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ABSTRACT

Background. Larger volumes of accidental air infused during medical care may end up as emboli while microbubbles of
air are supposed to be absorbed and cause no harm. The aim of this autopsy study was to investigate if microbubbles of
air accidently entering the bloodline may be detected as microemboli (ME) in tissue such as lungs, brain and heart. If so,
do differences in prevalence exist between haemodialysis (HD) and amyotrophic lateral sclerosis (ALS) patients.
Methods. Included were data from 44 patients treated by medical healthcare before death. Twenty-five cases had been
treated with chronic HD and 19 cases died from ALS. Since air in the bloodline activates coagulation, ME could appear. To
discriminate between microbubbles caused by artificial contamination during autopsy versus microbubbles deposited in
vivo, tissues were stained with a polyclonal fluorescent antibody against fibrinogen, fibrin and fragments E and D.
Fluorescence staining was used to visualize ME counted within 25 microscopic fields (600×) of a tissue preparation. One
tissue preparation was used if available from the lung, heart and frontal lobe of the brain and in five cases also the
cerebellum.
Results. Microbubbles can be verified at autopsy as ME in the lung, heart and brain in tissue from patients exposed to
more extensive medical care. There were significantly more ME in the lungs versus the heart or brain. Women had fewer
ME than men. The HD group had a higher median of ME per section than the ALS group (lung: 6 versus 3, P = .007; heart:
2.5 versus 1, P = .013; brain: 7.5 versus 2, P = .001) and had more sections with ME findings than the ALS group (P = .002).
A correlation existed between the time on HD (months) and ME in the lungs.
Conclusions. More ME were present in HD patients compared with those who suffered from ALS. Minimizing air
contamination from syringes, infusions and bloodlines will decrease ME and subsequent tissue injury.

LAY SUMMARY

Larger volumes of accidental air infused during medical care may end up as emboli while microbubbles of air are
supposed to be absorbed and cause no harm. Microbubbles can be verified at autopsy as microemboli (ME) by air in
lung, heart and brain in tissue from patients exposed to dialysis and more cannulation and infusions. Minimizing air
exposure from syringes, infusions and bloodlines may decrease the risk of ME by air and subsequent tissue
injury.
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INTRODUCTION

Accidental injection or infusion of larger amounts of air may
cause severe pulmonary emboli if entered intravenously or cere-
bral emboli if entering through the carotid arteries. During a
cardiopulmonary bypass, gaseous microemboli (ME) have been
recognized with different side effects [1, 2], although air detec-
tors have limited detection capacity [3, 4]. Little is known about
smaller volumes of accidental air contamination into the veins
during injections and/or infusions of medication or nutrition in
patients with severe stages of diseases such as amyotrophic lat-
eral sclerosis (ALS).

Other patients exposed to air contamination by repeated in-
fusions are patients performing chronic haemodialysis (HD) [5–
10]. During HD, blood exits the body from a vascular access such
as an arteriovenous fistula or central dialysis catheter and enters
into a bloodline. The bloodline is for single use and represents
the extracorporeal circuit (ECC).The ECC incorporates pump seg-
ment connections for anticoagulation and pressure measure-
ments and, after the dialyzer, a venous chamber (air trap) that
removes air from the blood and returns it back into the veins
of the patient. However, current air traps only partly remove air
microbubbles that contaminate the ECC [11]. Residual air mi-
crobubbles pass through the venous return line of the access
and into the lungs [6, 8]. There are indications by ultrasound
that bubbles pass through the lungs and can be detected in the
carotid artery [6] and the brain [12]. A shorter dialysis time and
lower blood pump speed are variables that lower extracorporeal
blood flow during HD [13]. The pump speed is significantly re-
lated to air bubble contamination—a faster blood pump speed
favours more extensive exposure to microbubbles and subse-
quent ME [7]. The increased prevalence of pulmonary fibrosis
in HD patients has been described [14, 15] and the possibility
of a relation with microbubbles has been indicated [15]. In ad-
dition, pulmonary arterial hypertension is a frequent finding in
HD patients that is not present in peritoneal dialysis (PD) pa-
tients [16]. Multiple cerebral emboli have been described in HD
patients [17] and an increased prevalence of cerebral stroke is
seen in HD versus PD patients [18], as well as increased rates
of cognitive impairment [19–22], progression of cerebral atro-
phy [23], abnormal morphological changes [24] and silent in-
farction [17], and in elderly HD patients, reduced cerebral per-
fusion [25]. Two smaller autopsy studies of patients who had
been treated by chronic HD before death showed histological
findings within tissue sections of microbubbles incapsulated as
ME within the vessels of lungs [15], but also in capillaries of the
brain and heart of a patient who died during HD [26]. Those data
indicate that air entering the veins is not totally resorbed be-
fore entering the lungs. A similar concept is also used for con-
trast medium for ultrasound-guided radiological investigations
[27, 28]. A preservation of air microbubbles enables prolonged
circulation in the blood since they are embedded, i.e. lipid
coating [27, 28].

