
Diabetic retinopathy reflects a compromise of the meta-
bolic, endocrine, and hematological systems. It is estimated 
that 382 million people all over the world had diabetes 
mellitus in 2013. This number is expected to rise to 592 
million by 2035 [1].

Diabetic retinopathy was considered solely a disease of 
retinal vasculature in the past. Neurodegeneration is a compo-
nent of diabetic retinopathy. Chronic loss of retinal neurons 
occurs due to increased frequency of apoptosis and activation 
of glial cells. Vulnerability to neurons exists before any sign 
of vascular damage [2-5]. Retinal neurodegeneration causes 
early microvascular changes that include the breakdown of 
the blood–retinal barrier, vasoregression, and impairment of 
neurovascular interaction [6-10].

Homocysteine is a by-product of transmethylation 
reactions and is detoxified by methionine synthetase, 
which depends on vitamin B12 and folate as coenzymes for 
proper function. Several studies were conducted to find 

correlations between retinal vascular disease and homocys-
teine. Elevated total plasma levels of homocysteine has been 
found to be an independent risk factor for retinal vascular 
occlusive disease [11]. Homocysteine has been found to be 
involved in a complex and dynamic way in vascular injury 
and repair, thus contributing to the development of diabetic 
microangiophathy. Therefore, strategies for controlling the 
level of homocysteine by supplementation with folic acid or 
vitamin B12 may be potential treatment strategies to amelio-
rate neurodegeneration. The present study was conducted to 
evaluate the status of serum levels of vitamin B12, folic acid, 
and homocysteine in diabetic retinopathy and the correlation 
with retinal nerve fiber layer (RNFL) thinning on spectral 
domain optical coherence tomography (SD-OCT).

METHODS

Institutional review board approval was obtained, and the 
study was performed in accordance with the tenets of the 
Declaration of Helsinki. Sample size was calculated to be 80 
according to the standard sample size calculation formula. 
The study was conducted in adherence to the ARVO guide-
lines regarding the ethical use of human subjects in research.
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homocysteine (F = 53.79; p<0.001). The mean serum levels of vitamin B12 and folic acid were found to be within the 
normal reference range. A positive correlation was found between retinal nerve fiber layer thinning and serum levels 
of homocysteine (p<0.001).
Conclusions: This study, for the first time, demonstrated a correlation between increased homocysteine with a decrease 
in RNFL thickness and increased severity of diabetic retinopathy.
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In this tertiary care center–based cross-sectional study, 
60 consecutive cases of type 2 diabetes mellitus and 20 
healthy controls (presenting for refraction) aged between 40 
and 65 years were included after informed voluntary consent 
was obtained. The right eye of the healthy controls was taken 
into consideration. The 60 cases of type 2 diabetes mellitus 
were divided into three groups: patients with diabetes without 
retinopathy (n = 20), patients with non-proliferative diabetic 
retinopathy with macular edema (NPDR; n = 20), and patients 
with proliferative diabetic retinopathy with macular edema 
(PDR; n = 20), based on the Early Treatment Diabetic Reti-
nopathy Study (ETDRS) classification. Level of diabetic reti-
nopathy was graded according to the eye with the more severe 
form of disease. The diagnosis of diabetes mellitus was made 
using American Diabetes Association guidelines [12].

The duration of illness was defined as the duration 
from the time of the diagnosis of diabetes mellitus given 
to the participant until the time of the examination. Exclu-
sion criteria included ocular or systemic diseases affecting 
the retinal vasculature (hypertension), nervous system 
(Alzheimer disease, peripheral neuropathy, glaucoma, 
age-related macular degeneration, end stage renal disease), 
previous intravitreal injection(s), ophthalmic surgical or laser 
interventions, cases on medications, vitamin, or antioxidant 
supplements, and cases with signal strength 5 or below on the 
optical coherence tomography examination.

The examination consisted of an explanation of the study, 
measurement of the blood pressure, refraction and assessment 
of the logMAR best-corrected visual acuity (LogMAR is 
expressed as the decadic logarithm of the minimum angle of 
resolution with 20/20 line equivalent to LogMAR 0.00 and the 
20/200 line to LogMAR 1.0), and slit-lamp biomicroscopy of 
the anterior segment. Further, Goldmann applanation tonom-
etry, gonioscopy, and computerized static perimetry using 
the Full Threshold 24–2 program of the Humphrey perim-
eter (Humphrey Field Analyzer, Zeiss/Humphrey Systems, 
Dublin, CA) were performed.

