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ABSTRACT The accumulation of protein adducts caused by carbonyl stress (CS) is a hallmark of cellular
aging and other diseases, yet the detailed cellular effects of this universal phenomena are poorly
understood. An understanding of the global effects of CS will provide insight into disease mechanisms and
can guide the development of therapeutics and lifestyle changes to ameliorate their effects. To identify
cellular functions important for the response to carbonyl stress, multiple genome-wide genetic screens were
performed using two known inducers of CS. We found that different cellular functions were required for
resistance to stress induced by methylglyoxal (MG) and glyoxal (GLY). Specifically, we demonstrate the
importance of macromolecule catabolism processes for resistance to MG, confirming and extending known
mechanisms of MG toxicity, including modification of DNA, RNA, and proteins. Combining our results with
related studies that examined the effects of ROS allowed a comprehensive view of the diverse range of
cellular functions affected by both oxidative and carbonyl stress. To understand how these diverse cellular
functions interact, we performed a quantitative epistasis analysis by creating multimutant strains from those
individual genes required for glyoxal resistance. This analysis allowed us to define novel glyoxal-dependent
genetic interactions. In summary, using multiple genome-wide approaches provides an effective approach to
dissect the poorly understood effects of glyoxal in vivo. These data, observations, and comprehensive dataset
provide 1) a comprehensive view of carbonyl stress, 2) a resource for future studies in other cell types, and 3)
a demonstration of how inexpensive cell-based assays can identify complex gene-environment toxicities.
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A hallmark of aging and its attendant ailments is the accumulation of
DNA lesions, oxidized proteins, and carbonylated proteins and lipids
(Beckman and Ames 1998; Harman 1981; Kujoth et al. 2005; Oliver
et al. 1987; Stadtman 1992). It is well-documented that these defects
are caused by reactive molecules such as superoxide anions (O2

2),
hydrogen peroxide (H2O2), and hydroxy radicals (OH) formed as by-

products of cellular metabolism (Barrera et al. 2008; Bertram and
Hass 2008; Shringarpure and Davies 2002; Stadtman 2006).

Less well-studied but no less consequential are the effects of
carbonyl stress created by reactive carbonyl compounds (RCC), such
as glyoxal, 3DG (3-deoxyglucosone) and methylglyoxal (MG). Glyoxal
is formed by lipid and DNA oxidative degradation as well as via
autoxidation of glycolaldehyde (Benov and Fridovich 1998). MG is
a by-product of metabolic processes, including threonine catabolism
(Murata et al. 1986) and lipid peroxidation (Poli et al. 1985). MG can
also arise enzymatically during glycolysis (O’Brien et al. 2005;
Thornalley 1996). In addition, diverse environmental sources, such
as cigarette smoke and automobile exhaust, are abundant sources
of carbonyls (O’Brien et al. 2005; Saint-Jalm and Moree-Testa
1980; Zervas et al. 2002). The widespread thermal processing of
food can result in MG and other aldehydes (Nemet et al. 2006;
Wells-Knecht et al. 1995).

Advanced glycation end products (AGE) arising from carbonyl
stress are thought to contribute to chronic diseases, such as diabetes,

Copyright © 2011 Hoon et al.
doi: 10.1534/g3.111.000505
Manuscript received March 13, 2011; accepted for publication June 30, 2011
This is an open-access article distributed under the terms of the Creative Commons
Attribution Unported License (http://creativecommons.org/licenses/by/3.0/ ), which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.
Supporting information is available online at http://www.g3journal.org/lookup/
suppl/doi:10.1534/g3.111.000505/-/DC1
1Corresponding author: University of Toronto, Department of Molecular Genetics,
Donnelly Centre Room 1210, 160 College Street, Toronto, ON M5S3E1
Canada E-mail: corey.nislow@utoronto.ca

Volume 1 | August 2011 | 219

http://creativecommons.org/licenses/by/3.0/
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000505/-/DC1
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000505/-/DC1
mailto:corey.nislow@utoronto.ca


chronic obstructive pulmonary disease, ischemia/reperfusion, and
Alzheimer’s disease (Ellis 2007). Understanding the result of carbonyl
stress is an essential first step to characterize the impacts of CS stress
on cell physiology.

The well-conserved glyoxalase system is the cell’s principal defense
against AGEs and aldehydes, detoxifying MG and glyoxal in the pres-
ence of glutathione (GSH) to glycolate and D-lactate, respectively
(Thornalley 1998). Both can also be detoxified by NADPH-dependent
aldose reductases (Vander Jagt et al. 1992). Previous work using yeast
has focused primarily on MG (Aguilera et al. 2005; Maeta et al. 2005)
and showed that the conserved HOG MAP kinase pathway is impor-
tant for the induction of MG-responsive genes. However, no compre-
hensive, genome-wide analysis of the biological consequences of these
modifications exists. Identifying the cellular functions necessary for
providing resistance to these toxic molecules will provide insight into
the molecular mechanisms that underlie diseases associated with CS
and could suggest therapeutic interventions.

MATERIALS AND METHODS

Reagents
Methylglyoxal, glyoxal, nicotinamide, isonicotinamide, and amino-
guanidine were purchased from Sigma-Aldrich (St. Louis, MO).
Nicotinamide and isonicotinamide were dissolved in sterile H2O
and filtered sterilized.

Yeast strains, plasmids, and growth conditions
Yeast deletion strains were obtained from the yeast deletion collection.
ORF-containing plasmids, listed in Table S5, were obtained from
Charlie Boone or constructed by gap-repair (Oldenburg et al. 1997).
Yeast transformations were performed using the standard lithium
acetate method (Gietz et al. 1995) and selected synthetic complete
medium lacking uracil (SCM URA2). For growth curve analysis, in-
dividual strains were inoculated into 100 ml of YPD or SCM URA2
and grown to saturation for �20 h at 30�C. Overnight cultures were
resuspended by shaking for 15 min, diluted into 100 ml of media in
96-well plates, and grown in Tecan GENios microplate readers for
24 h. The growth rate of each culture was monitored by measuring the
OD600 every 15 min as previously described (Giaever et al. 2004).
Doubling-time calculations and area under growth curve (AUGC)
analysis were performed as previously described (Hoon et al. 2008;
Lee et al. 2005b). We used AUGC analysis for Figure 1B, as we found
that this method more accurately captured the fitness of strains under
severe growth inhibition (.50% inhibition). AUGC was calculated
uniformly over a 24 h window from the start of the experiment.
For lower levels of growth inhibition, doubling time during the expo-
nential growth phase was used for fitness comparisons.

