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Abstract: Air pollution health studies often use outdoor concentrations as exposure 

surrogates. Failure to account for variability of residential infiltration of outdoor pollutants 

can induce exposure errors and lead to bias and incorrect confidence intervals in health 

effect estimates. The residential air exchange rate (AER), which is the rate of exchange of 

indoor air with outdoor air, is an important determinant for house-to-house (spatial) and 

temporal variations of air pollution infiltration. Our goal was to evaluate and apply 

mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and 

Effects of Urban Air Pollutants Study (NEXUS), a cohort study of traffic-related air 

pollution exposures and respiratory effects in asthmatic children living near major roads in 

Detroit, Michigan. We used a previously developed model (LBL), which predicts AER 
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from meteorology and questionnaire data on building characteristics related to air leakage, 

and an extended version of this model (LBLX) that includes natural ventilation from open 

windows. As a critical and novel aspect of our AER modeling approach, we performed a 

cross validation, which included both parameter estimation (i.e., model calibration) and 

model evaluation, based on daily AER measurements from a subset of 24 study homes on 

five consecutive days during two seasons. The measured AER varied between 0.09 and 

3.48 h−1 with a median of 0.64 h−1. For the individual model-predicted and measured AER, 

the median absolute difference was 29% (0.19 h-1) for both the LBL and LBLX models. 

The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. 

Daily AER predictions for all 213 homes during the three year study (2010–2012) showed 

considerable house-to-house variations from building leakage differences, and temporal 

variations from outdoor temperature and wind speed fluctuations. Using this novel 

approach, NEXUS will be one of the first epidemiology studies to apply calibrated and 

home-specific AER models, and to include the spatial and temporal variations of AER for 

over 200 individual homes across multiple years into an exposure assessment in support of 

improving risk estimates.  

Keywords: air exchange rate modeling; air pollution; health; exposure 

 

1. Introduction 

Numerous air pollution epidemiology studies have found associations between ambient 

concentrations and adverse health effects [1,2]. Due to various challenges with personal exposure 

measurements (e.g., cost, participant burden), these health studies often use outdoor air monitors as 

exposure surrogates, which can: (1) introduce negative bias in health effect estimates due to time spent 

in indoor microenvironments with ambient-source pollutant concentrations that can be substantially 

attenuated from outdoor levels [3,4], and (2) increase confidence intervals of health effect estimates by 

not accounting for building-to-building and temporal variability of this attenuation [4]. To help 

improve health effect estimates, we are developing an air pollution exposure model for individuals 

(EMI) in health studies [5–8]. The EMI predicts personal exposures based on outdoor concentrations, 

meteorology, questionnaire information (e.g., building characteristics, occupant behavior related to 

building operation), and time-location information. A critical aspect of EMI is the air exchange rate 

(AER) of individual homes, which is the rate of exchange of indoor air with outdoor air. In addition, 

AERs have been applied as a covariate or modifying factor in air pollution epidemiology studies, 

showing the importance of this variable [9,10].  

This study addresses the cross-validation and application of residential AER models, and specifically 

the AER predictions for the Near-Road Exposures and Effects of Urban Air Pollutants Study 

(NEXUS) [5]. The goal of NEXUS is to examine traffic-related air pollution exposures and respiratory 

effects in asthmatic children living near major roads in Detroit, Michigan (MI).  

The AER affects both the steady-state (i.e., long-term average) and dynamic (i.e., time-varying) 

behaviors of indoor air pollutant concentrations, and the resulting exposures [11]. For example,  
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assume that outdoor concentrations, Cin_ss are under steady-state conditions (i.e., short-term changes of 

concentrations are considered negligible compared with long-term average concentrations), then the 

steady-state indoor concentrations of outdoor-generated air pollutants Cin_ss can be described by: 

Cin_ss = Finf × Cout_ss      (1) 

where Finf is the fraction of Cout_ss that enters and remains airborne indoors (infiltration factor) defined as:  

Finf = P × AER/(AER + kd)     (2) 

where P is the penetration coefficient, and kd is the indoor loss rate. Setting P = 0.9 and kd = 1.0 h-1 

based on reported values for particulate matter (diameter = 2.5 µm; PM2.5), Cin_ss for a tight (AER = 0.1 h-1) 

and leaky (AER = 3.0 h-1) building is 0.08 and 0.68 times Cout_ss, respectively. Therefore, the AER can 

substantially affect Cin_ss. Furthermore, studies examining particulate matter show that the AER can 

explain a substantial amount of the variability of Finf [12–14]. For time-varying outdoor concentrations 

Cout (e.g., traffic), indoor concentrations Cin can be described by the dynamic mass balance equation: 

dCin/dt = P × AER × Cout – (AER + kd) × Cin    (3) 

Measurements of Cout and Cin for time-varying traffic pollutants show that the dynamic behavior of 

Cin depends on the AER [15]; for example, Cin increases more slowly and reaches lower peak levels 

for tighter buildings [16].  

For gaseous pollutants with kd > 0 (e.g., ozone), Finf depends on AER [17]. For gases with 

negligible kd (e.g., carbon monoxide) compared with AER, Cin_ss can be considered independent of the 

AER based on Equation (2) (Finf = P) [18]. However, for outdoor pollutants that vary with time  

(e.g., traffic), time-varying Cin (Equation (3)) depends on AER even when kd is negligible  

compared with AER [15]. 

A residential AER model has several benefits for exposure assessments in health studies.  

First, the AER is a key determinant for the entry of outdoor-generated air pollutants and the removal of 

indoor-generated air pollutants [11,19]. Since people in the United States spend approximately 66% of 

their time indoors at home [20,21], the residential AER is a critical parameter for air pollution 

exposure models. Costs and participant burden often limit the number of AER measurements. 