The aim of this autopsy study was to investigate if microbub-
bles of air accidently entering the bloodline may be detected
as ME in tissue such as lungs, brain and heart. If so, do differ-
ences in prevalence and distribution exist between HD and ALS
patients?

MATERIALS AND METHODS

The study included samples or tissue from patients who died
in the course of medical healthcare that included exposure to
interventions such as infusions, injections, surgery and chronic
HD. Tissue sections from 44 autopsied patients were investi-
gated for the presence of ME including air. Patients investigated
were those who died while on chronic intermittent HD (HD
group, 25 patients: 17 men and 8 women), patients who died in
the course of treatment for ALS (ALS group, 19 patients: 10 men,
8 women and 1 patient who was undefined by gender and age
due to missing data).

The study was performed at the University of Umeå and
approved by the Ethical Committee of Umeå University (Dnr
2009-0096M) and adhered to the tenets of the Declaration of
Helsinki.

A total of 109 tissue sections were available (Table 1). They
included 54 from patients who were treated with chronic inter-
mittent HD and 55 from ALS patients. The sections were taken
from the lung, heart and brain (frontal lobe, and in five instances
also cerebellum) from the same HD patients (n = 20, 20 and 8,
respectively) and ALS patients (n = 17, 19 and 19, respectively).
Tissue sections were not always available from all three organs,
because in some the autopsy was focused only on clarifying the
reason of death.

The collected tissue sections were immersion fixed in 4%
paraformaldehyde in 0.1M sodiumphosphate, pH 7.4, and paraf-
fin embedded. Tissue sections were stained with haematoxylin
and eosin.

The autopsy procedure per se may induce air bubble con-
tamination into the tissues. To visualize such air contamina-
tion post-mortem from air bubbles deposited before death, a
specific analysis was necessary. Therefore, all tissue sections
were stained using a polyclonal fluorescent antibody against fib-
rinogen for immunohistochemistry. This method was used to
calculate microbubbles (open spaces) present in ME. The poly-
clonal antibody reacts against fibrinogen, fibrin and fibrino-
gen fragments D and E (fluorescein isothiocyanate–conjugated
rabbit fibrinogen anti-human antibody; F0111; Dako, Stock-
holm, Sweden). Fragments D and E constitute the D-dimer [29].

Table 1: Number of tissue sections with and without ME findings in
HD and ALS patients.

HD ALS

Tissue No ME ME No ME ME

Lung 0 20 4 13
Heart 3 17 8 11
Brain

Frontal lobe 0 9 4 15
Cerebellum 0 5 No sample No sample

Total 3 51 16 39

HD patients had more tissue sections with ME findings compared with ALS pa-

tients [Fisher’s test, P = .002, risk ratio 3.6 (confidence interval 1.25–10.3)]. Tissue
sections from cerebellum were collected in parallel with tissue from the frontal
lobe in five patients. In one patient, two samples from the frontal lobe were col-
lected and analysed.
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Figure 1: Tissue section of the myocardium stained with haematoxylin and eosin. Within the vessel, an air emboli is visible.

Positive staining was interpreted as a pre-mortem exposure
to microbubbles and subsequent development of surrounding
clots.

Each microbubble of gas that was visible by an illuminated
surrounded sheath was counted as an ME. Each tissue prepa-
ration was investigated for ME per 25 microscopic fields (600×).
We intended to collect a single tissue preparation for analysis
of ME from available tissue sections from the lung (peripheral
tissue), heart and brain (from frontal lobe). To investigate if ex-
posure varies within, for example, the brain in a patient, sepa-
rate paired comparisons of brain tissue data from five patients
were analysed both from the frontal lobe and the cerebellum.
In one HD case, two tissue sections from the frontal lobe were
analysed.