Fundus examination was performed with slit-lamp 
biomicroscopy with a 90-diopter lens and indirect ophthal-
moscopy. Fundus photography was performed in all cases 
using a Zeiss fundus camera FF 450 Plus with pixel width 
of 0.0054 and image size 2588×1958. Cases showing retinal 
changes were subjected to fundus fluorescein angiography. 
Subsequently, all the study subjects were evaluated using 
SD-OCT (CIRRUS High Definition OCT; Carl Zeiss Meditec 
Inc., Dublin, CA). Every study subject underwent RNFL 
thickness analysis using the optic disc cube 200×200 feature 
(Figure 1). The average retinal nerve fiber layer thickness 
was noted. Macular thickness analysis using the macular cube 

512×128 feature was also performed. The central subfield 
thickness (µm) was noted.

Blood samples were collected from the study subjects 
in the morning after an overnight fasting interval of 6–8 
h. The samples were drawn by vein puncture using a 5 ml 
metal-free plastic syringe fitted with a 24-gauge stainless 
steel needle (Nirlife; Nirma Limited, Sachana, India) under 
contamination-controlled conditions, and the blood samples 
were collected in a 4 ml vacutainer (VAKU-8; Hindustan 
Syringes and Medical Devices Limited; Faridabad, India) that 
contained heparin as an anticoagulant. The volume of the 
samples ranged from 4 ml to 5 ml. For separation of plasma, 
blood was transferred into tubes containing 3.89% trisodium 
citrate in the ratio of 9:1. The citrated blood was centrifuged 
at 200 ×g for 10 min, and the supernatant platelet-rich plasma 
was aspirated out into another plastic tube. All samples were 
stored at −20 °C until the assay was performed. The stan-
dard protocol was maintained during sample collection and 
storage.

Fasting and post-prandial blood glucose levels was 
estimated using the glucose oxidase method [13]. Glycated 
hemoglobin was measured using the Bio-Rad D-10 (Bio-Rad 
Laboratories, Inc., Hercules, CA) that employs the high-
power liquid chromatography cation exchange chromatog-
raphy method. The coefficient of variation (CV%) was 1.93%.

SERUM FOLIC ACID AND VITAMIN B12 ASSAY

The serum folic acid assay was performed using Elecsys 
Folate III (Roche Diagnostics; Indianapolis, IN) assay 
method that employs a competitive test principle using 
natural folate binding protein (FBP) specific for folate. The 
serum vitamin B12 assay was performed using the Elecsys 
Vitamin B12 (Roche Diagnostics) assay method that employs 
a competitive test principle using the intrinsic factor specific 
for vitamin B12.

Serum homocysteine assay: Assay of homocysteine was 
performed using the human homocysteine enzyme-linked 
immunosorbent assay (ELISA) kit (MyBioSource, Inc., San 
Diego, CA). The reagents in the kit were prepared following 
the standard protocol provided with the kit. Human homo-
cysteine standard samples were added to corresponding wells 
(100 μl for each well), and the 0 nmol/ml well was filled with 
standard diluent. Serial dilutions of the homocysteine stan-
dard were performed using 50, 25, 12.5, 6.25, 3.12, 1.56, and 
0.78 nmol/ml concentrations to the standard curve following 
the manufacturer’s instructions and run in parallel. The 
serum sample was diluted ten times with the sample dilution 
for the best detection range of the ELISA kit, and further 
results of the serum levels of homocysteine multiplied by 10. 
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Standard sample diluent (300 µl) was added to each of the 
seven microtiter wells. Diluent (300 µl) was pipetted out from 
one tube to another tube sequentially. The standard sample 
dilution in tube 8 was the negative control. Reaction wells 
were sealed with adhesive tape and incubated at 37 °C for 90 
min. Biotinylated human homocysteine antibody liquid was 
prepared 30 min in advance. The ELISA plate was washed 
three times. Biotinylated human homocysteine antibody 
liquid was added to each well (100 μl for each). Reaction 
wells were sealed and incubated at 37 °C for 60 min. Enzyme-
conjugate liquid was prepared 30 min in advance. The ELISA 
plate was washed three times. Enzyme-conjugate liquid was 
added to each well except the blank wells (100 μl for each). 

The reaction wells were sealed and incubated at 37 °C for 30 
min. The ELISA plate was washed five times. Color reagent 
liquid (100 μl) was added to individual wells (also to the blank 
well) and incubated at 37 °C. When the color of the high 
concentration of the standard curve became darker and the 
color gradient appeared, the hatching was stopped. Color 
Reagent C (100 μl) was added to individual wells (also to 
the blank well) and mixed well. The intensity of the color 
was read over the ELISA plate reader (Synergy HT; BioTek, 
Winooski, VT) at 450 nm. The calibration curve of the stan-
dard homocysteine was plotted against the homocysteine on 
the y-axis and the concentration on absorbance on the x-axis. 
The homocysteine concentration in the serum sample was 

Figure 1. Retinal nerve fiber thickness analysis using optic disc cube 200x200 feature depicting thickness map, thickness deviation, TSNIT 
(Temporal, Superior, Nasal, Inferior, Temporal ) normative data and extracted tomograph of both eyes. The quadrant map shows thinning 
in the superior quadrant of both eyes and thinning in inferior quadrant of left eye.
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calculated based on the standard curve. The standard curve 
was drawn using professional curve software (CurveExpert 
1.3; Hyams Development; Madison, AL) to analyze and 
compute the result. The values are expressed as nmol/ml.