Therefore, a residential AER model integrated within exposure models can be a feasible method to 

predict exposure metrics for epidemiological analysis. Second, an AER model can reduce the 

uncertainty of exposure models by accounting for factors that influence the house-to-house (spatial) 

and temporal variability of the AER. These factors include the physical driving forces of the airflows 

(e.g., indoor-outdoor temperature differences, wind speed), building characteristics (e.g., local wind 

sheltering, building height, tightness of the building envelope), and occupant behavior (e.g., opening 

windows). Spatial and temporal differences in weather, building characteristics, and occupant behavior 

can produce substantial AER variations. The resulting spatial and temporal variations in exposure may 

help explain the impact of AER for individuals with exceptionally high and low exposures.  

Also, predicting the AER variability can help reduce exposure misclassifications, and the resulting 

errors in health effect estimates.  

Various AER models are described in the literature [11]. The Lawrence Berkeley Laboratory (LBL) 

model is widely used to predict residential AER [22]. The LBL model predicts the AER due to airflow 

through small unintentional openings (i.e., leakage), but does not account for the airflow through large 
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controllable openings (i.e., natural ventilation), such as open windows. Previously, we addressed this 

limitation by extending the LBL model (LBLX) to predict natural ventilation airflow [7]. In this study, 

we used the previously developed LBL and LBLX models, which were linked with a leakage area model, 

to predict the AER from questionnaire and weather data [7]. The LBL model was used for all homes, 

and the LBLX model was used for a subset of homes with window opening data, as described below. 

The NEXUS design includes the development of various tiers of modeled exposure metrics for 

traffic-related air pollutants, and the use of measurements from a subset of homes for model calibration 

(i.e., parameter estimation) and evaluation [5]. This paper focuses on modeling the residential AER. 

We used NEXUS questionnaires and airport weather data as inputs for the AER models,  

and AER measurements from a subset of homes for parameter estimation and model evaluation. 

Below, we first describe the NEXUS design, and then describe the AER models, methods for 

parameter estimation and model evaluation, and development of daily AER predictions for the  

three year health study.  

2. Methods 

2.1. NEXUS Design  

NEXUS was designed to examine the relationship between exposures to traffic-related air 

pollutants and respiratory outcomes in a cohort of children with asthma living near major roads in 

Detroit, MI, USA [5]. For this community-based participatory research study, children from 6 to 14 years 

of age with asthma or symptoms of asthma were recruited based on the proximity of their home to 

major roads according to three traffic categories: (1) high diesel/high traffic (HTHD), (2) high traffic/low 

diesel (HTLD), and (3) low traffic/low diesel (LTLD) [5]. A total of 147 children participated in the 

study from September 2010 to December 2012. Since children moved during the study, a total of  

213 residences were considered, which included 203 detached homes, nine apartments,  

and one townhome. The study population consisted of 98 homes in the high traffic categories  

(52 in HTHD, 46 in HTLD) and 115 homes in the low traffic category (LTLD).  

An overview of the exposure assessment method in NEXUS has been previously described [5]. 

Residential indoor, residential outdoor, school outdoor, and near-highway air monitoring was 

performed during two seasonal intensive field sampling periods: 25 September to 11 November 2010 

(Fall 2010) and 28 March to 4 May 2011 (Spring 2011). The fall and spring are peak seasons for 

respiratory viruses that can induce asthma symptoms. A subset of 24 homes was selected for 

residential monitoring during the seasonal intensives based on the traffic characteristics of nearby 

roads, and consisted of 12 homes in the high traffic categories (seven in HTHD, five in HTLD) and  

12 homes in the low traffic category (LTLD). A maximum of four residences were monitored 

simultaneously during a five day period. 

Daily 24 h average AERs were measured for five consecutive days during the season intensives in 

the 24 homes using a perfluorocarbon tracer (PFT) method [23,24]. The Brookhaven National 

Laboratory (BNL, Upton, NY, USA) prepared the tracer sources and receptor tubes, and provided 

guidance on the number of tracers sources required in each home. Sources were placed in the homes 

24 h before the first day of measurement to allow for sufficient distribution. The reported accuracy 

(based on known AER), precision (based on replicate measurements), and limits on the PFT-derived 
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AER measurements for occupied homes are estimated to be 20%–25%, 5%–15%, and 0.2–5.0 h−1, 

respectively [19,25,26].  

These AER measurements were used for parameter estimation and evaluation of the AER  

model, as described below. Input data for the AER models were obtained for meteorology,  

housing characteristics, household income, and occupant behavior. Meteorological measurements 

included local airport temperature and wind speed. During the seasonal intensives on days with 

residential measurements, indoor temperatures were measured and occupants recorded when certain 

activities related to housing operation were performed, including opening windows. 

2.2. AER Model Overview  

The exchange of outdoor air with air inside occupied spaces of buildings can be separated into three 

categories: leakage, natural ventilation, and mechanical ventilation [19]. Leakage is the airflow 

through unintentional openings in the building envelope (e.g., small cracks around windows,  

exterior doors, joints between exterior walls and floors). Natural ventilation is the intentional airflow 

through controlled openings in the building envelope (e.g., open windows and doors).  

Mechanical ventilation is the airflow induced by outdoor-vented fans. For this study, we used two 

AER models, one model that includes leakage (LBL) and another model that includes both leakage and 

natural ventilation (LBLX) [7,11]. Mechanical ventilation was not considered since detailed 

information on the specific type and operation of outdoor-vented fans was unavailable from NEXUS. 

The driving mechanism for airflows are pressure differences across the building envelope [11,19]. 

The pressure differences for leakage and natural ventilation are driven by indoor-outdoor temperature 

differences (stack effect) and wind (wind effect). For this study, the LBL and LBLX models include 

the stack and wind effects based on local airport temperature and wind speed, and building 

characteristics (e.g., building height and wind sheltering from nearby structures) that modify the stack 

and wind effect-driving forces.  

