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Salivary Biomarker Evaluation of Chronic Pancreatitis Patients
Reveals Alterations in Human Proteins, Cytokines,
Prostaglandin E;, Levels, and Bacterial Diversity
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Objectives: Chronic pancreatitis (CP) is a chronic fibroinflammatory
condition of the pancreas difficult to diagnose in early stages. Novel bio-
markers useful to facilitate early diagnosis or treatment responses may be
found in biofluids. Although saliva can be easily and noninvasively col-
lected from patients, useful salivary biomarkers from CP patients have
not yet been identified.

Methods: Here, we analyzed the proteome by quantitative proteomics,
cytokine/chemokine levels by Luminex analysis, prostaglandin E, (PGE,)
levels by a mass spectrometry-based assay, and bacterial species diversity
by 16S ribosomal ribonucleic acid sequencing in saliva samples from con-
firmed CP patients and healthy controls.

Results: Our results indicate the presence of various differentially expressed
proteins, cytokines/chemokines, and a loss of oral bacterial diversity in the
saliva of CP patients. The PGE, levels trend toward elevation in CP pa-
tients. Area under the receiver operating characteristic curve models for
proteomic, cytokine, and PGE, assays ranged from 0.59 to 0.90.
Conclusions: Collectively, our studies identify a range of putative CP
biomarkers and alterations in human saliva requiring further validation.
The biomarker discovery approaches we used might lead to identification
of biomarkers useful for CP diagnosis and monitoring.
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hronic pancreatitis (CP) is a painful, debilitating disease of

the pancreas with limited treatments. Its causes include both
environmental (excessive alcohol drinking, smoking) and genetic
(involving, eg, mutant PRSS1, SPINK1, CFTR, or other gene loci)
mechanisms. At early stages, the pancreas becomes fibrotic, and
ongoing structural changes are present along with abdominal pain.
Later stages are accompanied by loss of pancreas exocrine and en-
docrine function, continued pain, and further systemic alterations.
Later stages can be detected by clinical imaging, but diagnosis of
early CP remains problematic. Improved diagnosis and patient
monitoring could be achieved through the identification and use
ofnovel disease biomarkers. Biofluids and liquid biopsy represent
ideal sources of biomarkers as they can be collected noninvasively
and tested at reasonable expense.

Among potentially useful biofluids, saliva is especially straight-
forward to collect. However, its potential as a source of valuable
disease biomarkers of CP remains unproven. Saliva has been used
as a source of biomarkers in a limited number of studies. One pre-
vious study examined microbial genes in the saliva by a microar-
ray approach and found distinct patterns of bacterial species colo-
nizing the oral cavity in individuals with CP or pancreatic cancer
versus controls.! Like human plasma or serum, the human saliva
proteome contains some abundant proteins, such as the salivary
amylase, that dominate proteomic data sets. To discover new ways
of diagnosing CP earlier in the course of the disease, we analyzed
saliva from CP patients and matched controls with no history of
pancreatitis, pancreatic tumors or cysts, or chronic abdominal pain.
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Samples were collected at the Mayo Clinic (Rochester, Minn) and
assayed at the Mayo Clinic and 3 other centers participating in the
study, where different analytical methods and end points were ap-
plied. Methods included unbiased quantitative shotgun proteomics
to assess changes in human proteins, Luminex assays to specifi-
cally examine cytokines, chemokines and growth factors, a mass
spectrometry—based assay of the bioactive lipid prostaglandin E,
(PGE,), and 168 ribosomal ribonucleic acid (RNA) sequencing to
explore changes in oral bacterial species diversity.

MATERIALS AND METHODS

Saliva Collection and Distribution

Saliva was collected at the Mayo Clinic from consented pa-
tients according to the following instructions. Subjects were to avoid
brushing their teeth, using mouth washes or rinses, or eating for
<1 hour before collection; avoid chewing gum or cigarette use
for <30 minutes before collection; and avoid ingestion of alcohol
for =12 hours before collection. They drooled into a specimen
cup for 5 minutes, providing at least 1 mL of saliva apart from
foam. Samples were immediately placed on ice, then aliquoted
into cryovials, labeled with barcodes, and frozen at —80°C within
4 hours of collection. Samples were collected from 38 definite CP
patients with unequivocal CP (Cambridge grade 3 or 4), and/or
parenchymal and/or ductal calcifications by computed tomogra-
phy, magnetic resonance imaging, or magnetic resonance cholan-
giopancreatography, or pancreatic histology diagnostic of CP as
per the PROCEED study,” as well as 43 healthy control subjects.
Chronic pancreatitis patients exhibited multiple etiologies, including
many (22/38 = 57.89%) idiopathic cases, several (8/38 = 21.05%)
alcohol-related cases, and a few (3/38 = 7.89%, 2/38 = 5.26%) bil-
iary and hereditary cases, respectively, and a few others (1 each
hypertriglyceridemia-related, smoking-related, or drug-induced).
Samples were labeled as “A” or “B” type samples, respectively
(similarly, males and females were designated as either sex groups
1 or 2) to ensure that investigators performing further analyses
were blinded to the disease status and sex of the patient corre-
sponding to each sample. Controls and CP patients were matched
in age (median, 58 and 56 years, respectively), with overall range
of 18 to 69 years. Females comprised 48% of controls and 44% of
CP cases. Saliva samples collected from suspected CP and pan-
creatic ductal adenocarcinoma patients were not subjected to all
the analyses presented here and were therefore excluded from this
report. Samples stored at —80°C were retrieved, sorted, and either
used to measure PGE, assays at the Mayo Clinic or shipped on
dry ice by rapid overnight transit to investigators at Cedars-Sinai
Medical Center (CSMC; Los Angeles, Calif), Stanford University
(Palo Alto, Calif)), and Baylor College of Medicine (BCM; Hous-
ton, Texas) for other analyses. The study protocol, including saliva
sample collection procedures, was approved at Mayo Clinic
(Mayo Clinic Institutional Review Board #16-009434). Proteomic
analysis at CSMC was performed with approval from the CSMC
IRB, as documented in #Pro00048082.

