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Introduction
RNA sequencing (RNA-seq) and other high-throughput next-
generation sequencing platforms have emerged as powerful 
approaches for discovering pathogenic pathways and potential 
targets for clinical intervention in patients with acute myeloid 
leukemia (AML).1 Using whole-transcriptome sequencing, 
our previous work compared the profiles of core-binding factor 
acute myeloid leukemia (CBF-AML) cases with those charac-
terized by normal karyotype (NK), illuminating similarities 
and differences with respect to gene-expression signatures and 
splicing events as well as RNA fusions that typify the inv(16) 
vs the t(8;21) AML subtypes.2

In concert with the rise of large-scale omics-oriented 
sequencing, machine-learning (ML) algorithms have increas-
ingly been applied to gene-expression analysis aimed at classi-
fying tumors, predicting survival, identifying therapeutic 
targets, and classifying genes according to function.3–7 
Significant results have been shown for predicting outcomes of 
large B-cell lymphoma,8 hepatitis B virus–positive metastatic 
hepatocellular carcinomas9 as well as documenting diverse 
pathologic responses to chemotherapy in patients with breast 
cancer.10 Using gene-expression profiling of data generated by 
microarrays in conjunction with both supervised and 

unsupervised learning, Bullinger et  al11 identified prognostic 
subclasses in adult AML; the research group also constructed 
an optimal 133-gene predictor of overall survival. Yeoh et al12 
performed classification, subtype discovery, and outcome pre-
diction in patients with pediatric acute lymphoblastic leukemia 
(ALL). However, no previous study has specifically addressed 
expression differences among large cohorts of pediatric and 
young-adult AML patients with regard to complete remission 
(CR). In this study, we compare pre-treatment gene-expression 
profiles using 3 supervised learning algorithms to discover pre-
dictors of CR.

Materials and Methods
We obtained 473 bone marrow specimens from 473 patients, 
both children and young adults with ages ranging between 
8 days and 28 years who had been diagnosed with de novo 
AML. For comparison, we acquired an additional 20 bone 
marrow specimens from normal, healthy individuals. All sam-
ples were obtained by written consent from the parents/guard-
ians of minors from the Children’s Oncology Group clinical 
trial AAML1031. The Institutional Review Board at Fred 
Hutchinson Cancer Research Center has reviewed and 
approved this study. It is filed under Institutional Review File 
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#9950 (Biology of the Alterations of the Signal Transduction 
Pathway in Pediatric Cancer). The number of samples with 
clinical information regarding CR used in this study was 414. 
RNA sequencing was performed on all 493 samples using the 
Illumina platform HiSeq2000 (https://www.illumina.com). 
Reads were mapped to Ensembl Gene IDs (http://useast.
ensembl.org/), which belong to 31 biotypes, including protein-
coding sequences, non-coding sequences, and pseudogenes, 
among others. RPKM (reads per kilobase per million mapped 
reads) values were calculated for each gene. Genes that had a 
count of at least 1 per million (CPM) in at least 3 samples were 
retained. Quantile normalization was applied among all sam-
ples. Python library scikit-learn (http://scikit-learn.org/sta-
ble/) modules of commonly used statistical models and 
algorithms were directly implemented in the scripts. Gene set 
enrichment analysis (GSEA) was performed using the online 
tool Enrichr (http://amp.pharm.mssm.edu/Enrichr/), as well 
as our in-house OmicPath (v 0.1) R package.

Violin plots showing gene-expression distribution patterns 
were generated using the in-house OmicPlot (v 0.1) R 
package.

Feature selection

Principal components analysis (PCA) was performed to exam-
ine the general pattern of the data, remove outliers, and select 
algorithms appropriate for our data.

RNA sequencing expression data of m samples by n  
genes were used as inputs and learn the mapping using 
F x CR Not in CR: { , }→

X R ym n m∈ ∈{ }× ×
, ,0 1

1

Samples were divided into a training set (N = 331) and a test 
set (N = 83). Three classifiers—k-nearest neighbors algorithm 
(K-NN), support vector machine (SVM), and random forest 
(RF)—were applied to select features for the training set via 
5-fold cross-validation. With the features selected, the classi-
fier was tested on the same training set (N = 331). The classifier 
with the best performance was then tested on the remaining 
test set (N = 83).