Mechanistic AER models, which account for the physical driving forces of the airflows (i.e., stack and 

wind effect) can be classified as single-zone and multizone models [11]. Single-zone models predict 

the AER for a whole building represented as a single, well-mixed compartment. Multizone models are 

required for buildings that need to be represented by a series of interconnected compartments with distinct 

pressures and temperatures. The LBL and LBLX models are single-zone models that are appropriate for 

buildings with no internal resistance to airflow, such as the homes included in this study. 

We developed a computer simulation for the LBL and LBLX models linked to a leakage area 

model. First, parameters for the leakage area model were estimated using the LBLX model and the 

AER measurements and window opening data from a subset of homes. Then, daily (24 h average) 

AER predictions were developed for every home for the three year health study. Since window 

opening data was not available for the three year study, we used the LBL model to develop AER 

predictions for the health study. Below, we first describe the AER models, and the method for 

parameter estimation and model evaluation. The complete method and subsequent analysis were 

implemented using MATLAB software (version R2014a, Mathworks, Natick, MA, USA).  
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2.3. LBL Leakage Model 

The LBL and LBLX models were previously described and evaluated for homes in central  

North Carolina [7]. Briefly, the LBL model predicts the AER due to leakage, and assumes the building 

is a single, well-mixed compartment. The leakage airflow QLBL is calculated as: = | − | +     (4) 

where Aleak is the effective air leakage area, ks is the stack coefficient, kw is the wind coefficient,  

Tin and Tout are the average indoor and outdoor temperatures over time interval of calculation, 

respectively, and U is the average wind speed over time interval of calculation. The stack and wind 

effects are the first and second terms within the square root in Equation (4), respectively. The AER is 

calculated as QLBL divided by the building volume V. 

The AER has two parameters (ks and kw) and five inputs (Aleak, Tin, Tout, U, and V). Parameters ks 

and kw were set to literature-reported values based on house-specific information on house height 

(number of stories) and local wind sheltering (Supplementary Material Table S1–S3). The number of 

stories and local wind sheltering were determined from aerial and street-level images in Google Earth 

(version 7.1.2.2041; Google, Mountain View, CA, USA). We used house numbers visible in  

street-level images to verify the study participant homes. To determine V, we multiplied the floor area 

Afloor by the measured ceiling height (typically 2.44 m, 8 ft). The Afloor were both measured and obtained 

from online city and real estate databases of property records (BS&A Software, Bath, MI, USA; 

Zillow, Seattle WA, USA; Trulia, San Francisco, CA, USA).  

We determined Tout and U (10 m elevation) from hourly measurements at the Detroit Metro Airport 

in Detroit, MI, USA. For parameter estimation, we calculated the 24 h average Tout and U time-matched  

to the 24 h average AER measurements. To develop AER predictions for all homes across the  

three year study period, we used hourly Tout and U to predict hourly AER, and then calculated daily  

(24 h average) AER.  

We determined Tin from continuous (5 min) indoor measurements. For parameter estimation,  

we calculated the 24 h average Tin time-matched to the 24 h average AER measurements. For developing 

AER predictions for all homes across the three year study period, we set Tin to the 24 ºC, which is the 

overall median of 1 h average Tin from a subset of 59 homes across 6 seasons. We used a constant 

value for Tin since the seasonal medians of the Tin did not vary substantially (24, 24, 24, 25, 23, 23 ºC 

in fall 2010, winter 2010, spring 2011, summer 2011, fall 2011, winter 2011; respectively). 

We estimated Aleak with a literature-reported leakage area model [7,27]. The Aleak is calculated as: 

Aleak = NL/NF       (5) 

where NL is the normalized leakage and NF is the normalization factor. Using a classification tree 

analysis, Chan et al. determined the most important factors associated with normalized leakage were 

year built Ybuilt, floor area Afloor, and housing type (e.g., low-income homes, conventional homes) [27]. 

Their analysis was based on homes built between 1895 and 2000, which is similar to NEXUS homes 

built between 1888 and 2007 (Table S4). Therefore, NL is defined as:  

NL = exp(β0 + β1Ybuilt + β2Afloor)      (6) 
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where β0, β1, and β2 are the regression parameters. In addition, one set of regression parameters are 

estimated for low-income homes, and another set of parameters for conventional homes. The NF is 

defined as: 

NF = (1000/Afloor) × (H/2.5)0.3    (7) 

where H is the building height. We set H to the number of stories multiplied by a story height of 2.5 m 

and adding a roof height of 0.5 m [7]. The Afloor was obtained as described above and Ybuilt was 

obtained from online city and real estate databases of property records (BS&A Software, Bath, MI, 

USA; Zillow, Seattle WA, USA; Trulia, San Francisco, CA, USA).  

2.4. LBLX Leakage and Natural Ventilation Model 

The LBLX model predicts the AER due to leakage and natural ventilation. The airflow is calculated as:  = +      (8) 

where QLBL is the leakage airflow as defined above, and Qnat is the natural ventilation airflow through 

open windows [7]. The AER is calculated as QLBLX divided by V.  

The airflow for natural ventilation Qnat is calculated as: = _ + _  (9) 

where Qnat,wind and Qnat,stack are the airflows from the wind and stack effects, respectively. The Qnat_wind 

is defined as: 

Qnat_wind = CvAnatU     (10) 

where Cv is the effectiveness of the openings, and Anat is the area of the inlet openings. Using the  

literature-reported method, we set Cv to 0.30 and Anat to one-half of the total area of window  

openings [7]. We calculated the 24 h average total area of window openings from daily window 

opening data (number of windows opened multiplied by fraction of day) multiplied by window opening 

area of 0.06 m2 (derived from literature-reported window width of 0.6 m and height of 0.1 m) [7].  

The Qnat,stack is defined as:  

_ = 	 ,     (11) 

where CD is the discharge coefficient for the openings, g is the gravitational acceleration, ΔHNPL is the 

height from midpoint of lower window opening to the neutral pressure level (NPL) of the building,  

and max{Tin, Tout} is the maximum value between Tin and Tout. Using literature-reported values,  

we set CD to 0.65, the midpoint of lower window opening to 0.91 m, and the NPL to one-half of the 

building height [7]. The building height is set to the number of stories multiplied by a story height  

of 2.5 m and adding a roof height of 0.5 m. 