Genome-wide screening and analysis
MSP and DSP screens were performed as previously described (Hoon
et al. 2008) with the modification that only the homozygous deletion
strains were screened against both methylglyoxal and glyoxal. For
DSP, glyoxal was screened at 20 mM and methylglyoxal was screened
at 8 mM for 5 and 20 generations. For MSP, yeast genomic library
transformants were grown for 20 generations in glyoxal (40 mM) and
supplemented with isonicotinamide (25 mM) where indicated. Meth-
ods for pooled growth, OD monitoring, automatic cell dilution, and
cell harvesting were performed as previously described (Pierce et al.
2006). Competitive screens were designed such that strains that are
not resistant should get diluted out over the course of four dilutions
every 5 generations. There was variation in terms of the number of

starting cells for each strain in the pool, but we normalized this by
taking the ratio of the microarray intensities between the control and
treated pools. Both DSP and MSP were analyzed using a high-density
oligonucleotide tag array manufactured by Affymetrix (Pierce et al.
2006). For DSP, barcode probe intensities were extracted and pro-
cessed as previously described (Pierce et al. 2006). Each array was
mean-normalized and the fold change (log2 control/treatment) was
calculated by comparison with a set of control arrays. At least two
biological replicates were carried out for each treatment condition.
The log2 ratios of both tags were averaged to generate a single score
for each gene for use in the DSP-MSP plots. We used rank product
analysis (Breitling et al. 2004) to identify strains that were significantly
sensitive to either methylglyoxal or glyoxal. A false discovery rate
cutoff of 0.05 was used. The list of sensitive strains can be found in
Table S1 and Table S2. For the glyoxal deletion resistance screen, the
homozygous deletion pools were screened and processed as described
above. The results are presented in Table S3. For MSP, ORF probe
intensities were extracted and processed in the same way as the barcode
probes. Each ORF is represented by at least two probes, and the log2
ratios of each probe were averaged to generate a single score for each
gene. To identify each suppressor locus, the log2 ratio of intensities
were ordered by genomic location of each ORF and analyzed using
a sliding window to identify loci that have at least two adjacent ORFs
with log2 ratios $ 1.6. GO analysis was performed using GOstats
(Falcon and Gentleman 2007), a bioconductor package written in R.

Double-mutant strain construction
We assessed genetic interactions among a subset of genes that confer
resistance to glyoxal by generating multiple combinations of double-
deletion strains for quantitative fitness analysis (St. Onge et al. 2007).
MATa haploids deletion strains were obtained from the yeast deletion
collection, and MATa haploids deletion strains were obtained from
Charlie Boone. Double-deletion strains were constructed by the syn-
thetic genetic array (SGA) protocol with minor modifications using
a Singer RoToR HDA (Singer Instruments, Somerset, UK) (Stansfield
and Stark 2007; Tong and Boone 2006). Approximately 800 double-
deletion mutants were constructed among 15 deletion strains that
were sensitive to glyoxal and 24 deletion strains that were resistant
to glyoxal. Single-deletion strains with the same drug resistance cas-
sette (Kanr-Natr and Natr-Kanr) as the double-mutant strains were
constructed using the HO-deletion strain as a query strain. In MATa
haploids, genes were replaced with a kanamycin resistance marker
gene (Kanr), and in MATa haploids, genes were replaced with a nour-
seothricin resistance marker gene (Natr). This method allowed each
double-deletion gene pair to be constructed twice (Kanr-Natr and
Natr-Kanr) independently. Fitness values between each gene pair
were highly correlated (R2 = 0.92). The fitness of strains was deter-
mined in the presence and absence of glyoxal. One double mutant
(Dhog1Dccw12) could not be constructed because the genes in the
pair were genetically linked. Fitness values between each gene pair
were highly correlated (Figure 4B, R2 = 0.92), demonstrating the re-
producibility of the assay. Strains for which fitness values of Kanr-Natr

double-deletion strains differed from that of the Natr- Kanr deletion
strains (|Wxy-Wyx|/

ffiffiffi

2
p

. 0.2) were filtered and not used in the analysis.

Growth assay for epistasis analysis
Deletion strains arrayed on YPD/agar were inoculated into 96-well
plates containing 100 ml of YPD using a Singer RoToR HDA (Singer
Instruments). Cultures were grown to saturation for 20 h at 30�C and
stored at 4�C for 24–48 h. The cells were then resuspended by shaking
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for 15 min. Cultures were diluted into 100 ml volumes in 96-well
plates using the Singer RoToR HDA and grown in Tecan GENios
microplate readers for 30 h at 30�C. The growth rate of each culture
was monitored by measuring the OD600 every 15 min. The doubling
time (D) was calculated exactly as previously described (St. Onge et al.
2007). The fitness of each deletion strain was calculated as the ratio of
the doubling time of the parental wild-type strain divided by that of
the mutant. We quantified the genetic interaction between each gene
pair using a multiplicative model. If a strain deleted for gene x has
a fitness of Wx and a strain deleted for gene y has a fitness of Wy, then
the double mutant strain is expected to have a fitness (Wxy) of Wx ·
Wy. We measured the deviation exy from this expectation, where exy =

Wxy –Wx · Wy. For each gene pair, the exy values for each Kanr-Natr

and Natr-Kanr were averaged and used to generate the heatmap.

RESULTS

Methyglyoxal and glyoxal inhibit yeast growth
MG is a potent inhibitor of yeast growth (Aguilera and Prieto 2001;
Aguilera et al. 2005; Bito et al. 1997; Inoue and Kimura 1996; Inoue
et al. 1998; Maeta et al. 2005). Using a quantitative fitness assay, we
quantified the growth inhibition for MG and glyoxal (Figure 1A). The
IC50 for MG is 8.6 mM (for S. cerevisiae strain BY4743), approximately
5-fold less than that for glyoxal (IC50 of 45.5 mM) (Figure 1B).

Figure 1 Methylgloxal and glyoxal inhibit yeast growth. A) Chemical structure of methylglyoxal and glyoxal. B) Growth curve analysis for
measuring the fitness of wild-type (HO) strain in glyoxal (left) and methylglyoxal (right) in the presence (black bars) and absence of 20 mM
aminoguanidine (white bars). Fitness was quantified using area under growth curve and normalized to growth in YPD 6 SD (n = 3). Growth
inhibition caused by aminoguanidine in the absence of glyoxal and methylglyoxal is discussed in the text. C) Fitness of deletion strains in
methylglyoxal and glyoxal 6 SD (n = 3) analyzed by growth curve analysis. Strains selected were deficient in genes previously shown to be
important for resistance to methylglyoxal stress in yeast. D) Heatmap representing significant GO terms of strains identified to be significantly
sensitive (false discovery rate, 0.05) to methylglyoxal and glyoxal by pooled fitness screens. For comparison, we included strains identified to be
sensitive to oxidants hydrogen peroxide (H2O2), cumene hydroperoxide (CHP), linoleic acid 13-hydroperoxide (LoaOOH), menadione, and
diamide by a previous study (Thorpe et al. 2004). The heatmap is colored according to the P value of each GO term.
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Aminoguanidine (AG), a a,b-dicarbonyl scavenging agent (Cameron
et al. 2005) and known suppressor of carbonyl stress, rescues the growth
inhibition caused by both compounds (Figure 1B), suggesting that the
cellular effects are specific. In the absence of methylglyoxal or glyoxal
treatment with AG (20 mM) inhibits yeast growth, likely due to AG
reacting with pyruvate to form a hydrazone adduct at high concentra-
tions (Thornalley 2003); in contrast; the carbonyl compounds modulate
this effect.