Proteomic Sample Preparation of Saliva Proteins

Proteomic studies were performed at CSMC. Twenty-five (A)
and 25 (B) (~0.25 mL) samples were thawed, triethylammonium bi-
carbonate (TEAB) buffer (100 mM, pH 8.5) was added to achieve a
300 pL volume, then samples were microprobe sonicated on ice for
1 minute (3 bursts of 20 seconds) to reduce viscosity. Samples were
spun at 14,000 rpm for 15 minutes at 4°C, and any pelletable mate-
rial such as bacteria was removed. Protein in the samples was then
precipitated using 10% trichloroacetic acid and incubated overnight
at —20°C to maximize yield. Samples were spun at 14,000 rpm at
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4°C for 30 minutes to recover protein pellets, redissolved in
100 uL TEAB, and protein concentration assessed by MicroBCA
Assay (Thermo Fisher Scientific, Carlsbad, Calif) according to
the manufacturer's instructions. At this point, the sample number
was reduced to 20 controls and 20 CP patients to remove some
samples with very low protein levels. Equal amounts of protein
(25 pg) were transferred to fresh Eppendorf Protein LoBind tubes.
Tris(2-carboxyethyl)phosphine HCI was added to 12.5 mM, and the
samples reduced at 55°C for 1 hour, then 25 mM iodoacetamide was
added and the samples alkylated in the dark at room temperature (RT)
for 30 minutes. Dithiothreitol (10 mM) was added, and samples
shaken on a thermomixer at 300 rpm at RT for 15 minutes to react
excess iodoacetamide. Trypsin (predissolved in TEAB supple-
mented with 2.5 mM CaCl,) was added to a final trypsin-protein ra-
tio of 1:32, and the tubes were incubated for 16 hours, standing ver-
tically in a 37°C water bath.

Tandem Mass Tag Labeling and Peptide
Fractionation for Quantitative Proteomics

Peptides were labeled with 10-plex TMT* (Thermo Fisher
Scientific) according to manufacturer's instructions and combined
into nineplex samples according to the scheme shown in Sup-
plemental Figure 1 (http://links.lww.com/MPA/A970). Briefly,
tandem mass tag (TMT) reagents were dissolved with 41 pL of
acetonitrile and the peptides of each patient sample labeled in-
dividually or as a mixed reference sample (all 40 samples com-
bined in equal amounts). The reactions were performed with
mixing (400 rpm for 1 hour at 25°C); then 8 uL of 5% hydroxyl-
amine was added to quench. Peptide mixtures were combined into
5 nineplexes, each with (4) A, (4) B, and the reference (labeled
with TMT-126). Excess free label and salts were removed by de-
salting on OASIS HLB (1 mL) tips as described in McDowell
et al® using a vacuum manifold for washing steps and a benchtop
centrifuge (400g for 3 minutes) for flow-through and elutions
(collected in 15-mL tubes). The samples were flowed-through
twice before washing. Eluted peptide mixtures were dried in a
SpeedVac concentrator, then redissolved and fractionated into 8
fractions using high pH reverse-phase fractionation kit (Thermo
Fisher 84868) according to manufacturer's instructions. These
were catenated by combining fractions 1-4-7, 2-5-8, and 3-6. Pep-
tide concentrations were determined using the Pierce quantitative
colorimetric peptide assays (Thermo Fisher 23275). Samples were
stored at —80°C until mass spectrometric analysis.