2.5. Parameters for Aleak and Cross Validation 

We estimated the parameters (β0, β1, and β2) for Aleak (Equation (6)) using the AER measurements. 

The subset of homes with measured AERs consisted of a cluster of 23 older homes built between 1900 

and 1969 (median 1942), and one newer home built in 1997 (Supplementary Material Figure S1). 
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Since the cluster of 23 homes were substantially older than the home built in 1997, we used the cluster 

of 23 homes for parameter estimation. We then applied the estimated parameters for all homes built in 

1979 or before. For homes built after 1979, we used literature-reported parameters [7]. This cutoff of 

1979 was based on 10 years after 1969, which is the upper range of the cluster of homes used for 

parameter estimation.   

The literature-reported parameters (β0, β1, β2) were previously estimated for low-income homes and 

conventional homes [7,27]. Low-income homes are residences with household incomes below 125% 

of the poverty guideline. In this study, household incomes were collected for all homes.  

We performed a leave-one-home-out jackknife method to estimate parameters (β0, β1, β2) and cross 

validation for model evaluation [28–30]. Since the subset of homes with AER measurements had daily 

window opening data, the LBLX model was used for parameter estimation, and both the LBLX and 

LBL models were evaluated. We estimated parameters with a subsample of data (training sample) and 

evaluated the models with the remaining data (validation sample). We removed all samples from one 

home at a time (validation sample) and estimated parameters with the remaining subsample of data 

(training sample). We then evaluated the models with the validation sample. This process was 

performed independently for the low-income homes (n = 17) and conventional homes (n = 6) to yield 

two sets of parameters. Each of the 23 homes was used as a validation sample to yield 17 and  

6 parameter sets for low-income and conventional homes, respectively. The jackknife estimates were 

then determined for the low-income homes and the conventional homes (Supplementary Material). 

The leave-one-home-out jackknife method was used for parameter estimation to account for repeated 

AER measurements at the homes. 

Each parameter set was estimated using the least-squares method. Let Y(x, d; β) be the LBLX 

model-predicted AER in the xth home on the dth day with parameter set β = (β0, β1, β2). Let Yx,d be the 

measured AER in the xth home on the dth day. Then, the least squares estimate, β* = (β0*, β1*, β2*) is 

the parameter values β which minimize the cost function: = ∑ ∑ 	 ( , ; ) − ,     (12) 

where N is the number homes, and M is the number of days with AER measurements in the xth home.  

Parameters were estimated with an iterative optimization algorithm. We chose the Nelder-Mead 

simplex method for its relative insensitivity to the initial parameters values compared with other 

common methods, such as Newton’s method, and its robustness to discontinuities [31]. Initial parameter 

values were set to literature-reported parameters [7]. Convergence to the solution was confirmed after 

the parameter search terminated.  

2.6. Model Evaluation Metrics 

For model evaluation, we evaluated the differences between individual model-predicted AER 

( ( , ; *)) and measured AER ( , ) using two metrics: relative difference ε (%) and absolute 

difference Δ (1/h). These metrics are calculated as:  ε = 100 ( , ; *) ,,      (13) 

Δ = ( , ; *) − ,      (14) 
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The absolute difference Δ provides the amount of deviation, and the relative difference ε indicates 

whether Δ is small or large relative to the measured AER. However, for measured AER with low 

values, a minor deviation could yield a large ε. In this case, Δ is more meaningful than ε for model 

evaluation. Therefore, both ε and Δ are used in this study. A positive value for ε and Δ indicates that 

the model overestimated the measured AER, while a negative value indicates underestimation.  

Since ε and Δ indicate the bias (i.e., overestimation or underestimation), we also calculated the 

absolute values |ε| and |Δ| to quantify the magnitude of deviation.  

To compare the modeled and measured AER, we also calculated Pearson and Spearman correlation 

coefficients. To account for the repeated AER measurements at the homes, we calculated weighted 

correlation coefficients [32]. First, each measurement and model prediction for a given home is 

replaced with the average value for that home. Then, the correlation coefficients were calculated from 

the revised values. To determine the amount of variation explained by the AER models, we calculated 

the coefficient of determination (R2) as defined by the square of the Pearson correlation coefficient.  

We also investigated the AER by road type since the AER could vary between road types due to 

differences in building characteristics that impact the leakage area (e.g., year built, floor area,  

housing type), and the stack and wind effects (e.g., number of stories, wind sheltering).  

Also, we plan to apply the AER models to predict indoor home concentrations of traffic-related 

pollutants, and examine the concentration differences between the road types. Therefore, understanding 

the AER for each road type will help determine the influence of the AER on the pollutant 

concentrations for each road type.  

3. Results 

For the subset of 24 homes with AER measurements, summary statistics are provided for the 

number of homes, number of days windows opened, daily measured AER in the two seasons and three 

road type classifications (Table 1), and building characteristics (Supplementary Material Table S4). 

Across the 24 homes in the fall and spring, the measured AER varied between 0.09 h−1 (minimum) to 

3.48 h-1 (maximum) with a median of 0.64 h-1. Between the fall and spring, there was no substantial 

difference in the median AER (0.63 h−1 in fall, 0.67 h−1 in spring). For the road types, the median AER 

were highest for HTHD (0.79 h−1) and lowest for HTLD (0.49 h−1).  

The estimated leakage area (Aleak) model parameters for older homes are shown in Table 2.  

The literature-reported parameters β0 (low-income and conventional), β1 (low-income) and  

β1 (conventional) for newer homes (Table 3) were different (at 95% confidence level) from the 

corresponding estimated parameters for older homes (Table 2).  