HOG pathway components are both required for
resistance to MG and glyoxal
In yeast, the high-osmolarity glycerol (HOG) mitogen-activated protein
kinase (MAPK) pathway regulates osmotic homeostasis (O’Rourke et al.
2002). Previous work has determined that the HOG pathway mediates
MG resistance, presumably via promoting the expression of genes in-
volved in MG metabolism (Aguilera et al. 2005; Inoue et al. 1998). One
such gene is GLO1, encoding glyoxalase I, an enzyme that converts MG
into S-D-lactoylgluthathione in the presence of glutathione (Inoue and
Kimura 1996). In contrast, we found glyoxal and MG exert different
effects on mutants involved in HOG signaling and glyoxalase activity,
suggesting distinct mechanisms of action. We confirmed this with indi-
vidual growth tests of selected strains in glyoxal and methylglyoxal. For
example, strains missing GLO1, GLO2, or GSH1 were more sensitive to
MG stress than strains missing HOG1, PBS2, SSK1, or SSK2, whereas the
opposite pattern of sensitivities was observed for glyoxal stress (Figure 1C).

Genome-wide fitness profiling demonstrates
physiologically distinct responses to MG and glyoxal
We used two genome-wide assays: 1) yeast deletion collection to identify
genes that confer sensitivity, and 2) an overexpression assay to define genes
that confer resistance to CS. Genome-wide fitness profiling showed that
glyoxal and MG affect cells very differently. We screened both compounds
against a collection of 4700 homozygous deletion strains (Giaever et al.
2002; Giaever et al. 2004; Hillenmeyer et al. 2008; Hoon et al. 2008; Lee
et al. 2005b) and identified 458 deletion strains that were significantly
sensitive (false discovery rate , 0.05) to either MG or GLY (supporting
information, Table S1 and Table S2). Functional enrichment analysis using
Gene Ontology (GO) annotations of sensitive strains showed distinct re-
quirements for resistance to each compound (Figure 1D). MG-sensitive
genes were enriched for protein, mRNA, and DNA metabolic pro-
cesses, in agreement with the suggested mechanism of action of MG
in forming DNA, RNA, and protein adducts (Kalapos 1999). In
contrast, glyoxal resistance required genes involved in glucose me-
tabolism and peroxisomal and signal transduction processes. Our
study corroborates, on a genome-wide level, previous studies in
which MG and glyoxal were shown to exert different effects
in vivo [e.g., MG and glyoxal induced distinct signals for MAP family
kinases in human endothelial cells (Akhand et al. 2001)].

The effects of MG and glyoxal were also distinct from that
observed for other oxidants. We compared GO annotations for genes
identified following treatment with other oxidants in a previous study
(Thorpe et al. 2004) and found that the effects of oxidative stress are
typically broad but specific to each oxidant (Figure 1D). Here, we
found that additional functions, beyond those associated with ROS,
were important for CS resistance.

Carbonyl stress leads to DNA, RNA, and
protein dysfunction
We found that multiple processes involved in the repair and
degradation of damaged cellular macromolecules factor in the CS

response. Glyoxal and MG are potent arginine-directed glycating
agents and covalently cross-link proteins via modification of arginine
residues, leading to protein dysfunction (Rabbani and Thornalley
2008). Protein modification by MG activates ubiquitin/proteasome-
dependent proteolysis (Du et al. 2006). Consistent with this observation
was our finding that strains deleted for genes involved in ubiquitin-
dependent protein degradation (Δshp1, Δbsd2, Δstp22, Δdoa4, Δswm1,
Δbst1, Δcdc26, Δrad6, Δeps1, Δ rtt101, Δgrr1, Δvps25, Δdef1, Δdoa1, Δ
snf7, Δ srn2, Δvps36, Δubx2, Δubx4, Δvps20, Δydj1, Δsnf8, Δvps28, and
Δbro1) were sensitive to MG. For glyoxal, the requirement for ubiqui-
tin-related pathways was less pronounced, with fewer identified strains
(Δreg1, Δdoa4, Δubc8, Δ jem1, and Δydj1). Together, the MG and GLY
results demonstrate that protein catabolism plays a major role in de-
toxifying glycated proteins.

Besides producing protein adducts, methylglyoxal also reacts with
guanine bases in RNA and DNA (Kang et al. 1996; Murata-Kamiya
and Kamiya 2001). Because messenger RNA (mRNA) quality control
is essential, we expected to uncover gene deletion strains involved in
mRNA metabolism. The first step in mRNA decay is deadenylation,
followed by mRNA degradation either by decapping followed by
59/39 decay or by 39/59 decay (Garneau et al. 2007). As expected,
several strains deficient in deadenylation (Δccr4, Δpop2, and Δnot5),
decapping and 59/39 decay (Δdhh1,Δpat1,Δlsm6, Δlsm1, and Δlsm7)
and 39/59 decay (Δski8, Δski7, Δski3, and Δski2) were sensitive to
methylglyoxal. Furthermore, multiple strains involved in DNA repair
(Δmms4, Δrad18, Δrpn4, Δrad59, Δrad57, Δrad55, Δhpr1, Δmus81,
Δrad51, Δrad4, Δrad6, Δrpb9, Δrad54, Δsrs2, Δdef1, Δdoa1, Δrad5,
Δmms22, Δrad52, Δrad14, Δmre11, Δtho2, Δrad50, Δsnf2, Δrad1,
and Δmms1) were also sensitive to MG. In contrast, DNA repair
and mRNA decay pathways were not required for glyoxal resistance,
even at higher doses (data not shown). Together, these results dem-
onstrate that MG damages cellular macromolecules more potently
than glyoxal.

Glyoxal-resistant deletion strains
Having identified numerous CS-sensitive deletion strains, we asked
which deletion strains manifest CS resistance. Such genes can be
interpreted as negative regulators of stress resistance. Pooled fitness
profiling assays have focused on identifying deletion strains with
reduced fitness in experimental conditions, in part because the assay’s
dynamic range for assessing resistance is poor [i.e., modest perturba-
tions are used (�IC10)] and in part because a large amount of the
sample is hybridized. To identify resistant strains, we developed an
optimized “resistance screen” in which the entire pool of deletion
strains is treated with a high dose of compound (e.g., IC50) over 20
generations of growth (Figure 2A and Materials and Methods), and
a smaller amount of material is hybridized (Figure 2A). This new
assay identified bona fide resistant deletion strains. Following treat-
ment with glyoxal at an IC50 concentration, most of the strain-specific
TAG intensities were at background levels compared to controls,
while those strains that remained constant or increased during the
course of the experiment represented glyoxal-resistant strains.

Multiple strains were significantly resistant to glyoxal, and the
majority of these strains were confirmed individually (Figure 2B, Ta-
ble S3). Among these genes, PTC1, a type 2C protein phosphatase that
negatively regulates the HOG pathway by dephosphorylating Hog1
(Warmka et al. 2001), and Nbp2, a protein that recruits Ptc1 to the
Pbs2-Hog1 complex, provide additional evidence that upregulation of
the HOG pathway is required for glyoxal resistance (Mapes and Ota
2004). GO analysis of these resistant deletion strains showed
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enrichment for intracellular/endosome transport protein metabolic
processes and organelle organization (Table S4).

A sensitized suppressor screen to understand
glyoxal stress
To further characterize the effects of glyoxal, we employed a third
genome-wide assay. Specifically, we identified multicopy suppressors
of glyoxal sensitivity using multicopy suppressor profiling (MSP) to
identify genes that confer resistance to compounds when over-
represented (Hoon et al. 2008; Rine et al. 1983).