K-NN classif ier

We performed 100 iterations of a 5-fold cross-validation. In 
each fold, we first carried out a t test for initial feature selection 
to identify the 100 most statistically significant genes, ie, those 
that were the most differentially expressed between the CR 
(positive class) and non-complete remission (NCR) (negative 
class). We found that using more than 100 genes did not 
improve performance. For further feature selection out of the 
genes identified by t testing, we compared the performance of 
2 algorithms: Hill Climbing13 (sequential feature addition) and 

Randomized Lasso14 (using the model’s feature weights as 
ranks and selecting the highest ranking feature). At each fold, 
an area under the curve (AUC) was computed using a selected 
subset of genes and the fold’s validation set. Following the 100 
iterations, the features (genes) were ranked by the average of 
AUCs computed using those genes across different folds. 
Essentially, the genes that on average helped yield the best 
AUCs were ranked highest.

SVM classif ier

To overcome the issue of class imbalance, downsampling was 
applied,15–17 ie, a smaller subset of 114 samples—N(CR) = 57, 
N(NCR) = 57; 91 for the training set and 23 for the test set—was 
used as input for the SVM classifier. Processes similar to those 
described above for K-NN were applied to SVM classifiers 
with 1 exception: we used a third method Recursive Feature 
Elimination for the second feature selection in addition to Hill 
Climbing and Randomized Lasso.

RF classif ier

We trained RF classifiers using scikit-learn’s ensemble.
RandomForestClassifier module. To select parameters for the 
RF classifier, we performed a grid search for the following 
parameters: number of trees (estimators), maximum number of 
features, and maximum tree depth. The remaining parameters 
were set to their default values. Then, the optimal parameters 
in terms of AUC were selected together with the best perform-
ing feature selection approach. For feature selection, we per-
formed a comparison between 2 approaches: (1) nested 5-fold 
with built-in RF feature selection—we trained the classifier on 
4/5 of the training set using the built-in “feature importance” 
attribute to rank the features (genes). Those genes were then 
used a second time on the same 4/5 of the training set. We then 
tested the classifier on the remaining 1/5 of the training set (ie, 
validation set) to assess performance. (2) We carried out 100 
iterations of a 5-fold cross-validation while aggregating the 
feature importance values computed at each fold. We then 
computed a Spearman correlation between each gene’s impor-
tance values and the AUC computed in each fold. We used the 
genes with the highest correlation scores to train on the same 
4/5 training set and then tested the method on the remaining 
validation set.

Following feature selection

At the end of each feature selection, the same cross-validation 
procedure was employed to generate the AUC results when 
testing the validation set. The final AUC result of the (chosen) 
K-NN classifier was a simple, 1-episode period of training on 
the training set with the selected genes followed by testing on 
the unseen test set with the same selected genes.

https://www.illumina.com
http://useast.ensembl.org/
http://useast.ensembl.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
http://amp.pharm.mssm.edu/Enrichr/
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Results
According to PCA based on all genes, these 414 AML samples 
with clinical information regarding CR did not cluster by CR 
or NCR status, nor by age/year of diagnosis. There is no obvi-
ous outliers, so all of them were included in this study.

Area-under-the curve results from different K values were 
used to estimate optimal K for the K-NN classifier. Figure 1 
shows that statistically significant genes identified from the t 
test can help improve the AUC results and that K = 27 yielded 
the best average AUC. With the optimal K = 27, receiver 
operating characteristic (ROC) curves were produced using 2 
feature selection methods: Hill Climbing and Randomized 
Lasso (Figure 2). Overall, the Hill Climbing resulted in better 
results with the best AUC = 0.84.

To compare the performance of K-NN and SVM classifier, 
the balanced data set with N(CR) = 57 and N(NCR) = 57 was split 
into training set (N = 91) and the test set (N = 23). Using a 5-fold 
cross-validation performed on the training set, ROC curves of 
K-NN and SVM algorithms were calculated using 3 feature-
election methods: Hill Climbing, Recursive Feature Elimination, 
and Randomized Lasso. The K-NN outperformed SVM, and 
Hill Climbing still resulted in better AUC results for K-NN 
(Supplemental Figure S1).