3.1. Model Evaluation  

Overall, the modeled AERs matched the AERs measured in fall 2010 and spring 2011. Summary 

statistics are provided for the distributions of the modeled and measured AER (Table 1, Supplementary 

Material Table S5 and S6). For the LBLX model, the modeled and measured AER had similar overall 

medians of 0.64, 0.65 h−1, 25th percentiles of 0.45, 0.42 h−1, and 75th percentiles of 0.99, 0.99 h−1, 

respectively. For the LBL model, the AER had overall median of 0.64 h−1, 25th and 75th percentiles of 

0.43 and 0.97 h−1, respectively, which were slightly lower than the LBLX model.  
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Scatter plots of the modeled and measured AER for each home are shown (Figure 1, Supplementary 

Material Figure S2). Overall, the weighted Pearson and Spearman correlation coefficients were  

0.78 (R2 = 0.61) and 0.81 for the LBLX model, and 0.77 (R2=0.59) and 0.79 for the LBL  

model, respectively.  

Table 1. Number of homes, number of days windows opened, and summary statistics for 

measured 24 h average air exchange rates. 

Season:  

Year 1 or 

Road Type 

Classification 

of Home 

Number 

of 

Homes 

Number 

of Days 

Windows 

Opened 2 

Air Exchange Rates (h−1) 

Sample 

Size 
Mean SD Min p5 p10 p25 p50 p75 p90 p95 Max 

Fall 2010 24 19 (16%) 119 0.74 0.56 0.09 0.12 0.17 0.41 0.63 0.97 1.21 1.69 3.48 

Spring 2011 17 9 (12%) 78 0.83 0.48 0.25 0.32 0.35 0.45 0.67 1.06 1.66 1.81 2.05 

HTHD 3 7 12 (22%) 55 1.00 0.73 0.11 0.14 0.39 0.53 0.79 1.17 2.01 2.70 3.48 

HTLD 3 5 2 (5%) 44 0.65 0.41 0.09 0.13 0.16 0.35 0.49 0.96 1.18 1.52 1.82 

LTLD 3 12 14 (14%) 98 0.70 0.39 0.09 0.20 0.25 0.43 0.64 0.91 1.23 1.51 1.80 

All 24 28 (14%) 197 0.77 0.53 0.09 0.16 0.25 0.42 0.64 0.99 1.43 1.81 3.48 

Notes: 1 Fall: September, October, and November; spring: March, April, and May; 2 Percentage of days 

windows opened relative to corresponding sample size are shown in parentheses; 3 HTHD: high traffic high 

diesel, HTLD: high traffic low diesel, LTLD: low traffic low diesel. 

Table 2. Estimated leakage area model parameters for older homes (built in 1979 or before). 

House-Type 
Parameter 

1 
Description Estimate (95% CI) 

Low-income 

β0 Intercept 6.55 × 101 (2.90 × 101, 1.02 × 102) 

β1 Year built −3.40 × 10−2 (−5.29 × 10−2, −1.51 × 10−2) 

β2 Floor area −7.33 × 10−4 (−9.34 × 10−3, 7.88 × 10−3) 

Conventional 

β0 Intercept 5.69 × 101 (1.77 × 101, 9.62 × 101) 

β1 Year built −2.91 × 10−2 (−4.91 × 10−2, −9.07 × 10−3) 

β2 Floor area −5.65 × 10−3 (−1.39 × 10−2, 2.58 × 10−3) 

Note: 1 β0 and β1 are dimensionless, β2 expressed in units of m−2. 

Table 3. Literature-reported leakage area model parameters for newer homes (built after 1979). 

House-Type Parameter 1 Description Value 

Low-income 

β0 Intercept 11.1 

β1 Year built −5.37 × 10−3  

β2 Floor area −4.18 × 10−3 

Conventional 

β0 Intercept 20.7 

β1 Year built −1.07 × 10−2 

β2 Floor area −2.20 × 10−3 

Note: 1 β0 and β1 are dimensionless, β2 expressed in units of m−2. 
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Figure 1. Scatter plots of the LBLX (top) and LBL (bottom) model-predicted and 

measured AER for each home. The points are average AER values for each home.  

Points above and below the 1:1 line indicate model overestimation and  

underestimation, respectively.  

 

 

A comparison of the individual modeled and measured AERs is shown for each season, road type, 

and overall (Figure 2, Supplementary Material Figure S3). Overall, the LBLX and LBL showed 

similar results with the same median |ε| of 29%, and median |Δ| of 0.19 h−1. The LBLX and LBL 

models also showed similar |ε| quartiles for each season and road type. The LBLX model generally 

overestimated the AER with overall median ε of 6% and median Δ of 0.03 h−1 (Supplementary 

Material Figure S3). The LBL model also tends to overestimate the AER, but with a slightly smaller 

overall median ε of 5%. For the HTHD road type, the LBLX and LBL models underestimated the AER 

with overall median ε of −14% and −17%, respectively. For the two seasons and the HTLD and LTLD 

road types, the LBLX and LBL model tended to overestimate the AER.  

1:1 Line 
LBL 

LBLX
1:1 Line



Int. J. Environ. Res. Public Health 2014, 11 11492 
 

Figure 2. Comparison of absolute differences |Δ| (A) and relative differences |ε| (B) 

between individual modeled and measured AER for each model. Results are separated by 

season, road type, and across all days. Sample sizes are provided in Table 1. Shown are 

medians with 25th and 75th percentiles.  

 

We evaluated the models for the older homes and the one newer home (Figure 3, Supplementary 

Material Figure S4). For the older homes, the LBLX and LBL models showed similar results with 

overall median |ε| of 29% and 29%, and median ε of 6% and 5%, respectively. Since windows were 

not opened in the newer home, the LBLX and LBL models had identical results with median |ε| of 

17% and median ε of 6%. 

A comparison of the individual modeled and measured AERs is shown for different window 

opening status (Figure 3, Supplementary Material Figure S4). The LBLX and LBL models are 

equivalent for days with windows closed, and therefore show identical results with median |ε| of 29% 

and median ε of 6%. For days with windows opened, the LBLX and LBL models showed similar 
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results with identical overall median |ε| of 26%, and median |Δ| of 0.24 h−1. However, the LBLX model 

tends to bias the AER less than the LBL model with ε medians of 1% and −14%, respectively.  