During our experiments with deletion resistant screens, we dis-
covered that sir2 deletion mutants displayed resistance to glyoxal. This
observation, combined with the well-characterized relationship be-
tween Sir2 and NAD metabolism (Blander and Guarente 2004), in-
spired us to test if nicotinamide, an endogenous inhibitor of Sir2
(Bitterman et al. 2002), would act as a chemical modifier in the glyoxal
MSP assay. We found that nicotinamide conferred resistance to glyoxal
(Figure 3A) whereas isonicotinamide, an antagonist of nicotinamide

inhibition and an activator of Sir2 deacetylase activity (Sauve and
Schramm 2004), conferred sensitivity to glyoxal (Figure 3A). Therefore,
we mimicked activation of Sir2 using isonicotinamide to amplify the
sensitivity of the MSP screen (Figure 3B). We identified multiple sup-
pressors containing genomic DNA that were over-represented in pools
grown in glyoxal compared with control (Table 1), and isonicotina-
mide administration identified additional suppressors. One of the most
resistant loci identified was GLO1, the enzyme that metabolizes
glyoxal. This observation confirms that this experimental approach
can identify relevant genes involved in glyoxal resistance. Several
suppressors were confirmed by isogenic tests with wild-type yeast
harboring plasmids containing individually cloned ORFs (Figure
S1).

Deletion- and overexpression-based assays
are complementary
Surprisingly, only 4% (12/287) of genes were identified in both the
overexpression-resistance and deletion-sensitivity assays (Figure 3D).

Figure 2 Identifying deletion strains resistant to glyoxal stress. A) (left) Schematic of screen used for identifying deletion strains resistant to glyoxal
stress. A homozygous deletion pool was grown for 20 generations in 80 mM glyoxal. Barcodes were amplified and hybridized to TAG4 arrays.
(right) Strong selection in the presence of glyoxal resulted in selection for strains highly resistant to glyoxal. TAG intensities are mostly at
background (gray region) in cells treated with glyoxal compared to control. B) (left) Log2 fold ratio of control/treatment of TAG array results.
Negative fold ratios indicate tags that are over-represented in glyoxal selection. Genes mentioned in the text are highlighted in red. (right)
Confirmation growth curves of deletion strains resistant to glyoxal.
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There are multiple reasons for this lack of overlap, both biological and
technical. These assays were designed to yield orthologous data; e.g.,
deletion screens are unlikely to identify genes with overlapping or
redundant function (Tong et al. 2001). Overexpression screens can
identify suppressor genes that are functionally redundant because
expression of a single gene can confer resistance. Indeed, we identified
several aldehyde reductases that, when overexpressed, behaved this
way. GRE3 is an aldehyde reductase that is capable of metabolizing

MG and is regulated by the HOG pathway (Aguilera and Prieto 2001;
Aguilera et al. 2005). YPR1 is another aldehyde reductase that has
high specificity for 2-methylbutyraldehyde (Ford and Ellis 2002).
ADH6 is an alcohol dehydrogenase able to detoxify aldehydes
in vivo (Larroy et al. 2002). All three genes strongly suppressed glyoxal
toxicity in single-strain confirmations (Figure 3C). Although each of
these genes was identified by overexpression profiling, none was sen-
sitive to glyoxal as a single-gene deletion (Table S2), reflecting

Figure 3 Sensitized glyoxal suppressor screen. A) Fitness 6 SD (n = 3) of wild-type and SIR2 mutants grown in different glyoxal concentrations
with and without supplementing nicotinamide (NAM) and isonicotinamide (IsoNAM) at 5 mM and 25 mM, respectively. B) Schematic of multicopy
suppressor screen with glyoxal and isonicotinamide. A pool of yeast strains harboring a genomic library was grown competitively in the presence
of control, glyoxal, and glyoxal supplemented with isonicotinamide. Plasmids were isolated and inserts were amplified by PCR and hybridized to
ORF probes present on the TAG4 array. Over-represented ORFs in treatment vs. control are identified as candidate suppressors. C) Confirmatory
growth curves of individually cloned suppressors identified by MSP. D) Overlap of genes identified by MSP and DSP. MSP genes include genes
found in suppressor loci in Table 1. In cases where individual genes were not identified by subcloning, all genes in the suppressor loci were
included. Genes that were found in both assays were enriched for components in the osmosensory signaling pathway by Gene Ontology (GO)
analysis.
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potential functional redundancy and underscoring the benefit of com-
bining the results of multiple assays.

Despite the small overlap between loss-of-function and gain-of-
function assays, 12 genes where identified in both assays (Figure 3D).
These genes were enriched for signal transduction; e.g., three compo-
nents of the HOG pathway (PBS2, SSK1, and SSK2) were identified.
Overexpression of HOG1 conferred resistance to glyoxal (Figure 3C),
even though it was not identified by MSP. On the basis of our earlier
work, genes that ranked high in both assays were enriched for func-
tions directly related to drug mechanism of action (Hoon et al. 2008);
accordingly, we concluded that the HOG pathway is critical for
glyoxal resistance, and because mutants in the glyoxalase pathway

were much less sensitive (Figure 1C), we suggest that additional effec-
tors of glyoxal resistance are regulated by the HOG pathway.

Integrating genome-wide glyoxal sensitivity and
resistance data
Using the data from the deletion- and overexpression-based screens, we
generated a ranked list of sensitive and resistant strains and performed
epistasis analysis by systematically creating double mutants between
genes involved in CS resistance and measuring their fitness in the
presence of glyoxal using high resolution growth curve analysis on the
approximately 800 multimutants. Epistasis, defined as the influence of
a mutation in one gene on the phenotype of another, can be formalized

n Table 1 Multicopy suppressors identified by MSP

Locus Log2 Ratio Average Ratio Confirmed Suppressor

Glyoxal
GLO1;YML003W 2.52,3.25 2.88 GLO1
YDR366C;YDR367W;YPR1;XRS2 3.29,2.07,2.20,2.37 2.48 YPR1
YMR317W;ADH6 2.86,2.04 2.45 ADH6
PBN1;LRE1 2.13,2.35 2.24 ND

Glyoxal + isonicotinamide
PBN1;LRE1 4.81,4.74 4.78 ND
YDR366C;YDR367W;YPR1;XRS2 5.05,4.14,4.53,4.73 4.61 YPR1
YMR317W;ADH6 4.73,4.49 4.61 ADH6
MRPL28;STP1 3.07,4.24 3.66 STP1
MED8;SOY1;MSI1;PGI1 4.25,4.09,3.68,2.60 3.65 MED8
YML007C-A;YAP1;GIS4;[tS(AGA)M];

TRM12;GLO1;YML003W
2.40,2.46,2.33,0.00,4.90,5.80,6.43 3.47 GLO1

THR1;PPA1;RPN1 3.16,3.83,3.11 3.37 THR1
ZDS2;YML108W;PML39 3.60,3.48,2.86 3.31 ZDS2
NST1;RHO2 2.88,3.58 3.23 RHO2
YGR125W;YGR126W 2.42,3.66 3.04 YGR126W
FBP26;VPS35 2.95,2.96 2.96 ND
CCC2;[YDR271C];GLO2;DON1 2.94,0.00,4.38,4.04 2.84 GLO2
YGL036W;MIG1 3.38,2.26 2.82 ND
LCP5;YER128W 2.94,2.65 2.79 ND
SSL1;SSK1 2.50,3.09 2.79 SSK1
MIG2;SIP2 2.56,3.00 2.78 MIG2
GIS3;IOC2 2.14,3.39 2.77 GIS3
BUD22;ERG5;SOK2 2.40,2.76,2.91 2.69 ND
STB1;KRI1 2.91,2.40 2.66 ND
YKR023W;DBP7 2.73,2.45 2.59 ND
TRR2;CDC12 2.55,2.52 2.54 ND
NIP7;SRP72 2.57,2.44 2.50 ND
ALG12;SSK2 2.00,2.79 2.40 ND
RBA50;[snR84];HLR1;QCR7;APA2 3.36,0.00,3.30,3.04,2.19 2.38 HLR1
YGR016W;YGR017W 2.42,2.18 2.30 ND
BSP1;YPR172W;VPS4 2.14,2.38,2.39 2.30 ND
DDP1;YOR164C 2.27,2.29 2.28 ND
CBS1;[YDL068W];COX9 2.00,0.00,2.48 1.49 ND