Proteomic Analysis and Data Processing

Proteomic analysis using LC-SPS-MS3 (liquid chromatography—
synchronous precursor selection—mass spectrometry 3) was
performed essentially as described.® Combined peptide fractions
were separated by low-pH reversed-phase liquid chromatography
and analyzed by (LC-SPS-MS3) using an EASY-nLC1200 chro-
matogram connected to a Fusion Lumos mass spectrometer (both
Thermo Fisher Scientific). Briefly, peptides were loaded onto a
2-cm trap column (PepMap 100 C18, 75 pm inner diameter, 3 pm
particles, 100 A pore size) and separated by a 50-cm EASY-Spray
column (PepMap RSLC Cg, 75 um inner diameter, 2 um particles,
100 A pore size) heated to 55°C (all columns from Thermo Fisher
Scientific). For low-pH reversed-phase liquid chromatography sepa-
ration, the mobile phase consisted of 0.1% formic acid in water
(phase A) or 80% acetonitrile (phase B). The 4-hour LC gradient
was 3%—-33% B over 180 minutes, 33%—-100% B over 40 minutes,
and 100% B over 20 minutes at a flow rate of 200 nL/min. Subse-
quently, SPS-MS3 analysis was conducted with parameters set for
Fourier transform MSI, that is, orbitrap resolution (120,000), scan
range (400-1400), maximum injection time (100 milliseconds), data
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type (centroid), charge state (2—5), mass tolerance (7 ppm), and
internal calibration using m/z 371.10123; for Ion trap MS2, mass
range (400—-1400), dependent scan number (10), isolation window
(0.4 m/z), activation type (rapid collision—induced dissociation),
collision energy (35%), maximum injection time (120 millisec-
onds), and data type (centroid); for MS3, mass range (400-2000),
precursor ion exclusion (low m/z 50, high m/z 5), isolation window
(m/z 0.7), MS2 isolation window (m/z 2), higher-energy collisional
dissociation collision energy (55%), orbitrap resolution (50,000),
maximum injection time (150 milliseconds), and data type (cen-
troid). Raw files were processed using Maxquant’ to identify
and quantitate proteins using MS3 reporter ions, TMT10plex for
the isobaric labels, and a reporter mass tolerance of 0.003 Da. A
false discovery rate of 1% was applied to filter peptide-spectrum
matches, peptides, and protein groups.

Luminex Assays Measuring Secreted Factors

Luminex assays (ProcartaPlex Human Immune Monitoring
65-plex; Thermo Fisher, Santa Clara, Calif) were performed on
saliva samples (24 controls and 24 CP) by the Human Immune
Monitoring Center at Stanford University according to the manu-
facturer's recommendations with modifications as described. In
brief, samples were combined with mixed antibody-linked beads
in a 96-well plate, then incubated for 1 hour at RT and overnight
at 4°C. All incubation steps were performed on an orbital shaker
at 500 to 600 rpm. Plates were then washed 3 times in a Biotek
ELx405 plate washer and mixed biotinylated detection antibodies
added for 75 minutes at RT. Then, streptavidin-phycoerythrin re-
agent was added, and the plates were incubated for a further
30 minutes at RT. After a final wash as aforementioned, reading
buffer was added to the wells. Each sample (50 uL of 3-fold di-
luted stock) was measured in duplicate. Plates were read using a
Luminex 200 instrument with a lower bound of 50 beads/sample.
An internal quality check was performed using Custom AssayChex
control beads (Radix Biosolutions, Georgetown, Tex) across all
wells of the assay.

Prostaglandin E; Assay

Analysis of PGE, was performed by LC-MS/MS (liquid
chromatography—tandem mass spectrometry) at the Immuno-
chemical Core Lab, Mayo Clinic. Saliva was combined with
deuterated internal standard, indomethacin, formic acid, and ace-
tonitrile before liquid-liquid extraction with ethyl acetate hexane.
Extracts were injected onto a reversed-phase high-performance
LC analytical column with C12 guard cartridge and analyzed
via an Agilent 6490 tandem mass spectrometer (Agilent Technol-
ogies, Santa Clara, Calif) with electrospray ionization in negative
mode. Interassay imprecision coefficient of variance (CV) was
found to be 4.5% to 10.5% for samples ranging from 133 to
530 pg/mL, and lower limit of quantitation was defined as 77 pg/mL
with a CV of 14.6%.

Microbiome Sequencing and Analysis

These studies were performed at BCM. Total genomic DNA
was extracted from saliva with the DNeasy PowerSoil Kit (Qiagen,
Inc, Redwood City, Calif) using methods optimized to maximize
the yield of bacterial DNA.®? Individual KAPA Hyper (Kapa
Biosystems, Inc, Wilmington, Mass) libraries constructed from
each DNA sample were sequenced on the HiSeq X platform
(Numina, Inc, San Diego, Calif) using the 2 x 150 bp paired-end
protocol. Demultiplexed raw FASTQ files were quality filtered
and mapped against a combined PhiX (sequencing control) and
hg38 host reference genome database' to remove unwanted reads.
The final set of filtered reads was processed using MetaPhlAn2,'!

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

which generates species-level normalized relative abundances per
sample per taxon using marker genes for taxonomy assignment.