Figure 3. Comparison of absolute differences for |Δ| (A) and relative differences |ε| (B) 

between individual modeled and measured AER for the LBLX and LBL models.  

Results are separated by house age and window status. Sample sizes for 23 older homes 

and one newer home are 192 and 5, respectively, and for windows closed and open are  

169 and 28, respectively. Shown are medians with 25th and 75th percentiles.  

 

3.2. Model Predictions for NEXUS  

For applying the LBL model for the health study, we predicted the daily AER (24 h average) for all 

213 homes across three years. Summary statistics are provided for the building characteristics 

(Supplementary Material Table S4). The variability of the daily indoor-outdoor temperature difference, 

outdoor temperature and wind speed is shown across three years (Figure 4B,D). The modeled AER 
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varied between 0.11 h−1 (minimum) and 3.04 h-1 (maximum) with 25th, 50th, and 75th percentiles of 

0.66, 0.95, and 1.28 h-1, respectively (Figure 5). The modeled AER time-course is shown for two 

homes: homes with highest and lowest median AER predictions (Figure 4A). The slow AER 

oscillations correspond to variations of the indoor-outdoor temperature differences (Figure 4).  

The brief AER transients (i.e., positive and negative spikes) correspond primarily to the wind speed 

variations, and secondarily to indoor-outdoor temperature difference variations (Figure 4).  

The AER variability is shown for each season and road type (Figure 5). The median modeled AER was 

highest in the winters (1.36, 1.41, 1.31, and 1.24 h-1 for the four consecutive winters) and lowest in the 

summers (0.59, 0.60, 0.63 h-1 for the three consecutive summers). This seasonal variation 

corresponded to the median indoor-outdoor temperature differences highest in the winters (26.7, 27.8, 

23.3, 22.2 ºC for the four consecutive winters) and lowest in the summers (0.8, 0.6, 0.0 ºC for the three 

consecutive summers), but did not correspond to the wind speeds, which did not vary between seasons 

The median wind speeds in winter (12.9, 14.5, 12.9, 12.9 km h-1 for the four consecutive winters) and 

spring (12.9, 12.9, 12.9 km h-1 for the three consecutive springs) were similar and often slightly higher 

than the wind speeds in the summer (11.3, 9.7, 11.3 km h-1 for three consecutive summers) and fall 

(11.3, 12.9, 11.3 km h-1 for the three consecutive falls). For the HTHD, HTLD, and LTLD road types, 

the modeled AER were similar with medians of 0.99, 0.89, and 0.96 h-1, and interquartile ranges of 

0.64, 0.60, and 0.62 h-1, respectively. 

The variability of the AER predictions is shown for the individual homes within each road type 

(Figure 6). Across all road types, the modeled AER varied between 0.11 and 0.50 h-1 for the 

minimums, 0.36 and 1.64 h-1 for the medians, and 0.64 and 3.04 h-1 for the maximums.  

The temporal AER variability of individual homes tends to decrease with decreasing median AER 

(Figure 4A, Figure 6). To calculate the AER, the leakage area (constant across time) is multiplied by 

the stack and wind effects, which vary across time (Equation (4)). Therefore, homes with tighter 

building envelopes tend to have smaller model-predicted AER fluctuations, which are due to the 

temporal fluctuations of the stack and wind effects.  

4. Discussion 

Our goal was to develop daily AER predictions for each NEXUS participant home to provide improved 

exposure estimates for the health study. We used cross-validation to evaluate two models (LBL and 

LBLX), which predict residential AER from questionnaires and meteorology, with measured AERs from a 

subset of NEXUS homes. The daily modeled AER closely correspond to the measured AER with the same 

overall |ε| median of 29% for both the LBL and LBLX models. These results demonstrate that it is possible 

to apply these models for individual-level air pollution exposure assessments that require daily predictions 

of house-specific AER. However, the impact of applying these models for a health study in support of 

improving health effect estimates will depend not only on the accuracy of exposure predictions, but also on 

other factors such as the design of the health study [33,34]. 
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Figure 4. Time-course of AER predictions (A), absolute indoor-outdoor temperature 

differences (B), outdoor temperatures (C), and wind speeds (D) across the three years of 

health study. Two AER time-course plots correspond to homes with highest and lowest 

median AER predictions. Plots show daily 24 h average values across three years of  

health study from 1 January 2010 to 31 December 2012. AER oscillations correspond  

to indoor-outdoor temperature differences. AER transients of positive or negative  

spikes correspond primarily to wind speeds and secondarily to indoor-outdoor  

temperature differences. 
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Figure 5. AER predictions for 213 homes across three years of health study with results 

for each season and road type. Boxes correspond to median, 25th and 75th percentiles;  

and whiskers correspond to minimum and maximum values. Winter includes December, 

January, and February; spring includes March, April, May; summer includes June, July, 

August; fall includes September, October, and November.  

 

Figure 6. AER predictions for 213 homes across the three years of the health study with 

results for individual homes grouped by the three traffic categories: HTHD (A), HTLD (B), 

and LTLD (C). Box plots show median, 25th and 75th percentiles, and whiskers represent 

minimum and maximum values of 24 h average AER.  
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Figure 6. Cont. 

 

 

 

We found considerable variation in measured AERs (range: 0.09–3.48 h-1) and modeled AERs 

(range: 0.11–3.04 h-1). Another study in central North Carolina showed similar variation in measured 

AERs (range: 0.09–3.17 h-1) across 31 homes on seven consecutive days during the same two seasons 

(spring, fall) as the seasonal intensives in NEXUS [7]. This suggest that AER differences may be an 

important source of heterogeneity in the infiltration of outdoor air pollutants into homes and the 

resulting exposures, even for studies focused on within-city variations and for studies in different 

geographical locations. Using questionnaire and weather data, the LBLX and LBL models explained a 

substantial amount of the measured AER variation (R2 = 61% and 59%, respectively).  