Singletons
DAM1 3.55 ND
MTH1 3.10 ND
CDC34 3.00 ND
BUD6 2.90 ND
PBS2 2.90 PBS2
RPI1 2.87 ND
SEC6 2.85 ND
YPT7 2.83 ND
DNA2 2.82 ND
GRE3 2.70 GRE3

Syntenic genes identified by MSP screen. Singletons are genes that do not have neighboring genes with high log2 ratios. ORFs in brackets []
are not present on the microarray and thus not assessed by MSP. ND, not tested by single ORF analysis.
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so that any deviation from the predicted effects of combined mutations
can be quantified to derive genetic interaction networks and dissect
cellular pathways (Boone et al. 2007; Mani et al. 2008) (St. Onge et al.
2007). All possible combinations of double-deletion strains were con-
structed for 15 deletion strains sensitive to glyoxal, and all possible
combinations between the same 15 sensitive deletion strains and 24
resistant deletion strains were constructed for a total of �800 double-
deletions strains that were screened for fitness in the presence and
absence of glyoxal (Figure 4A).We performed the screens at two glyoxal
concentrations (5 mM and 10 mM) that were lower than the pooled
screen concentration to increase the likelihood of identifying both alle-
viating and aggravating interactions. Each double mutant was con-

structed twice, and we found that fitness values between reciprocal
gene pairs were highly correlated (Figure 4B). Using fitness values for
double- and single-deletion strains, we quantified the genetic interaction
(expressed as e) between gene pairs, where exy = Wxy – Wx · Wy. By
performing our screens at multiple drug doses with both resistant and
sensitive mutant strains (using high-resolution growth curves), we could
identify subtle genetic interactions ranging from aggravation (e , 0) to
suppression (e . 0). For example, in 5 mM glyoxal, loss of RPE1
severely aggravated glyoxal sensitivity of a Dpbs2 strain, whereas in 10
mM glyoxal, loss of ERV14 completely suppressed glyoxal sensitivity of
a Dpbs2 strain (Figure 4C). The distribution of e values showed that
a greater number of genetic interactions were uncovered when the

Figure 4 Quantitative epistasis analysis. A) Double deletion strains were constructed between 15 glyoxal sensitive strains and 24 glyoxal resistant
strains. Each double mutant was constructed independently twice using two different markers (Kanr and Natr). B) Fitness correlation between
reciprocal double-deletion mutants for each gene pair in the presence and absence of glyoxal. The correlation coefficient (R) and the best fitting
line are shown. C) Examples of double-deletion mutants displaying aggravating and alleviating genetic interaction in the presence of glyoxal.
Dpbs2Drpe1 mutants were strongly aggravating in 5 mM glyoxal with e = 20.66, and Dpbs2Derv14 were strongly alleviating (suppression) in
10 mM glyoxal with e = 0.44. D) Distribution of e values for all double mutant pairs grown in YPD (blue) or 10 mM glyoxal (red).
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screen was performed in the presence of stress (St. Onge et al. 2007)
(Figure 4D).

We summarized all the epistatic tests as a heatmap, with strains
ordered by hierarchical clustering of their e values (Figure 5). Genes of
related function clustered together; e.g., HOG1 and PBS2 were highly
correlated (r = 0.98) in both YPD and YPD + glyoxal. In contrast, other
pairs of genes shared genetic interactions only in the presence of glyoxal.
RPN10, which encodes the 19S regulatory particle (RP) of the 26S
proteasome, clusters with SPT3 and SPT8, members of the SAGA tran-
scriptional regulatory complex. It was recently shown that the 19S RP
alters SAGA and stimulates its interaction with transcription activators
(Lee et al. 2005a). We also note that a strain deleted for GCN5, the
catalytic subunit of SAGA, was resistant to glyoxal (Table S3) and RPE1,
an epimerase with roles in the non-oxidative part of the pentose phos-
phate pathway that has been shown to display increased sensitivity to
hydrogen peroxide (Juhnke et al. 1996). In the presence of glyoxal,
RPE1 clusters with TKL1, a transketolase that functions in the same
pathway (Walfridsson et al. 1995), and both are involved in NADPH
production, important for protection against reactive oxidative stress.
Because alleviating interactions arise when a mutation in one gene
impairs the function of a pathway, thereby masking the effects of muta-
tions in other members of the same pathway (Mani et al. 2008), the
alleviation observed between RPE1 and TKL1 (e = 0.15) suggests that
the two genes operate in the same pathway. In contrast, mutants of both
RPE1 and TKL1 shared aggravating interactions with mutants of IRA2,
SSD1, PPZ1, HOG1, and PBS2, indicating that they buffer glyoxal re-
sistance via distinct pathways. Thus, our epistasis analysis of over 800
multimutants detected known relationships between genes in the same
pathway and uncovered novel relationships between pathways that were
detected only under glyoxal-induced stress.

Loss of Fps1 and Erv14 abolishes the requirement for
the HOG pathway
Erv14 is a transmembrane protein found in the ER and the early Golgi
compartment involved in COPII cargo selection (Nakanishi et al.
2007; Powers and Barlowe 1998; Powers and Barlowe 2002). Our
genetic interaction analysis showed that Erv14 clusters with Fps1,
a membrane channel involved in glycerol export. Deletion of both
genes resulted in complete suppression of glyoxal sensitivity of Dhog1
and Dpbs2 mutants, demonstrating that both FPS1 and ERV14 func-
tion downstream of the HOG pathway (Figure 6A). Fps1 is known to
mediate the uptake of acetic acid, arsenite, and antimonite, and down-
regulation of Fps1 activity via Hog1 confers resistance to the same
toxins (Mollapour and Piper 2007; Thorsen et al. 2006; Wysocki et al.
2001). On the basis of the degree of resistance conferred by loss of
FPS1 to both Dhog1 and Dpbs2 mutants, we speculate that glyoxal
may enter the cell via the Fps1 plasma membrane channel. Because
loss of Fps1 also suppressed glyoxal sensitivity in other mutants (e.g.,
Dtma108, Dtkl1, and Dppz1) at much higher glyoxal concentrations
(Figure S2), it is also possible that Erv14 regulates transport of Fps1 to
the plasma membrane. To test the hypothesis that loss of Erv14 ren-
ders cells resistant to glyoxal by disrupting plasma membrane locali-
zation of Fps1, we examined a GFP-tagged allele of Fps1 and found
that, in fact, localization of Fps1 to the plasma membrane was dis-
rupted in Derv14 mutants (Figure 6B). This observation confirmed
that epistatic studies derived from the genome-wide screens can form
the basis of specific, testable hypotheses.