Statistical analysis

The Fisher’s test was used for comparison of ratios of ME find-
ings in tissue sections between the HD and ALS group. Analysis
of variance (ANOVA) and the Mann–Whitney U test were used
for comparisons of the number of ME/tissue sections between
groups and Wilcoxon analysis used for paired comparisons of
the total number of ME per 25 fields in different brain tissue sec-
tions of five cases. Correlation analyses (r) were performed with
the Pearsonmethod (see Figs. 3–5) and Spearman values (ρ) were
used to adjust for outlier effects. Two-sided P-values <.05 were
considered significant. SPSS version 25 (IBM, Armonk, NY, USA)
was used for the analyses.

RESULTS

For theHD andALS groups, themedian ageswere 66 years (range
29–81) and 66 years (16–79), respectively, and the gender distri-
bution in the groups was similar.

The indications for dialysis in the HD group were diabetic
nephropathy [n = 7 (28%)], glomerulonephritis [n = 6 (24%)],
nephrosclerosis [n = 3 (12%)], polycystic kidney diseases [n = 1
(4%)] and other reasons [n = 8 (32%)].

Any presence of ME

As an indication that infused air was not fully absorbed when
entering the blood, 90 of 109 tissue sections showed the presence
of ME (Table 1). Fig. 1 showsME in the heart of an HD patient and
Fig. 2 shows ME in the brain tissue of an HD patient (visualized
by delimited fluorescent material).

Both groups of chronic exposure had findings of microbub-
bles that were delimited by fluorescentmaterial. Overall,women
had fewer ME than men in the brain and heart tissue (P = .013
and P = .007, respectively).

Taking all data together, more ME were present in the
lung tissue versus the heart (P < .001). No significant differ-
ences were found between the brain and heart or lung and
brain.

Paired analyses of the number of ME in the cerebellum
versus the frontal brain lobe were not significantly different
(5 pairs, median 4 versus 7, respectively; P = .088) while a
paired sample correlation existed (P = .047). Analysing all
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Figure 2: ME with microbubbles of air (open space) in a vessel of brain tissue from one HD patient (visualized by polyclonal fluorescent antibody against fibrinogen

and fibrin). The shape of the emboli shows a tail (marking a thrombus area) that indicates the direction of the prior blood flow in the vessel.

cases revealed a correlation between the extent of ME in the
lung versus the heart (Fig. 3; Spearman’s ρ = 0.621, P < .001)
and the heart versus the brain (Fig. 4; Spearman’s ρ = 0.506,
P = .004).

HD versus ALS

Tables 1 and 2 show the tissue distribution of ME between the
two groups of patients with chronic exposure. The number and
prevalence of ME were more pronounced for HD patients than
for ALS patients.

ANOVA comparing HD versus ALS revealed similar num-
bers of ME/section in the lung [mean ± standard deviation (SD)
6.65 ± 4.1 versus 4.41 ± 7.0] and more extensive in the heart
(3.30 ± 2.8 versus 1.26 ± 1.6; P = .009) and brain (7.38 ± 3.9 versus
2.42 ± 4.4; P = .011). Non-parametric analysis (Mann–Whitney U
test; Table 2) revealed significantly more findings in the HD pa-
tients in tissue from the lung (P = .007), heart (P = .013) and brain
(P = .001).

Subgroup analysis revealed that HD patients versus those
with ALS had a higher number of ME/section in the lung versus
the heart (P = .004) and in brain tissue versus the heart (P = .012).
The ALS patients had a higher number of ME/section in lung tis-
sue versus heart tissue (P = .025).

Table 1 shows that more tissue sections included ME if the
patients had been on HD versus those who suffered from ALS.
For HD patients there was a significant correlation between the
extent of ME in lung tissue and the number of years on dialysis
(Fig. 5; Spearman’s ρ = 0.619, P = .006).

Gender analysis of the HD group revealed that women had
fewer ME than men in the brain (P = .036), while women in the
ALS group had fewer ME than men in heart tissue (P = .016).