There is substantial temporal variation in the modeled AER that differs for each home based on the 

building envelope tightness. The home with the largest Aleak (i.e., leakiest building envelope) had the 

highest median AER (1.64 h-1) and largest AER range (0.50–3.04 h-1) across time. The home with the 

smallest Aleak (i.e., tightest building envelope) had the lowest median AER (0.36 h-1) and smallest AER 

range (0.11–0.64 h-1) across time.  
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This study demonstrates a novel health study design and modeling method designed to improve 

residential AER predictions for individual exposure assessments in health studies. This study is the 

first to use daily AER measurements and window opening data from a subset of homes for parameter 

estimation (i.e., model calibration) and model evaluation, and then apply the calibrated model to 

predict the spatial and temporal variations of the AER for each participant’s home in a health study. 

This approach allowed us to estimate the uncertainty of the model parameters (e.g., based on the 

jackknife method) and the uncertainty of the model predictions (i.e., based on the cross validation 

method), which can be important when the model is applied for health effect analyses [33]. 

We can compare our model performance using two alternative approaches for parameter estimation 

of Aleak. First, we estimated parameters using both the 23 older homes and the one newer home 

combined instead of estimating parameters using only the 23 older homes, as described in the methods. 

Using this alternative method, the median |ε| for the one newer home increased from 17% to 91% 

(Supplementary Material Figure S5, Figure 3). Second, we used the literature-reported parameters for 

both the 23 older homes and one newer home instead of only for the newer home, as described in the 

methods. Using this alternative approach, the median |ε| for the older homes increased from 29%  

to 43%, the 25th percentile increased from 12% to 19%, and the 75th percentile increased from 63% to 

131% (Supplementary Material Figure S5, Figure 3). This demonstrates the benefit of including AER 

measurements from a subset of homes, which represent the housing stock of homes in the same city as 

the health study, to reduce the AER model uncertainty.  

We can compare the AER model evaluation with other studies. LBL model evaluations using 

whole-building pressurization measurements to determine the leakage area showed mean |ε| of  

26%–46% [35] and 25% [36] for detached homes. For our implementation of the AER models,  

which uses a leakage area model, the LBL and LBLX models had mean |ε| of 43% and 48%, 

respectively for 31 detached homes across four seasons in central North Carolina [7]. In this study,  

the LBL and LBLX models both had a mean |ε| of 45%. Given the limitations of single-zone AER 

models (e.g., no internal resistance to airflow, no internal temperature or pressure differences) and the 

AER measurement error of the PFT method (accuracy of 20%–25%, precision of 5%–15% for 

occupied homes) [19,25,26], our LBL and LBLX model evaluations are reasonable, but their impact 

will depend on the particular application.  

For parameter estimation, Tin was set to the 24 h average indoor temperature time-matched to the 

24 h average AER measurements from a subset of homes. However, for predicting the daily AER for 

all homes across the three year study, Tin was set to a constant (24 ºC), which was the median indoor 

temperature measured in subset of homes. To investigate the impact of using a constant Tin, we 

compared the LBL model predictions with Tin set to a lower and upper limit of 20 and 28 ºC, 

respectively. For Tin set to 20, 24, and 28 ºC, the minimum AER was 0.10, 0.11, and 0.16 h−1;  

the median AER was 0.88, 0.95, and 1.05 h−1; and the maximum AER was 3.00, 3.04, 3.12 h−1.  

Since these results are similar, we expect that setting Tin to 24 ºC does not have a substantial impact on 

the AER model predictions. 

On days with open windows, similar model evaluation results were obtained for the LBLX model, 

which includes both leakage and natural ventilation, and the LBL model, which includes only leakage. 

Another study showed similar results for the LBLX and LBL models with AER measurements and 

window opening data from 31 homes in central North Carolina [7]. For 253 days with open windows 
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across 4 consecutive seasons, the median |ε| was 41% and 48% for the LBLX and LBL models, 

respectively. For days with open windows, the LBL model slightly underestimates, the LBLX model 

slightly overestimates. Also, the LBL and LBLX models may perform similarly since windows may be 

opened more often on comfortable days with small indoor-outdoor temperature differences. Thus, the 

stack effect may be small on days with windows opened. Also, the stack effect can be reduced after 

windows are opened from a thermal equilibrium created between indoor and outdoor temperatures. 

These results suggest that our application of the LBL model, instead of the LBLX model, for the 

NEXUS health study is reasonable. In certain geographical locations (e.g., coastal regions) with high 

and persistent winds, comfortable outdoor temperatures across seasons, and frequent window opening; 

the LBLX model may provide substantially improved estimates as compared to the LBL model. 

The temporal resolution of the AER is determined by the meteorological data. In this paper,  

we used hourly outdoor temperature and wind speed measurements to predict hourly AER,  

and then calculated 24 h averages to compare with the 24 h average AER measurements.  

To account for the diurnal variation of traffic-related air pollutants, we plan to use the hourly AER 

predictions combined with hourly residential outdoor concentration predictions to predict every 

NEXUS participant’s hourly residential indoor concentrations based on the dynamic mass  

balance model (Equation (3)) [4]. 

Since the AER is the key parameter for Finf (Equation (2)), we can compare our AER models with a 

previously reported model used to predict Finf of outdoor PM2.5 for individual homes in a health  

study [13]. The reported Finf model is an empirical linear regression model that does not include the 

stack and wind effects, which are the driving forces for leakage and natural ventilation airflows.  

The Finf model also does not account for differences in the leakage area between homes. In our study, 

we used the mechanistic LBL and LBLX models that include the stack and wind effects,  

and the building characteristics that modify the stack effect (i.e., building height) and wind effect  

(i.e., local wind sheltering and building height). Also, these AER models are linked to a building-specific 

leakage area model (Equation (5)). Furthermore, we estimated only a few parameters based on daily 

measurements, whereas the reported Finf model required several parameters to be estimated based on 

two-week average measurements.  