DISCUSSION
Characterization of chemical stresses, such as MG and glyoxal, is
challenging because numerous pathways (e.g., stress response and

Figure 5 Genetic interaction profiles predict pathways.
Genes hierarchically clustered (Pearson correlation)
according to similar patterns of genetic interaction (e)
for growth in YPD (left) and in 10 mM glyoxal (right).
The heatmap is colored accordingly to the e value of
each double mutant: yellow for aggravating interactions
(e , 0) and blue for alleviating interactions (e . 0).
Genes identified as sensitive to glyoxal when deleted
singly are highlighted in red, and genes identified as
resistant to glyoxal when deleted singly are highlighted
in green.

Volume 1 August 2011 | Carbonyl Stress in Yeast | 227

http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004103
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003664
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001243
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002800
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004045
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003484
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000505/-/DC1/TableS3.xls
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003657
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003657
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006278
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003657
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006278
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003657
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006278
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000005441
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000002701
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004478
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004103
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003664
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004103
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003664
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004103
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004103
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003664
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001399
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000006278
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000004478
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.111.000505/-/DC1/FigureS2.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003966
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000003022


chemical detoxification) are involved. To address these challenges, we
employed several unbiased chemical genomic assays. First, using com-
petitive fitness measurements, we defined the genetic determinants of
CS resistance and then determined the relationships between these
genes in the presence of CS using multimutant analysis (St. Onge et al.
2007). The result is a comprehensive view of the physiology that
underlies the cellular response to CS. We show that the genetic
requirements for MG and glyoxal resistance are distinct and that
different carbonyl stresses require distinct genetic cohorts for cell
survival. We demonstrate the importance of macromolecule catabo-
lism for resistance to MG, confirming and extending known mecha-
nisms of MG toxicity. Downregulation of the glucose repression
pathway was also implicated in the control of glyoxal resistance, spe-
cifically MIG1, SNF1, and MIG2 (Table 1).

The effects of glyoxal on the cell are pervasive and deleterious, yet
poorly understood. Integrating our observations, we suggest a model
of glyoxal resistance in yeast (Figure 7) with the intention of gener-
ating testable hypotheses for follow-up studies. In this model, glyoxal
detoxification is mediated via multiple reductases, GRE3, ADH6, YPR1
and GLO1, which were identified via multicopy suppression to confer
glyoxal resistance. A functioning HOG pathway is critical for glyoxal
resistance by regulating the expression of GLO1, which encodes
a glyoxal detoxifying enzyme. In addition to GLO1, our data suggest

that other downstream effectors participate in mediating glyoxal re-
sistance. One candidate effector is FPS1, a plasma membrane channel
that is targeted for endocytic degradation by Hog1 phosphorylation
(Mollapour and Piper 2007). Deletion of FPS1 abolishes the sensitivity
of HOG pathway mutants to glyoxal, similar to that observed for
acetic acid, arsenite, and antimonite (Mollapour and Piper 2007;
Thorsen et al. 2006; Wysocki et al. 2001). Several mutants responsible
for ER and early Golgi transport were observed to be resistant to
glyoxal. In particular, loss of ERV14 also abolishes sensitivity of
HOG pathway mutants. We speculate that this is due to defective
localization of Fps1 to the cell surface with a concomitant reduction
in glyoxal levels. One way to test this model would be to measure the
intracellular glyoxal concentrations during treatment of wild-type and
mutant strains.

In summary, we show the broad range of specific cellular functions
that are important for carbonyl stress resistance. Using multiple
genome-wide approaches, we were able to comprehensively identify
multiple genetic requirements for glyoxal stress resistance. Further-
more, a quantitative epistasis analysis comprising �800 strains
allowed us to uncover glyoxal-dependent genetic interactions. These
data comprise the first genome-wide assessment of the role of gene
dose and of epistatic relationships with respect to their role in the
response to carbonyl stress. Because many of the pathways affected by

Figure 6 Erv14 deletion abolishes requirement for
HOG pathway. A) Growth curve of double mutants
Dhog1Derv14 (top row) and Dpbs2Derv14 (bottom row)
in YPD and glyoxal (10 mM). B) Live cell imaging of Fps1
distribution. Wild-type (BY4741) and Derv14 cells
expressing C-terminally GFP-tagged Fps1 from the
pUG23-FPS1GFP plasmid were grown in synthetic me-
dia lacking methionine. DNA staining was performed
with Hoescht stain 33258.
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carbonyl stress are well conserved, our observations and their under-
lying datasets provide a resource for future studies in yeast and other
cell types. For example, aging, while not typically thought of as
a stress-related disorder, manifests many of the features of carbonyl
accumulation–related toxicity. Accordingly, comprehensive gene dose
studies may serve as a cost-effective and comprehensive approach for
toxicity assessment toward achieving the goal of transforming both
general and environmental health (Collins et al. 2008).

ACKNOWLEDGMENTS
We thank members of the chemogenomics lab at the Stanford
Genome Technology Center for discussions. Charlie Boone kindly
supplied yeast strains and plasmids. S. Hoon is supported by a
graduate fellowship from the Agency for Science Technology and
Research (Singapore). R.W. Davis is supported by grants from the
National Institutes of Health (NIH). G. Giaever and C. Nislow are
supported by grants from the NIH and Canadian Institutes of Health
Research (CIHR) (MOP-81340 to G.G.; MOP-84305 to C.N.).

LITERATURE CITED
Aguilera, J., and J. A. Prieto, 2001 The saccharomyces cerevisiae aldose

reductase is implied in the metabolism of methylglyoxal in response to
stress conditions. Curr. Genet. 39: 273–283.

Aguilera, J., S. Rodriguez-Vargas, and J. A. Prieto, 2005 The HOG MAP
kinase pathway is required for the induction of methylglyoxal-responsive
genes and determines methylglyoxal resistance in saccharomyces cerevi-
siae. Mol. Microbiol. 56: 228–239.

Akhand, A. A., K. Hossain, H. Mitsui, M. Kato, T. Miyata et al.,
2001 Glyoxal and methylglyoxal trigger distinct signals for map family
kinases and caspase activation in human endothelial cells. Free Radic.
Biol. Med. 31: 20–30.

Barrera, G., S. Pizzimenti, and M. U. Dianzani, 2008 Lipid peroxidation:
control of cell proliferation, cell differentiation and cell death. Mol. As-
pects Med. 29: 1–8.

Beckman, K. B., and B. N. Ames, 1998 The free radical theory of aging
matures. Physiol. Rev. 78: 547–581.

Benov, L., and I. Fridovich, 1998 Superoxide dependence of the toxicity of
short chain sugars. J. Biol. Chem. 273: 25741–25744.

Bertram, C., and R. Hass, 2008 Cellular responses to reactive oxygen spe-
cies-induced DNA damage and aging. Biol. Chem. 389: 211–220.

Bito, A., M. Haider, I. Hadler, and M. Breitenbach, 1997 Identification and
phenotypic analysis of two glyoxalase II encoding genes from saccharo-
myces cerevisiae, GLO2 and GLO4, and intracellular localization of the
corresponding proteins. J. Biol. Chem. 272: 21509–21519.

