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Human epidermal growth factor receptor 2 (HER2) is a transmembrane glycoprotein receptor with intracellular tyrosine
kinase activity. Its alterations, including mutation, amplification and overexpression, could result in oncogenic potential
and have been detected in many cancers such as non-small-cell lung cancer (NSCLC). Such alterations are, in general,
considered markers of poor prognosis. Anti-HER2 antibody-drug conjugates, e.g. trastuzumab deruxtecan (T-DXd, DS-
8201) and disitamab vedotin (RC48), were recently approved for HER2-positive breast and gastric cancers.
Meanwhile, several HER2-targeted drugs, such as T-DXd, neratinib, afatinib, poziotinib and pyrotinib, have been
evaluated in patients with advanced NSCLC, with several of them demonstrating clinical benefit. Therefore,
identifying HER2 alterations is pivotal for NSCLC patients to benefit from these targeted therapies. Recent guidelines
on HER2 testing were developed for breast and gastric cancer, however, and have not been fully established for
NSCLC. The expert group here reached a consensus on HER2 alteration testing in NSCLC with the focus on
clinicopathologic characteristics, therapies, detection methods and diagnostic criteria for HER2-altered NSCLC
patients. We hope this consensus could improve the clinical management of NSCLC patients with HER2 alterations.
Key words: non-small-cell lung cancer, human epidermal growth factor receptor 2, gene testing, amplification, mu-
tation, overexpression
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INTRODUCTION

With the discovery of oncogenic drivers and the approval
of tyrosine kinase inhibitors (TKIs) targeting these drivers,
the treatment strategy for advanced non-small-cell lung
cancer (NSCLC) has moved from pathological-based to
molecular-based modalities. These advances have made
companion diagnostics for NSCLC a new standard in clinical
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decision-making, including human epidermal growth factor
receptor 2 (HER2, also known as ErbB2) alterations. HER2
alterations, a well-recognized mediator of the carcinogenic
process in a wide range of solid tumors, mainly include
HER2 mutation, HER2 amplification and HER2 over-
expression, with incidence rates of 1%-6.7%, 2%-22% and
7.7%-23%, respectively, in NSCLC, and all of them were
associated with poor prognosis.1-5

In 2019, the United States Food and Drug Administration
(FDA) issued an accelerated approval of trastuzumab
deruxtecan (T-DXd, DS-8201), a novel HER2 antibody-
conjugated drug (ADC), for patients with unresectable or
metastatic HER2-positive breast cancer (BC) administered
two or more prior anti-HER2-based treatments. It was also
approved in 2021 for locally advanced or metastatic HER2-
positive gastric or gastroesophageal adenocarcinoma with
failure on trastuzumab-based therapy. Another novel ADC,
disitamab vedotin (RC48), has demonstrated a clinically
meaningful response and survival benefit in patients with
HER2-overexpressing [immunohistochemistry (IHC) 2þ or
3þ] gastric or gastroesophageal junction cancers adminis-
tered �2 prior lines of systemic treatments, with an overall
response rate (ORR) of 18.1% and a median progression-
free survival (mPFS) of 3.8 months.6 On the basis of these
findings, RC48 was approved conditionally by the National
Medical Products Administration of China. Recently, several
anti-HER2-targeted drugs, such as T-DXd, ado-trastuzumab
emtansine (T-DM1) and the pan-HER TKIs afatinib, ner-
atinib, poziotinib or pyrotinib, have shown effectiveness in
NSCLC with HER2 alterations, with an ORR of 3.8%-55% and
an mPFS of 3.0-8.2 months.7,8 Accordingly, testing HER2
alterations, especially HER2 mutation, amplification and
protein expression as companion diagnostics, attracts
increasing attention in the treatment and prognosis of
NSCLC.9 Current guidelines on HER2 testing, however, were
largely developed for breast or gastric cancer, and its criteria
in NSCLC is still lacking.

This consensus was formed according to a Delphi
method. The expert group had several rounds of deep dis-
cussion and voted on clinical issues related to HER2 alter-
ations testing in NSCLC. A consensus was reached when at
least 60% of the experts voted for agreement. This
consensus summarized the epidemiological and clinico-
pathologic characteristics and recommended therapies for
HER2-altered NSCLC; it also explored the diagnostic tech-
nologies for assessing HER2 alterations in NSCLC, and pro-
posed possible research directions. The recommendations
contained in this consensus were based on the current
evidence and the clinical experience of the expert panel.We
believe this timely consensus would be valuable for clinical
practice as well as research in this field.