Most air pollution health studies use outdoor concentrations as an exposure surrogate.  

Under steady-state conditions, exposure E can be described by: 

E = Cout_ss(finFinf + (1 − fin))     (15) 

where fin is the fraction of time spent indoors. Therefore, E depends on the product of steady-state 

outdoor concentration Cout_ss and outdoor attenuation (finFinf + (1 − fin)). Since people spend more time 

indoors than outdoors (i.e., fin > (1 − fin)) [20], Finf is a substantial component of outdoor attenuation. 

When Cout_ss is used as an exposure surrogate, the estimated health effect parameter is reduced  

(i.e., biased towards the null) since it is the product of the toxicity (i.e., true health effect) and outdoor 

attenuation [4]. Using E instead of Cout_ss in health studies should yield a less attenuated health effect 

estimate [37]. Since the LBL model inputs are relatively easy to obtain, our modeling approach can 

facilitate the estimation of Finf to help support the use of E in health studies. Also, accounting for AER 

variability can reduce the uncertainty of Finf and the resulting exposure in support of improving health 

effect estimates. 
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For exposure models, there are two components of measurement error [4,34]. The Berkson-like 

component of error results from using a model that has some sources of variation or exposure factors 

missing from the model. The classical-like component of error is from uncertainty in the estimated 

model parameters. Both types of measurement error have an impact on health effect estimates.  

The Berkson error can increase confidence intervals of health effect estimates while classical error can 

lead to incorrect confidence intervals and biased health effect estimates [4,34]. Under a new 

measurement error correction method [33], Berkson-like error can also induce a bias. The method used 

in this study can minimize both types of errors. Our mechanistic AER models (i.e., LBL and LBLX 

models) can reduce Berkson error, as compared to using empirical AER models that do not account for 

temporal variations due to the stack and wind effects [11]. Also, our model calibration with a subset of 

homes to improve the estimated parameters of the leakage area model can reduce classical error.  

A limitation of this study is that mechanical ventilation could not be included in the AER 

predictions for the three year health study since it was not collected due to cost and participant burden 

considerations. We expect bathroom fans, outdoor-vented kitchen range hoods, and clothes dryers, 

which have low-intermediate airflows and are used intermittently, to have a small AER effect. Central 

heating and air conditioning (HVAC) systems in homes re-circulate indoor air with no outdoor  

air intake, but can have air duct leaks in unconditioned spaces (e.g., basements, attics) when  

operated [38]. However, none of the NEXUS homes had HVAC systems. Window/wall air 

conditioners also re-circulate indoor air, but can be operated with open outdoor vents. Other types of 

outdoor-vented fans include window fans and whole-house fans, which move outdoor air into the 

living space through open windows. Overall, we expect a large AER effect from window fans,  

whole-house fans, and window/wall air conditioners operated with open outdoor vents. Attic fans, 

which ventilate the attic space and not the living space with soffit or gable vents, are expected to have 

a small AER effect. The ability to quantify the impact of mechanical ventilation on the AER in this 

study is not possible since the variability of mechanical ventilation can be substantial due to various 

factors, which include the type of mechanical ventilation, frequency of use, and method of operation 

(e.g., open or closed outdoor vents for window/wall air conditioners). 

Another limitation of this study is that the AER were measured in the spring and fall,  

with no measurements from the summer or winter due to cost. However, the leakage area model 

parameters, which were estimated from the AER measurements and applied for the older homes,  

are independent of the stack and wind effects that can vary seasonally. Therefore, we expect AER 

measurements from different seasons to have a small effect on the estimated parameters. In addition,  

a previous study that compared AER measurements with LBL and LBLX model predictions,  

which used the same literature-reported parameters that we applied for the newer homes in this study, 

showed similar results in all four seasons [7]. The LBL and LBLX models had median relative errors 

of 41% and 37% in spring, 45% and 44% in summer, 43% and 40% in fall, 39% and 39% in winter, 

respectively. Therefore, we expect the model performance in this study to be similar across the  

four seasons.  

An additional limitation is the AER measurements used for parameter estimation were from a 

cluster of 23 older homes built between 1900 and 1969 (median 1942). Therefore, the estimated 

parameters were applied for the older homes in the health study, and literature-reported parameters 

were used for the newer homes in the health study. However, a previous study that compared AER 
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measurements with LBL and LBLX model predictions [7], which used the same literature-reported 

parameters, showed results similar to those reported in this study, which used the estimated 

parameters. Based on 642 AER measurements from 31 homes built between 1922 and 2000  

(median 1965), the median |ε| was 43% (0.17 h−1) and 40% (0.17 h−1) for the LBL and LBLX models, 

respectively [7]. In this study, the median |ε| was 29% (0.19 h−1) for both the LBL and LBLX models. 

Therefore, we expect the model performance in this study to be similar for the older and newer homes. 

Another limitation is the small sample size (six homes) used to estimate parameters for 

conventional homes. This can increase uncertainty in the estimated parameters, and lead to more 

classical-like measurement error.  

5. Conclusions 

This study demonstrates the ability of using a novel method of integrating AER measurements and 

models to predict the large home-to-home (spatial) and temporal variability of residential AERs,  

which is an important determinant of exposure heterogeneity in air pollution health studies.  

Using AER measurements from a subset of homes, we calibrated, evaluated, and applied mechanistic 

AER models that agree closely to daily AER measurements and explain a substantial amount of the 

AER variation. Using this novel approach, NEXUS will be one of the first epidemiology studies to 

apply calibrated and home-specific AER models, and to include the spatial and temporal variations of 

AER for over 200 individual homes across multiple years into an exposure assessment. This capability 

will help to provide more accurate exposure estimates for epidemiological studies in support of 

improving risk estimates.  
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