Statistical Methods

Group comparisons of CP versus controls were tested via
2-sample Student ¢ test (log-transformed values of proteomics,
Luminex, and PGE, data). Beta diversity of microbiome data
was analyzed using permutational analysis of variance and the
Mann-Whitney U test (microbiome data). Comparisons of taxa
abundance were performed with linear discriminant analysis ef-
fect size methods. Box plots (median, 25th and 75th percentiles)
were used for visual representation of data in both groups. Differ-
entially expressed proteins (P < 0.10) were expressed as log-2
transformed fold changes (CP/control). Receiver operating char-
acteristic curves and the area under the curve (AUC) were used
to assess the discriminatory ability of biomarkers or combinations
of biomarkers. Two different approaches were used for a combined
proteomic approach. First, the 3 most differentially expressed pro-
teins (excluding histones) were selected to create a combined test.
Area under the curve was calculated using logistic regression.
Second, we also developed an in silico predictive model using
an elastic-net regularized logistic regression. Bootstrap resampling
was performed with 1000 replicates to estimate AUC correcting
for overfitting. Regularization and mixing parameters were chosen
maximizing AUC with the smallest possible set of proteins. Rela-
tive protein weights were calculated based on regression coeffi-
cients, and Pearson correlation coefficient was also calculated
for selected proteins.

Area under the curve was also calculated for the 6 upregulated
cytokines determined by Luminex analysis and for the PGE, data.
Luminex data were subjected to multivariate analysis. Duplicates
of median fluorescence units (MFUs) were compiled into group
(CP or control) means to calculate the fold change of cytokines as
CP/control. Fold-changes and compiled MFU group values were
log2-transformed to facilitate comparison, and differences evalu-
ated by 2-sided Student ¢ test. A penalized (Lasso) regression model
was used to select cytokines for a multivariable model for CP, using
cross-validation to determine an appropriate penalty parameter.
The association between the differentially expressed cytokines
measured across the 48 samples was evaluated using Pearson
correlation coefficient. Associations between bacterial alpha
diversity and age were explored using linear regression within
each group. Principal component analysis (PCA) was applied to
bacterial diversity using unweighted Jaccard distance (a measure
of dissimilarity) and by weighted Bray-Curtis distance (a measure
of relative abundance). Unless otherwise noted, a P < 0.05 signifi-
cance level was used. Given the exploratory nature of these analysis
and the expectation that findings must be validated in future studies,
no adjustments for multiple hypothesis testing were made, unless
otherwise noted. Several software packages were used: R (R Foun-
dation for Statistical Computing, Vienna, Austria), version 3.5.3;
IBM SPSS statistics version 24 (Armonk, NY); GraphPad Prism
version 6.00 for Windows (La Jolla, Calif), and Atima (https://
atima.research.bcm.edu).

RESULTS

Quantitative Proteomic Analysis of Human
Proteins in Saliva

Five nineplex peptide mixtures, each fractionated into 3 sam-
ples, were run consecutively, with satisfactory calibration runs
performed before and after using a trypsin-digested albumin stan-
dard. In the consolidated LC-MS/MS data set, a total of 544 hu-
man proteins were identified (see Supplemental Table 1, http://
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links.lww.com/MPA/A970). Of these, 247 were detected across
all (20 A, 20 B) experimental subjects, and a further 67 proteins
were detected across 16/20 A/B expression ratios (Supplemental
Table 2, http://links.Iww.com/MPA/A970); these data were further
examined using Perseus to determine the A/B expression ratios
and their associated statistical significance. By this analysis, 28
proteins (14 elevated and 14 decreased) achieved significance
(P < 0.1) with various fold changes. Five elevated and 3 de-
creased proteins achieved a significance level of P < 0.05 and a
fold change of 1.5 (see Fig. 1 and Supplemental Table 2, http:/
links.lww.com/MPA/A970). The proteins found substantially in-
creased or decreased in expression levels in CP patients included
lysozyme C (LYZ), the most elevated at ~1.9-fold. Other substan-
tially elevated proteins were high mobility group protein B2
(HMGB2) and histone HIB (HIST1HI1B), both elevated
~1.8-fold. Lymphocyte-specific protein 1 (LSP1) was elevated
~1.5-fold. The 3 proteins found significantly decreased in the
CP patients (Supplementary Table 2, http://links.lww.com/MPA/
A970) were o-2-macroglobulin-like protein 1 (A2ML1, 0.66-fold),
bactericidal/permeability-increasing fold-containing family B
member 1 (BPIFBI, also 0.66-fold), also known as LPLUNC1,
and IgGFc-binding protein (FCGBP, 0.52-fold). Twenty-eight
proteins that were either elevated or decreased in the CP saliva
samples are depicted in Figure 1A.

We next examined the gene ontology categories (biological
processes, cellular compartments, and molecular functions) most
closely associated with the elevated proteins (Fig. 1B, upper
panel) and decreased proteins (Fig. 1B, lower panel), using
ToppGene Suite (Cincinnati Children's Hospital Medical Center,
Cincinnati, Ohio).'? Box plots for the 4 top differentially over-
expressed proteins LYZ, HMGB2, HIST1H1B, and LSP1 are
depicted in Figure 1C.

