: Segmentation results of four sample skeletal muscle images.We show some very challenging cases with large appearance variances
in color, fiber shape, etc. Each segmented fiber is overlaid with a distinctive colored mask while false positives and false negatives are
highlighted by red and blue contours, respectively. Compared with the other two methods, our method obtains more fine-grained
segmentation results with obviously less false prediction.

Table 2: -e runtime (in seconds) comparison on images of different sizes from 1x � 1000 × 1000 to 9x � 9000 × 9000.

Method 1x 2x 3x 4x 5x 6x 7x 8x 9x
DC [43] 20 79 — — — — — — —
MCG [44] 7 27 — — — — — — —
Liu et al. [7] 10 59 — — — — — — —
DNN-SNM [14] 264 1056 2376 4224 6600 9504 12936 16896 21384
DNN-SNM⋆[45] 31 115 242 431 675 974 1325 1738 2160
U-net [30] 1.2 3.9 9.0 16.1 24.6 36.8 48.2 63.3 79.2
Our approach 1.1 1.8 5.3 8.8 13.9 20.9 27.8 36.4 46.8
-e first three methods cannot handle images with 3x and larger sizes on our machine (represented with “—” in the table). ⋆DNN-SNM is a fast scanning
implementation for prediction speed acceleration.

Table 1: -e segmentation results compared with state-of-the-art methods.

Method
F1-score (% ± σ) Precision (% ± σ) Recall (% ± σ)

FT DT FT DT FT DT

DC [43] 48± 0.093 60± 0.138 41± 0.066 54± 0.164 67± 0.194 73± 0.148
MCG [44] 63± 0.201 71± 0.105 53± 0.136 64± 0.138 80± 0.303 82± 0.091
DNN-SNM [14] 76± 0.033 78± 0.080 83± 0.042 85± 0.089 70± 0.058 73± 0.087
U-Net [30] 80± 0.143 81± 0.054 87± 0.155 86± 0.076 74± 0.126 77± 0.055
Liu et al. [7] 82± 0.172 84± 0.061 81± 0.043 84± 0.071 85± 0.202 85± 0.068
Our approach 86± 0.184 89± 0.048 91± 0.174 93± 0.050 82± 0.176 86± 0.058
σ is the standard deviation.
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