Bitterman, K. J., R. M. Anderson, H. Y. Cohen, M. Latorre-Esteves, and D. A.
Sinclair, 2002 Inhibition of silencing and accelerated aging by nicotin-
amide, a putative negative regulator of yeast sir2 and human SIRT1. J.
Biol. Chem. 277: 45099–45107.

Blander, G., and L. Guarente, 2004 The Sir2 family of protein deacetylases.
Annu. Rev. Biochem. 73: 417–435.

Boone, C., H. Bussey, and B. J. Andrews, 2007 Exploring genetic interac-
tions and networks with yeast. Nat. Rev. Genet. 8: 437–449.

Breitling, R., P. Armengaud, A. Amtmann, and P. Herzyk, 2004 Rank
products: a simple, yet powerful, new method to detect differentially reg-
ulated genes in replicated microarray experiments. FEBS Lett. 573: 83–92.

Cameron, N. E., T. M. Gibson, M. R. Nangle, and M. A. Cotter,
2005 Inhibitors of advanced glycation end product formation and
neurovascular dysfunction in experimental diabetes. Ann. N. Y. Acad. Sci.
1043: 784–792.

Collins, F. S., G. M. Gray, and J. R. Bucher, 2008 Toxicology. transforming
environmental health protection. Science 319: 906–907.

Du, J., J. Zeng, X. Ou, X. Ren, and S. Cai, 2006 Methylglyoxal downregu-
lates raf-1 protein through a ubiquitination-mediated mechanism. Int.
J. Biochem. Cell Biol. 38: 1084–1091.

Figure 7 Model for glyoxal resistance. We
highlight four main pathways necessary for
glyoxal resistance. The HOG pathway posi-
tively regulates the expression of GLO1 and
negatively regulates FPS1 in conferring
glyoxal resistance. We hypothesize that the
HOG pathway targets Fps1 for degradation,
thereby reducing glyoxal import. Moreover,
we hypothesize that transport of Fps1 to the
cell surface is mediated by Erv14 and associ-
ated proteins. We also identified two other
mechanisms by which glyoxal resistance is
managed: 1) downregulation of the Ras/
cAMP/PKA pathway and 2) glyoxal
metabolism.

Volume 1 August 2011 | Carbonyl Stress in Yeast | 229



Ellis, E. M., 2007 Reactive carbonyls and oxidative stress: potential for
therapeutic intervention. Pharmacol. Ther. 115: 13–24.

Falcon, S., and R. Gentleman, 2007 Using GOstats to test gene lists for GO
term association. Bioinformatics 23: 257–258.

Ford, G., and E. M. Ellis, 2002 Characterization of Ypr1p from saccharomyces
cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 19: 1087–1096.

Garneau, N. L., J. Wilusz, and C. J. Wilusz, 2007 The highways and byways
of mRNA decay. Nat. Rev. Mol. Cell Biol. 8: 113–126.

Giaever, G., P. Flaherty, J. Kumm, M. Proctor, C. Nislow et al.,
2004 Chemogenomic profiling: Identifying the functional interactions
of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101: 793–798.

Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles et al., 2002 Functional
profiling of the saccharomyces cerevisiae genome. Nature 418: 387–391.

Gietz, R. D., R. H. Schiestl, A. R. Willems, and R. A. Woods, 1995 Studies
on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG
procedure. Yeast 11: 355–360.

Harman, D., 1981 The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–
7128.

Hillenmeyer, M. E., E. Fung, J. Wildenhain, S. E. Pierce, S. Hoon et al.,
2008 The chemical genomic portrait of yeast: uncovering a phenotype
for all genes. Science 320: 362–365.

Hoon, S., A. M. Smith, I. M. Wallace, S. Suresh, M. Miranda et al., 2008 An
integrated platform of genomic assays reveals small-molecule bioactiv-
ities. Nat. Chem. Biol. 4: 498–506.

Inoue, Y., and A. Kimura, 1996 Identification of the structural gene for
glyoxalase I from saccharomyces cerevisiae. J. Biol. Chem. 271: 25958–
25965.

Inoue, Y., Y. Tsujimoto, and A. Kimura, 1998 Expression of the glyoxalase I
gene of saccharomyces cerevisiae is regulated by high osmolarity glycerol
mitogen-activated protein kinase pathway in osmotic stress response.
J. Biol. Chem. 273: 2977–2983.

Juhnke, H., B. Krems, P. Kotter, and K. D. Entian, 1996 Mutants that show
increased sensitivity to hydrogen peroxide reveal an important role for
the pentose phosphate pathway in protection of yeast against oxidative
stress. Mol. Gen. Genet. 252: 456–464.

Kalapos, M. P., 1999 Methylglyoxal in living organisms: chemistry, bio-
chemistry, toxicology and biological implications. Toxicol. Lett. 110: 145–
175.

Kang, Y., L. G. Edwards, and P. J. Thornalley, 1996 Effect of methylglyoxal
on human leukaemia 60 cell growth: modification of DNA G1 growth
arrest and induction of apoptosis. Leuk. Res. 20: 397–405.

Kujoth, G. C., A. Hiona, T. D. Pugh, S. Someya, K. Panzer et al.,
2005 Mitochondrial DNA mutations, oxidative stress, and apoptosis in
mammalian aging. Science 309: 481–484.

Larroy, C., M. R. Fernandez, E. Gonzalez, X. Pares, and J. A. Biosca,
2002 Characterization of the saccharomyces cerevisiae YMR318C
(ADH6) gene product as a broad specificity NADPH-dependent alcohol
dehydrogenase: relevance in aldehyde reduction. Biochem. J. 361:
163–172.

Lee, D., E. Ezhkova, B. Li, S. G. Pattenden, W. P. Tansey et al., 2005a The
proteasome regulatory particle alters the SAGA coactivator to enhance its
interactions with transcriptional activators. Cell 123: 423–436.

Lee, W., R. P. St. Onge, M. Proctor, P. Flaherty, M. I. Jordan et al.,
2005b Genome-wide requirements for resistance to functionally distinct
DNA-damaging agents. PLoS Genet. 1: e24.

Maeta, K., S. Izawa, and Y. Inoue, 2005 Methylglyoxal, a metabolite derived
from glycolysis, functions as a signal initiator of the high osmolarity
glycerol-mitogen-activated protein kinase cascade and calcineurin/
Crz1-mediated pathway in saccharomyces cerevisiae. J. Biol. Chem. 280:
253–260.

Mani, R., R. P. St. Onge, J. L. Hartman 4th, G. Giaever, and F. P. Roth,
2008 Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105:
3461–3466.

Mapes, J., and I. M. Ota, 2004 Nbp2 targets the Ptc1-type 2C Ser/Thr
phosphatase to the HOG MAPK pathway. EMBO J. 23: 302–311.

Mollapour, M., and P. W. Piper, 2007 Hog1 mitogen-activated protein
kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for en-

docytosis, thereby rendering cells resistant to acetic acid. Mol. Cell. Biol.
27: 6446–6456.

Murata, K., T. Saikusa, Y. Fukuda, K. Watanabe, Y. Inoue et al.,
1986 Metabolism of 2-oxoaldehydes in yeasts. Possible role of
glycolytic bypath as a detoxification system in L-threonine catabolism
by saccharomyces cerevisiae. Eur. J. Biochem. 157: 297–301.