Hyperparameter tuning for RF suggested using 100 trees to 
have the best performance (AUC = 0.74). The simple method 
resulted in better results with the best (training set) AUC = 0.73 
compared with the more complex approach (Supplemental 
Figure S2).

Based on the above observations, K-NN with Hill Climbing 
performed the best on the training data (N = 331), yielding an 
AUC score of 0.84. When we tested this model on the remain-
ing 1/5 of the data (N = 83), using the top 50 genes with the 
best AUC scores from the training set yielded an AUC score of 
0.81 (Figure 3).

Figure 1.  Area under the curves from different Ks used to estimate an 

optimal K value for K-NN classifier. AUC indicates area under the curve; 

K-NN, k-nearest neighbors algorithm.

Figure 2.  Receiver operating characteristic curves of K-NN (with the 

optimal K = 27) using 2 feature selection methods: (A) Hill Climbing and 

(B) Randomized Lasso. K-NN indicates k-nearest neighbors algorithm; 

ROC, receiver operating characteristic; FS, feature selection; HC, Hill 

Climbing; R.LASSO, Randomized Lasso.

Figure 3.  Final K-NN model performance on test data (N = 83). ROC 

indicates receiver operating characteristic.

https://journals.sagepub.com/doi/suppl/10.1177/1176935119835544
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Based on using these top 50 genes, our GSEA analysis 
using OmicPath showed that BATF (basic leucine zipper 
transcriptional factor ATF-like) and RAC2 (Ras-related C3 
botulinum toxin substrate 2) are related to a decreased IgM 
(Immunoglobulin M) level with FDR (false discovery 
rate) =0.0073. TSTA3 (GDP-l-fucose synthase) and RAC2 
are related to an increased neutrophil cell number 
(FDR = 0.0073). Pathway enrichment analysis using Enrichr 
showed that TSTA3 and FPGT (fucose-1-phosphate gua-
nylyltransferase) were mapped to the GDP-fucose biosyn-
thesis pathway (Reactome 2016; https://reactome.org) with 
an adjusted P value of .0092. These 2 genes were also 
mapped to the pathway’s parent terms “Synthesis of sub-
strates in N-glycan biosynthesis” and “Biosynthesis of the 
N-glycan precursor (dolichol lipid-linked oligosaccharide, 
LLO) and transfer to a nascent protein.” This indicates the 
vital role of N-glycosylation in AML pathology and patient 
prognosis. The expression of these top 50 genes compared 
with normal bone marrow (NBM) samples are shown in 
violin plot (Figure 4).

Discussion
This study explored and evaluated different ML algorithms for 
predicting CR in AML patients based on their pre-treatment 
gene-expression signatures. It revealed a significant underlying 
genetic difference between patients with contrasting outcomes 
following treatment. Gene set enrichment analysis results high-
lighted specific biological features that carry prognostic value 
for further exploration. For example, low IgM and leukocyte 
count >50 × 109/liter have been demonstrated as 2 of the 
adverse predictors for the duration of complete continuous 
remission in childhood ALL.18 Fucose-containing glycans play 

important roles in selectin-mediated leukocyte-endothelial 
adhesion as well as various immunity and signaling processes. 
Alterations in expression or structure of fucosylated oligosac-
charides have also been observed in cancer pathology. 
Conditional impairment in fucosylated glycan expression in 
mice exhibited altered myeloid development including aberrant 
proliferation of myeloid progenitors and an increased produc-
tion of granulocytes which leads to neutrophilia. The loss of AB 
blood group antigen expression along with the increases in H 
and Lewisy expression are associated with poor prognosis. 
Increased expression of Lewisx/a structures, Tn/sialyl-Tn/T 
antigens, and β1,6 GlcNAc branching of N-linked core struc-
tures were observed in advanced cancers and related with poor 
prognosis.19–22 This information may help physicians select 
more suitable courses of treatment, whether the treatment be 
more aggressive chemotherapy or an altogether novel alterna-
tive therapy.
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