Data are summarized and presented as mean ± standard 
deviation (SD). The continuous variables of the study groups 
were compared with one-factor ANOVA (ANOVA). The 

Kolmogorov–Smirnov test was used to check the normality 
of the data. Distribution of variables such as visual acuity, 
homocysteine, and vitamin B12 was skewed. Therefore, log 
and antilog conversions were made to analyze these vari-
ables. For pair-wise comparison between the groups, the 
Newman–Keuls test for post hoc multiple comparison was 
used. The discrete (categorical) variables were compared 

Figure 2. Box and whisker plot 
graphically represent ing the 
descriptive statistics for serum 
levels of homocysteine among the 
study groups. The horizontal line 
within the box indicates the median, 
boundaries of the box indicate the 
25th- and 75th -percentile, and the 
whiskers indicate the highest and 
lowest values. An increase in serum 
level of homocysteine with increase 
in severity of diabetic retinopathy is 
observed.

Figure 3. Scatter plot showing a 
negative correlation between the 
serum levels of homocysteine and 
the average retinal nerve fiber layer 
thickness observed on Pearson 
correlation analysis.
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with a chi-square (χ2) test. The logMAR vision score of two 
groups (NPDR and PDR) was compared with an independent 
Student t test. Pearson correlation analysis was used to assess 
correlations between the variables. A p value of less than 0.05 
was considered statistically significant. All analyses were 
performed using STATISTICA 6.0 software package (Dell, 
Inc., Round Rock, TX).

RESULTS

Table 1 summarizes the mean age, duration of type 2 diabetes 
mellitus, visual acuity (logMAR), fasting and post-prandial 
blood glucose levels, serum levels of homocysteine, vitamin 
B12, and folic acid, average RNFL thickness, and central sub-
field thickness in the study groups. No statistically significant 
difference in the mean age of the study groups was observed 
(F = 1.404, p = 0.248). The chi-square test revealed similar 
sex proportions among all four groups (male/female: 12/8 
versus 12/8 versus 13/7 versus 10/10, χ2 = 1.152; p = 0.334). 
A statistically significant difference in the mean duration 
of diabetes mellitus of the study groups was observed (F = 
25.95, p<0.001).

The mean glycated hemoglobin in the Control, NoDR, 
NPDR, and PDR groups was 6.21±1.02% (33 to 56 mmol/
mol), 6.39±0.41% (42 to 51 mmol/mol), 8.35±2.53% (40 to 
95 mmol/mol), and 7.95±1.69% (45 to 82 mmol/mol), respec-
tively. The difference in the glycated hemoglobin levels was 
statistically significant between the study groups (F = 8.95; 
p<0.001). Pearson correlation analysis revealed a statistically 
significant correlation between glycated hemoglobin and 
homocysteine (r = 0.231; p=0.039), vitamin B12 (r = –0.363; p 
= 0.001), folic acid (r = –0.358; p = 0.001), and average RNFL 
thickness (r = –0.357; p = 0.001). The mean blood pressure 
(systolic/ diastolic) levels in the Control, No DR, NPDR, and 
PDR groups were 114/74, 126/78, 134/82, and 144/86 mmHg, 
respectively.

In the comparison of visual acuity, ANOVA revealed a 
statistically significant difference in visual acuity in each 
group (F = 47.192, p<0.0001).

The ANOVA showed that the difference in the serum 
levels of homocysteine was statistically significant between 
the study groups (F = 53.79; p<0.001; Figure 2). The ANOVA 
also showed that the difference in average RNFL thickness 

and central sub-field thickness was statistically significant 
between the study groups (p<0.001 and p<0.001, respec-
tively). The serum levels of folic acid and vitamin B12 were 
observed to be within the normal reference range (2–20 ng/
ml and 200–900 pg/ml, respectively).

Pearson correlation analysis revealed a statistically 
significant negative correlation between homocysteine with 
average RNFL thickness (r = –0.315; p = 0.004; Figure 3; 
Table 2) and a positive correlation with central sub-field 
thickness (r = 0.240; p = 0.032).