The value for AUC for LSP1, 0.75 (not shown), suggested
that the accuracy of a test of LSP1 in the saliva might be fair as
a diagnostic biomarker of CP. Shown in Figure 1D, we also calcu-
lated the AUC derived from a combined test of 3 analytes, LSP1,
HMGB2, and LYZ. A cutoff of 1.37-fold as the expression ratio
for these 3 proteins yielded an AUC value of 0.86.

In Supplemental Figure 2A (http://links.lww.com/MPA/
A970) a diagram with our predictive model for the proteome illus-
trates the relationships between AUC and elastic-net parameters
for a number of potential models. As this analysis shows, the
overfitted-corrected AUC is more conservative than our previous
analysis requiring a larger number of proteins to achieve a maxi-
mum AUC of 0.64. We chose the parameters of regularization = 0
and mixing = 0.7 resulting in an AUC of 0.60 achieved with 50
proteins (Supplemental Fig. 2A, http://links.lww.com/MPA/
A970). Supplemental Figure 2B (http://links.lww.com/MPA/
A970), shows a plot of the weights associated with each of the
50 proteins such that LYZ, HMGB2, and LSP1 are among them,
and Supplemental Figure 2C (http://links.lww.com/MPA/A970),
shows a correlogram of selected proteins.

Multiplex Luminex Analysis of Saliva Samples

We tested the saliva samples for a panel of cytokines and
chemokines by Luminex assays. In this case, 24 controls were com-
pared with 24 CP patients, as described in the Materials and Methods.
Data showed that the cytokines interferon gamma-induced pro-
tein 10 or C-X-C motif chemokine ligand 10 (IP-10/CXCL10),
growth-regulated oncogene alpha/C-X-C motif chemokine ligand
1 (GROA/CXCL1), stromal cell-derived factor 1/C-X-C motif
chemokine ligand 12 (SDF-1/CXCL12), interleukin (IL) 21, tu-
mor necrosis factor-related apoptosis-inducing ligand (TRAIL),
and Fas ligand (FASLG) were significantly and selectively ele-
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vated in CP saliva samples (shown in Fig. 2A). There were no
analytes found decreased significantly. Scatterplots of the data
showing elevated cytokines are shown in Figure 2B. Further anal-
ysis revealed positive correlations between several analytes, with
high Pearson correlation coefficients between SDF-1/CXCL12
and IL-21 among others. In Figure 2C, Pearson correlation coeffi-
cients calculated and tabulated for the data corresponding to the 6
cytokines selectively elevated in CP saliva are depicted. A linear
plot of the highly correlated data of SDF1/CXCL12 with IL-21
is shown in Figure 2D. Penalized regression selected 8 variables
to distinguish between CP and controls, with the largest coeffi-
cients assigned to FASL and IP-10/CXCL10. The resulting model
had an AUC of 0.90 (Supplemental Fig. 3, http://links.lww.com/
MPA/A970).

PGE, Analysis of Saliva Samples

Analysis of pancreatic juice, a relatively invasive procedure,
revealed that PGE, levels are elevated in CP patients in the pancre-
atic juice.' It was therefore of interest to examine whether saliva,
amuch more accessible biofluid, could provide a similar result. In-
deed, measures of PGE, in 27 controls and 25 CP patients exhib-
ited values trending toward elevation in the CP cases. The mean
values, as shown by the scatterplot in Figure 3, were 94.0 (stan-
dard deviation [SD], 21.47) for controls (n = 27) and 245.4 (SD,
129.9) (n = 25) for CP, with P = 0.24. Receiver operating charac-
teristic analysis of PGE,, which yielded an area under the receiver
operating characteristic curve of 0.589, is shown in Supplemental
Figure 4 (http:/links.lww.com/MPA/A970).

Bacterial Species Identification and Diversity
Analysis Using 16S Ribosomal Ribonucleic
Acid Sequencing

Ribonucleic acid sequencing of 16S RNA was used to iden-
tify bacterial species in the saliva of CP patients and controls, and
these data were analyzed to compare the diversity and species
identification patterns between the 2 groups. In Figure 4A, the
comparison of bacterial species alpha diversity is depicted by ob-
served diversity, an indicator of richness, that is, an approximation
of the number of taxa, and Shannon diversity, a specialized index
that determines how evenly distributed the individual species are
between identified taxa. By the observed alpha diversity (Fig. 4A,
left panel), the control samples were higher, at ~70 operational
taxonomic units (OTU), than CP patients at ~66 OTU. This com-
parison nearly achieved statistical significance, with a P =0.06. In
Shannon diversity (Fig. 4A, right panel), both controls and CP pa-
tients saliva were close to values of 3.0, with the comparison eval-
uated with P = 0.63, as shown in Figure 4A.