DISCUSSION

The present study verifiedMEwith incorporated air bubbles. The
air bubbles verified were all covered by a fibrin sheath and were
seen as clots. The majority of ME were in lung tissue, followed
by brain and heart tissue. As most ME were found in lung tis-
sue, this indicates that the main entry for air in these patients
was through the venous route. Women were less exposed than
men.

HD patients had more extensive and more frequent findings
of ME than ALS patients. A longer duration of dialysis showed an
accumulation of emboli over the time of exposure. This relation
also indicates that absorption of microbubbles is slow, probably
due to the fibrin that covers the air bubbles.

The method of using fluorescent polyclonal antibodies to
fibrinogen and fibrin to detect ME developed before death was
based on the knowledge that an air bubble surface contains hy-
drophobic properties [30]. This hydrophobic action induces the
activation of platelets and coagulation in the area closest to the
bubble [31–34] and may also activate the binding of platelets [33,
35, 36]. Evidence of subsequent tissue damage by prolonged ex-
posure to ME was also noted in a previous study where HD cases
had signs of chronic pulmonary changes that were not noted in
the ALS patients [15].
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Figure 3: Correlation comparison of all patients between the extent of ME findings in the lung versus the heart.

Figure 4: Correlation comparison of all patients between the extent of ME findings in the heart versus the brain.

Table 2: Median and range (minimum–maximum) of ME/tissue sec-
tion.

Tissue HD ALS P-value

Lung ME 6 (0–17) 3 (0–30) .007
Heart ME 2.5 (0–9) 1 (0–5) .013
Brain ME 7.5 (1–14) 2 (0–20) .001

Non-parametric comparisons of the number of visible ME in tissues of the lung,
heart and brain.

The relation of ME found in lung tissue versus the heart and
brain strengthens the assumption raised in a previous study that

microbubbles of air pass through the lungs into the arterial cir-
cuit through anastomoses [6]. Such anastomoses [37] would en-
able cross-transport of microbubbles into the left heart and sub-
sequently into the arterial circuit.

A reason that women had fewer findings of ME may fit well
with the fact that they usually have a shorter dialysis time and
lower extracorporeal blood flow during HD [13]. In addition, they
often have a lower pump speed, a factor that is significantly re-
lated to less air bubble contamination [7].

We believe it is plausible that ME exposure may well con-
tribute to the increased prevalence of pulmonary fibrosis in
HD patients that has been described by others [14, 15]. In
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Figure 5: Correlation comparison in HD patients only between the extent of ME findings in lung tissue and the time on HD (months).

addition, pulmonary arterial hypertension is a frequent find-
ing in HD patients that is not present in PD patients [16].
In addition, the present study also verified multiple cerebral
ME, especially in HD patients. This would corroborate find-
ings by others of an increased prevalence of cerebral stroke
in HD patients versus PD patients [18], as well as increased
rates of cognitive impairment [19-22], progression of cerebral
atrophy [23], abnormal morphological changes [24] and silent
infarction [17].

Myocardial stunning, a state that is assumed to be due to
rapid fluid removal during HD in patients with volume overload
[39–42], may be worsened by ME in the heart that develops dur-
ing HD, as verified in the present study. This may also be sup-
ported by cardiac tissue strain and damage detected by elevated
pro-brain natriuretic peptide [43, 44] and troponin T levels dur-
ing HD [44, 45].

Exposure of patients to microbubbles during medical care
has been previously demonstrated by others who detected mi-
crobubbles by ultrasound in patients in intensive care, especially
during HD [12].

A limitation of the study is that we were unable to collect au-
topsy data from patients who diedwithout having been exposed
to healthcare without injection or intravenous therapies before
death. Since we were unable to get complete data from patient
medical records, resuscitation efforts may have been missed in
some patients. The extent of infusions, parenteral nutrition and
injections could not be calculated. Another limitation was that
the myocardial tissue was cut cross-sectionally towards the di-
rection of the myocytes and vessels. Thus the area of the visible
vessel was much smaller than for longitudinal sections. There-
fore the extent of myocardial ME findings may be underesti-
mated.

In summary, microbubbles can be verified at autopsy as
ME in lung, heart and brain tissue from patients exposed to
dialysis and more cannulation and infusions. More ME were
present in HD patients compared with those who suffered
from ALS. Minimizing air exposure from syringes, infusions and
bloodlines may decrease the risk of ME and subsequent tissue
injury.
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