DISCUSSION

This study was conducted to determine the correlation 
between the serum levels of homocysteine, vitamin B12, 
and folic acid and alterations in RNFL thickness in cases 
of diabetes mellitus. A previous study by Corrêa et al. [14] 
found an association between a risk factor such as the dura-
tion of diabetes mellitus and the severity of retinopathy. In 
the present study, a statistically significant difference existed 
among the study groups in the comparison of the duration of 
diabetes. It was concluded that increased duration of diabetes 
mellitus is associated with the increased severity of diabetic 
retinopathy. In this study, visual acuity was found to decrease 
with the increase in the severity of retinopathy. This finding 
is in accordance with Alkuraya et al.’s findings [15].

Homocysteine is a by-product of transmethylation reac-
tions and is detoxified by methionine synthetase, which 
depends on vitamin B12 and folate as coenzymes for proper 
function. The role of homocysteine has been induced in 
several microvascular complications of diabetes mellitus, 
including diabetic retinopathy.

Impaired activity of the enzyme methylenetetrahydro-
folate reductase raises the plasma levels of homocysteine 
[16]. Vaccaro et al. found significantly raised fasting plasma 
levels of homocysteine in patients with diabetes mellitus with 
microalbuminuria or proliferative retinopathy that were not 
attributable to confounders, such as age, sex, smoking, or 
dissimilar plasma folate and vitamin B12 concentrations [17]. 
Several other studies also reported a statistically significant 
increase in the total plasma level of homocysteine and a statis-
tically significant decrease in the serum levels of vitamin B12 
and folic acid in diabetic retinopathy [18-28]. However, other 
studies found a statistically insignificant association [29,30].

Our study demonstrated that the difference in the serum 
level of homocysteine was statistically significant between 
the study groups. Although the mean serum levels of folic 
acid and vitamin B12 among the cases were found to be within 
the normal reference range, the values were on the lower side 

Table 2. Summary of pearSon correlaTion 
analySiS of Serum homocySTeine wiTh average 

reTinal nerve fiber layer ThickneSS.

Study variables Pearson correlation  analysis
Average RNFL thickness (r=-0.315; p=0.004)
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of normal. The mean serum levels of folic acid and vitamin 
B12 in the controls were found to be on the higher side of the 
normal reference range. It can be concluded that increased 
serum levels of homocysteine are associated with increased 
severity of diabetic retinopathy.

The mechanism of action of homocysteine leading to 
retinal neurodegeneration has been studied in several animal 
models. Several studies suggested that homocysteine induces 
apoptosis in retinal ganglion cells with the expression of Bax 
(Bcl-2-associated X protein), a proapoptotic protein, as it 
was found in increased levels in diabetic retinas [31,32]. In 
addition, increased levels of terminal nick-end labeling posi-
tive cells that correlated with increased levels of caspases 
(the enzymes involved in apoptosis) in the neural retinas of 
diabetic rats have been found [33]. Ganapathy et al. concluded 
that homocysteine-induced ganglion cell loss involves the 
dysregulation of mitochondrial dynamics, in vivo and in vitro 
[34].

Several studies proposed another mechanism. Glutamate 
is the major excitatory amino acid in the brain and the retina. 
Disruption of glutamate homeostasis in the diabetic retina 
initiates the development of diabetic retinopathy [35-37]. 
The major cause of neuronal cell death following glutamate-
induced activation of N-methyl D-aspartate (NMDA) recep-
tors is generation of free radicals that induce apoptosis [38]. 
Therefore, strategies for decreasing the level of extracellular 
glutamate or inhibiting the activation of NMDA receptors 
may decrease neurotoxicity and cell death [37]. In vitro 
studies of retinal ganglion cells and in vivo studies in the 
brain suggest that homocysteine acts as an agonist at the 
glutamate site of NMDA receptors [39,40].

Multifocal electroretinography, f lash electroretinog-
raphy, contrast sensitivity, color vision, and short-wavelength 
automated perimetry have demonstrated functional deficits 
in the neuronal component of the diabetic retina [41,42]. 
Our study for the first time provides clinical evidence of a 
correlation between increased serum levels of homocysteine 
and RNFL damage in an in vivo human diabetic retina. 
The difference in the average RNFL thickness levels was 
statistically significant between the study groups. Increased 
severity of retinopathy was associated with decreased average 
RNFL thickness that can be attributed to increased levels of 
homocysteine.

The severity of diabetic retinopathy has been reported 
to correlate with macular thickness parameters on SD-OCT. 
Mean macular thickness, retinal thickness, foveal thickness, 
and central macular thickness have been shown to correlate 
with the severity of diabetic retinopathy [43,44]. A recent 
study we conducted demonstrated that central sub-field 

thickness is associated with the severity of diabetic retinop-
athy [45]. Results of the present study are also in concordance 
with the findings of this previous research.

Conclusions: The novelty of our study lies in the demon-
stration of a correlation between increased serum levels of 
homocysteine and in vivo retinal nerve fiber layer thinning 
in the human diabetic retina. A correlation between increased 
serum levels of homocysteine and increased severity of reti-
nopathy was also found.
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