We next examined the bacterial alpha diversity as a function of
age, shown in Figure 4B. Observed diversities of the controls and
CP patients were plotted in OTU (Fig. 4B, left panel) or Shannon
diversity index (Fig. 4B, right panel) versus age. When applying
PCA to bacterial diversity by unweighted Jaccard distance, a mea-
sure of dissimilarity, approximately 14.6% (Fig. 4C, left panel) of
the variation could be explained by a single principal compo-
nent. By weighted Bray-Curtis principal coordinates analysis, a
measure of relative abundance (Fig. 4C, right panel), only 19.2%
and 14.3% of the variability were explained by components 1 and
2, respectively.

The Jaccard and Bray-Curtis distance measures of beta diver-
sity were also measured to determine their contributions to the
overall variability observed between control and CP patients' sa-
liva samples (Fig. 4D). Both Jaccard (left panel) and Bray-Curtis
distances (right panel) were higher in comparisons of CP versus
CP than between controls or between controls and CP, as shown in

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 1. Quantitative proteomic analysis of human proteins in chronic pancreatitis (CP) patients versus healthy volunteers. A, Proteins
changed up (red bars) or down (blue bars) in CP, with a cutoff of statistical significance of P < 0.1. The log2-transformed fold change is
indicated on the x-axis. B, Prominent gene ontology categories revealed by ToppGene analysis of the elevated proteins (upper panel) or the
decreased proteins (lower panel). The legend indicates the associated biological processes, cellular components, and molecular functions,
with the —log of the P value indicated on the x-axis. C, Box plots of prominently elevated proteins in the saliva of CP patients. Associated P
values were LYZ, 0.017; HIST1H1B, 0.017; HMGB2, 0.006; and LSP, 0.004. D, AUC analysis for a combined test of LYZ, HMGB2, and LSP1,

with a cutoff of 1.4-fold elevation of each protein.

Figure 4D. Finally, the relative levels of certain specific taxa present
in the saliva were examined and their relative abundances measured
in the 2 groups, as shown in Figure 4E.

DISCUSSION

Endoscopic ultrasound and a range of other imaging tech-
niques are clinically available and typically used to diagnose
CP,'*15 but these are costly to implement for routine investigation.
Cost-effective and rapid means are needed to accurately identify
CP patients early in the disease course, when it may be possible
to introduce measures that prevent or slow the progression of the
disease.'® Biomarker testing has potential to enable CP diagnosis,
but has not been achieved yet. Recently, it was reported that mi-

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

crobial RNA from oral bacteria can be identified in pancreas tis-
sues.!” However, biomarkers of pancreatic disease are currently
being sought in biofluids that do not require invasive procedures.
Whereas a wide variety of potential CP biomarkers were recently
evaluated,'® practically all detected in blood samples, many of the
potential saliva biomarkers we identified here have not been ex-
amined to date in other sample types.

Potential human salivary proteomic biomarkers of pancreatic
ductal adenocarcinoma were recently reported.'” Here we exam-
ined the potential of saliva to provide protein biomarkers of CP
and performed other measures to provide insight into the patho-
genesis of pancreatic diseases.

Proteomic analysis of saliva samples indicated that several
proteins were elevated in the saliva of CP patients. Among the
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Luminex analytes elevated in CP vs Control:

Analyte Gene name Description Log2 FC FC P
IP10 CXCL10 C-X-C motif chemokine ligand 10 2.562 5.905 0.001
FASL FASLG Fas ligand 0.571 1.485 0.016
SDF1A  CXCL12 C-X-C motif chemokine ligand 12 0.713 1.639 0.016
TRAIL  TNFSF10 tumor necrosis factor superfamily member 10 0.848 1.800 0.027
GROA CXCL1 C-X-C motif chemokine ligand 1 0.891 1.854 0.033
IL21 1L21 interleukin 21 0.486 1.401 0.044
A
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FIGURE 2. Luminex analysis of saliva from healthy controls and CP patients. A, List of substantially elevated proteins found in the comparison
of control versus CP. Raw Luminex data from a multiplex assay were performed using 24 control and 24 CP saliva samples as described in the
Materials and Methods. Fold changes (FC) were determined from raw values of MFUs for each determination by combining the data from
each group into mean values. Fold change converted to log2 for comparison is defined as the ratio between the groups, that is, CP/control.
Multivariate analysis and Student t test were used to determine the statistical significance, using the log2 transformed MFU values of control
and CP (n = 24 in each group). B, Scatter dot plots of each of the analytes found selectively elevated in CP. C, A correlation matrix depicting
statistical correlation (Pearson correlation coefficients) between the 6 analytes found selectively elevated in CP. D, A linear plot of data
corresponding to the highest 2 correlated analytes, IL-21, and SDF-1/CXCL12.