Murata-Kamiya, N., and H. Kamiya, 2001 Methylglyoxal, an endogenous
aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic
Acids Res. 29: 3433–3438.

Nakanishi, H., Y. Suda, and A. M. Neiman, 2007 Erv14 family cargo re-
ceptors are necessary for ER exit during sporulation in saccharomyces
cerevisiae. J. Cell Sci. 120: 908–916.

Nemet, I., L. Varga-Defterdarovic, and Z. Turk, 2006 Methylglyoxal in food
and living organisms. Mol. Nutr. Food Res. 50: 1105–1117.

O’Brien, P. J., A. G. Siraki, and N. Shangari, 2005 Aldehyde sources, me-
tabolism, molecular toxicity mechanisms, and possible effects on human
health. Crit. Rev. Toxicol. 35: 609–662.

Oldenburg, K. R., K. T. Vo, S. Michaelis, and C. Paddon,
1997 Recombination-mediated PCR-directed plasmid construction
in vivo in yeast. Nucleic Acids Res. 25: 451–452.

Oliver, C. N., B. W. Ahn, E. J. Moerman, S. Goldstein, and E. R. Stadtman,
1987 Age-related changes in oxidized proteins. J. Biol. Chem. 262:
5488–5491.

O’Rourke, S. M., I. Herskowitz, and E. K. O’Shea, 2002 Yeast go the whole
HOG for the hyperosmotic response. Trends Genet. 18: 405–412.

Pierce, S. E., E. L. Fung, D. F. Jaramillo, A. M. Chu, R. W. Davis et al.,
2006 A unique and universal molecular barcode array. Nat. Methods 3:
601–603.

Poli, G., M. U. Dianzani, K. H. Cheeseman, T. F. Slater, J. Lang et al.,
1985 Separation and characterization of the aldehydic products of lipid
peroxidation stimulated by carbon tetrachloride or ADP-iron in isolated
rat hepatocytes and rat liver microsomal suspensions. Biochem. J. 227:
629–638.

Powers, J., and C. Barlowe, 1998 Transport of axl2p depends on erv14p,
an ER-vesicle protein related to the drosophila cornichon gene product.
J. Cell Biol. 142: 1209–1222.

Powers, J., and C. Barlowe, 2002 Erv14p directs a transmembrane secretory
protein into COPII-coated transport vesicles. Mol. Biol. Cell 13: 880–891.

Rabbani, N., and P. J. Thornalley, 2008 The dicarbonyl proteome: proteins
susceptible to dicarbonyl glycation at functional sites in health, aging, and
disease. Ann. N. Y. Acad. Sci. 1126: 124–127.

Rine, J., W. Hansen, E. Hardeman, and R. W. Davis, 1983 Targeted selec-
tion of recombinant clones through gene dosage effects. Proc. Natl. Acad.
Sci. USA 80: 6750–6754.

Saint-Jalm, Y., and P. Moree-Testa, 1980 Study of nitrogen-containing
compounds in cigarette smoke by gas chromatography-mass spectrom-
etry. J. Chromatogr. A 198: 188–192.

Sauve, A. A., and V. L. Schramm, 2004 SIR2: the biochemical mechanism of
NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme in-
termediates. Curr. Med. Chem. 11: 807–826.

Shringarpure, R., and K. J. Davies, 2002 Protein turnover by the proteasome
in aging and disease. Free Radic. Biol. Med. 32: 1084–1089.

St. Onge, R. P., R. Mani, J. Oh, M. Proctor, E. Fung et al., 2007 Systematic
pathway analysis using high-resolution fitness profiling of combinatorial
gene deletions. Nat. Genet. 39: 199–206.

Stadtman, E. R., 1992 Protein oxidation and aging. Science 257: 1220–1224.
Stadtman, E. R., 2006 Protein oxidation and aging. Free Radic. Res. 40:

1250–1258.
Stansfield, I., and M. J. R. Stark, 2007 Yeast Gene Analysis. Elsevier/Aca-

demic Press, Amsterdam andBoston.
Thornalley, P. J., 2003 Use of aminoguanidine (pimagedine) to prevent the

formation of advanced glycation endproducts. Arch. Biochem. Biophys.
419: 31–40.

Thornalley, P. J., 1998 Glutathione-dependent detoxification of alpha-
oxoaldehydes by the glyoxalase system: involvement in disease mechanisms
and antiproliferative activity of glyoxalase I inhibitors. Chem. Biol. In-
teract. 111–112: 137–151.

230 | S. Hoon et al.



Thornalley, P. J., 1996 Pharmacology of methylglyoxal: formation, modi-
fication of proteins and nucleic acids, and enzymatic detoxification–a role
in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 27:
565–573.

Thorpe, G. W., C. S. Fong, N. Alic, V. J. Higgins, and I. W. Dawes,
2004 Cells have distinct mechanisms to maintain protection against
different reactive oxygen species: oxidative-stress-response genes. Proc.
Natl. Acad. Sci. USA 101: 6564–6569.

Thorsen, M., Y. Di, C. Tangemo, M. Morillas, D. Ahmadpour et al.,
2006 The MAPK Hog1p modulates Fps1p-dependent arsenite uptake
and tolerance in yeast. Mol. Biol. Cell 17: 4400–4410.

Tong, A. H., and C. Boone, 2006 Synthetic genetic array analysis in
saccharomyces cerevisiae. Methods Mol. Biol. 313: 171–192.

Tong, A. H., M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader et al.,
2001 Systematic genetic analysis with ordered arrays of yeast deletion
mutants. Science 294: 2364–2368.

Vander Jagt, D. L., B. Robinson, K. K. Taylor, and L. A. Hunsaker,
1992 Reduction of trioses by NADPH-dependent aldo-keto reductases.
aldose reductase, methylglyoxal, and diabetic complications. J. Biol.
Chem. 267: 4364–4369.

Walfridsson, M., J. Hallborn, M. Penttila, S. Keranen, and B. Hahn-Hagerdal,
1995 Xylose-metabolizing saccharomyces cerevisiae strains overex-
pressing the TKL1 and TAL1 genes encoding the pentose phosphate
pathway enzymes transketolase and transaldolase. Appl. Environ. Mi-
crobiol. 61: 4184–4190.

Warmka, J., J. Hanneman, J. Lee, D. Amin, and I. Ota, 2001 Ptc1, a type 2C
Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating
the mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 21: 51–60.

Wells-Knecht, K. J., D. V. Zyzak, J. E. Litchfield, S. R. Thorpe, and J. W.
Baynes, 1995 Mechanism of autoxidative glycosylation: Identification of
glyoxal and arabinose as intermediates in the autoxidative modification of
proteins by glucose. Biochemistry 34: 3702–3709.

Wysocki, R., C. C. Chery, D. Wawrzycka, M. Van Hulle, R. Cornelis et al.,
2001 The glycerol channel Fps1p mediates the uptake of arsenite and
antimonite in saccharomyces cerevisiae. Mol. Microbiol. 40: 1391–1401.

Zervas, E., X. Montagne, and J. Lahaye, 2002 Emission of alcohols and
carbonyl compounds from a spark ignition engine. influence of fuel and
air/fuel equivalence ratio. Environ. Sci. Technol. 36: 2414–2421.

Communicating editor: R. Sclafani

Volume 1 August 2011 | Carbonyl Stress in Yeast | 231