human proteins we identified, LYZ is an immune defense protein
synthesized by salivary glands and immune cells as an antibacte-
rial protein serving immune functions to protect the oral cavity.>
The LYZ protein is also expressed by monocytes and macrophages,
which together with neutrophils are immune cell types known to
participate in pancreatitis progression.?! Human HMGB2 is closely
related (83% identical in protein sequence) to HMGB1 and shares
its DNA-binding characteristics, but its potential role as an inflam-
matory mediator is not as well established as HMGBI1, which is be-
ing studied intensively as a damage-associated molecular pattern
protein with a proinflammatory role in pancreatic disease and was
previously found elevated in serum of pancreatitis patients.”> The
source of HMGB?2 is unknown, but it could derive from damaged
cells at disease sites. Systemically mobilized histone proteins were
recently implicated as mediators of acute pancreatitis.>> Whereas
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LYZ and HP (haptoglobin) are secreted proteins, HISTIH1B and
HMGB?2 are nuclear proteins. Both elevated secreted and nu-
clear proteins fit a pattern that was established in pancreatic fluid
markers in CP?* The roles of damage-associated molecular pat-
tern such as HMGB1/2 and histones in the activation of NLRP2
inflammasome-mediated pathways have emerged as an important
process in CP?>*’ The protein S100A 12 (also known as ENRAGE)
is a receptor for advanced glycation end-products—binding protein
of the calgranulin family, associated with proinflammatory activ-
ity.”® Nonetheless, further studies will be required to establish the
pathophysiologic role in CP and relevance of salivary elevation of
these factors.

As shown in Figure 1D, the hypothetical AUC for our data
describing a triplicate test of LSP1, HMGB2, and LYZ was 0.868.
Thus, such a test could hypothetically be seen as an excellent

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. Prostaglandin E; analysis was carried out between 26 control and 27 CP saliva. These data were analyzed for fold change, and a
2-tailed Student t test was carried out to determine the statistical significance of the values obtained. A scatter dot plot is shown. P value for

comparison of control and CP values was calculated as 0.238.

indicator of the presence of CP. However, performing AUC testing
on a set of differentially expressed markers using the same data
used to determine the markers, as we have done here, is known
as overfitting as it tends to overinflate AUC values. Results of a
less biased approach, the regression modeling selected, for exam-
ple, 50 proteins with predicted AUC of 0.60, a much weaker per-
formance (see Supplemental Fig. 2, http://links.lww.com/MPA/
A970). Albeit the modeling also selects LYZ, HMGB2, and
LSP1, whether the presence of these proteins or other markers
in the saliva has predictive value or potential to detect CP requires
further clinical validation.

One protein we found decreased in CP saliva, BPIFB2, ap-
pears to play important protective roles in mucosa. Expression
of this protein has been localized to the oral/nasal/respiratory pas-
sages.”” One of the most decreased proteins in our data set is
FCGBP, a mucin-like protein that forms dimers with other known
mucous barrier-protective proteins such as trefoil factor.>® This
protein may regulate epithelial mesenchymal transition, a process
important for development of cancer malignancy and metasta-
ses.>! The FCGPB protein has previously been detected in the sa-
liva,>? where it may serve as a protective factor in the oral cavity.
The importance of replenishing such decreased protective factors
could be considered as preventive therapies against worsening of
pancreatic disease.

In our Luminex analysis, interferon gamma-induced protein
of 10 kDa (IP-10, also known as CXC chemokine ligand 10 or
IP-10/CXCL10), TRAIL, and growth-regulated alpha protein (GROA,
also called CXC chemokine ligand 1 [GROA/CXCLI1]) were ele-
vated significantly in CP patients compared with healthy controls.
IP-10, which we found elevated in the saliva, was previously found
elevated in the blood of CP patients, where among several factors it
alters the quality of life in the disease.®® The IP-10/CXCL10 che-
mokine was previously implicated as a mediator of progression of
pancreatitis-like disease in a viral model.**

The classic proinflammatory cytokine GROA/CXCLI is
involved in chemoattraction of immune cells and expression of

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

inflammatory pain mediators in different cell types and is clearly
involved in pancreatitis as a chemoattractant for neutrophils or
other leukocytes.>>3¢ It was shown to be elevated in severe acute
pancreatitis,3 7 and mechanistically, its elevation was attributed to
an IL-6 signal transducer and activator of T cells 3 signaling path-
way relevant to acute lung injury.*®* The cytokines/chemokines
GROA/CXCLI and IP-10/CXCL10 are also previously detected
in the saliva in both oral disease and other systemic diseases and
cancer.** Hypothetically, IP-10/CXCL10 is a cytokine/chemokine
involved in progression of AP to CP, and its expression is induced
by interferon gamma, which was reported as consistently elevated
in blood and/or pancreas tissue in CP*! It is also widely hypothe-
sized to be involved in diabetes mellitus and has been contemplated
as a therapeutic target in this disease.** Interleukin 21 is associated
with autoimmune disease® and more specifically with immune
thrombocytopenic purpura. In immune thrombocytopenic purpura,
IL-21 is elevated and SDF-1/CXCL12 also trends toward an in-
crease.* Immune thrombocytopenic purpura was recently associ-
ated with increased pancreatitis risk.*> SDF1/CXCL12 was also
hypothesized to be important in CP*¢ C-X-C motif chemokines
and other factors were recently hypothesized to play roles in pro-
gression of CP to pancreatic cancer.*® Based on these observa-
tions, the cytokines selectively observed to be elevated in CP sa-
liva in this study support various previous studies consistent with
their involvement in CP, as well as in other inflammatory condi-
tions. Further research is needed to determine whether their spe-
cific combination could be advantageous for testing or monitoring
therapeutic responses.

Various local and immunomodulatory factors such as inter-
leukins were previously identified in blood and pancreas tissue*!
in CP. Levels of PGE, can be a useful inflammatory marker in-
cluding in the saliva, for example, for periodontal disease. Indeed,
whether or not a saliva test for PGE, or other factors will be useful
as an indicator of CP could be confounded by the presence of dis-
eases of the oral cavity. Nevertheless, anti-inflammatory drugs
such as indomethacin that decrease PGE, production may prove
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a useful approach to mitigate the severity of CP. High levels of
PGE;, in pancreatic juice were shown to correlate with the presence
of CP."3 The role of PGE, as a mediator of both AP and CP has been
shown in animal studies.*’ Our PGE, assays indicated a trend toward
increasing in CP diseased patients, with a goqod level of consistency
achieved, primarily with CV's between 5% and 12% of the values ob-
tained. However, the diversity was such that statistical significance
could not be established. These data imply that PGE, tests alone
would not be an adequate test for CP identification. Nevertheless, they
are consistent with a model in which PGE, plays a role in CP.
Disturbances of microbiota in disease are being intensely
studied as they may prove to be causative factors as well as indica-
tors. Impairment of (exocrine) pancreas function in CP implies
nutritional deficiencies including low protein intake.*® Reduced
levels of protein in turn can lead to altered microbiota, especially
in the gut.* Indeed, recent studies indicate alterations in gut flora
is associated with CP, such as small intestinal overgrowth and
dysbiosis.’*>! Previous studies showed that the oral microflora
can be altered in CP and pancreatic cancer.'> Oral microbial profiles
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have also been examined in periodontal disease, which sometimes
correlates with other disease states.>®

In our bacterial (16S RNAseq) analysis, alpha diversity showed
a trend toward a decreased richness in CP cases compared with
controls as judged by the observed diversity. The P value for this
assessment was 0.06, or very close to significance. In contrast,
Shannon diversity (evenness) did not indicate differences, with a
P value of 0.62. Taken together, our data did not strongly support
an overt difference in alpha diversity.

Data from observed diversity suggested that both control and
CP patients lost alpha diversity gradually with age, with controls
remaining more diverse than CP patients at all times. In contrast,
plotting Shannon diversity by age showed a different pattern, with
CP patients exhibiting a pronounced loss in diversity over a wide
age range, and controls maintaining relatively stable or even mod-
estly increased diversity with age. Thus, Shannon diversity showed
a trend toward decreasing with age in CP patients. However, the
overlap in these data imply that bacterial alpha diversity does not
associate much with age in CP.

© 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
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The results of PCA are consistent with several variables con-
tributing to the variability. Overall, whereas a single component of
variability (eg, their control vs CP status) could account for a por-
tion of the variability in either case, most of the variation remained
unexplained by either analysis. These data confirm previous indi-
cations that oral bacterial communities vary with pancreatic dis-
ease, as exemplified by CP. The Jaccard and Bray-Curtis distance
measures of beta diversity implied that the salivary microbiome is
more similar in disease-free individuals than in CP patients. Examina-
tion of the relative levels of specific taxa revealed the loss of some
commensal species in CP patients. Specific commensal species selec-
tively diminished in CP patients (with False Discovery Rate-adjusted
P < 0.05) included Haemophilus sputorum, Neisseria flavescens,
and Fusobacterium periodonticum. It is conceivable that loss of certain
oral bacterial commensal species could indicate or even play roles in
systemic inflammatory diseases or CP.

Limitations of the current study include the small sample
sizes. It is a survey of 4 small exploratory studies using different
analytical methods and only partially overlapping sample utiliza-
tion. The application of multiple testing such as false discovery
rate analysis is not uniformly applicable. Based on these consider-
ations, we describe the significant differentially expressed mole-
cules identified here as candidate biomarkers to emphasize the need
for their further validation in future preclinical or clinical studies.

In summary, this study assembles results from multiple dif-
ferent CPDPC (Consortium for the Study of Chronic Pancreatitis,
Diabetes, and Pancreatic Cancer) investigation sites suggesting
that saliva is a valuable source of biomarkers. By these approaches,
we found several proteins and cytokines differentially expressed in
CP, some novel and others with previously implicated involvement
in CP, as well as distinct alterations in relative abundance of partic-
ular bacterial species. Taken together, the differentially expressed
candidate biomarkers presented here should be investigated further
to evaluate their presence in the saliva as a biomarker strategy. Their
further study may provide valuable insights into the pathogenesis of
CP and associated diseases.
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