CONSENSUS ON HER2 ALTERATIONS IN NSCLC

Epidemiology of HER2 alterations in NSCLC

HER2, also known as ErbB2, is one of the ErbB family of
proteins that include epidermal growth factor receptor (EGFR
or HER1/ErbB1), ErbB2, EGFR3 (or HER3/ErbB3), and EGFR4
2 https://doi.org/10.1016/j.esmoop.2022.100395
(or HER4/ErbB4).10 While capable of homodimerization,11

HER2 favors heterodimerization with other ErbB family
members (EGFR, HER3 or HER4) when they are bound to
ligands.12,13 Dimerization of HER2 receptor activates down-
stream cascades, including primarily the phosphatidylinositol-
3-kinase/protein kinase B (AKT) and mitogen-activated
protein kinases (MAPK) signaling pathways, which are indis-
pensable in cell proliferation, differentiation and migration.14

Moreover, HER2 mutations and amplification are some of the
mechanisms of acquired resistance to EGFR TKIs in NSCLC
patients.15,16

The frequencies of HER2 alterations, including HER2
mutation, HER2 amplification and protein overexpression, in
NSCLC are shown in Table 1. HER2 mutations were firstly
reported in 2004 to be present in 4.2% (5/120) of unse-
lected NSCLC cases, and in 9.8% (5/51) of lung adenocar-
cinoma patients.17 Subsequently, increasing evidence
confirms the presence of HER2 mutations in NSCLC at a
frequency of �1%-3% among European and American
populations, and 1.4%-6.7% in the Asian population
(Table 1). Although most studies do not detail the use of
previous targeted treatments, it was reported that HER2
mutations are acquired in 1% of EGFR TKI-treated
patients.15 The HER2 gene is a proto-oncogene located at
17q11.2-q12, which encodes a transmembrane glycoprotein
with intrinsic tyrosine kinase activity. HER2 belongs to the
classical superfamily of receptor tyrosine kinases, which
have extracellular, transmembrane and intracellular
domains.18 HER2 mutations mainly occur in the intracellular
domain, with the most common types being in-frame
insertion mutations in exon 20 (48%), including
A775_G776insYVMA (33.9%), G776delinsVC (5.7%) and
G778_P780insGSP (3.4%) mutations; other frequent HER2
mutations include E1021Q, A1232FS (1.2%) and A1057V
(1.7%) in exons 22-31 and I655V (4.5%) in the trans-
membrane domain, as well as S310F (5.1%), P122L (2.3%)
and G222C (1.1%) in the extracellular domain.19

HER2 copy-number amplification was demonstrated in
2%-22% NSCLC and HER2 protein overexpression in 7.7%-
23% based on different methods and patient populations
(Table 1). HER2 amplification was reported in 2% of first-line
osimertinib-treated NSCLC patients who experienced dis-
ease progression and/or discontinued treatment, compared
with 5% in second-line osimertinib-treated NSCLC pa-
tients.15,16 Contrary to observations in BC, the association
between HER2 amplification and HER2 expression in NSCLC
is poor.2 Only a limited subset of reported cases had both
HER2 mutation, HER2 amplification and/or HER2 expression
in lung cancer (LC), suggesting that each of these abnor-
mality types may represent distinct clinical entities, clini-
copathologic features and therapeutic targets.5,17,20,21
Clinicopathologic features of HER2 alterations in NSCLC

NSCLC with HER2 mutations are more likely to be found in
adenocarcinoma or adenosquamous carcinoma, never (less
than 100 cigarettes in a life time) or mild smokers (More
than 100 cigarettes and less than 100 cigarette-years in a
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Table 1. Incidence rates of HER2 alterations in NSCLC by country or regions

Country
or
region

Patients and specimens Methods for evaluating HER2
alterations

Incidence rates of HER2 alterations

HER2
mutation

HER2
amplification

HER2
overexpression

USA Stage IV or recurrent lung
adenocarcinoma cases
administered no targeted therapy;
tissue specimens5

� Mutations assessed by fragment
analysis, mass spectrometry geno-
typing and Sanger sequencing

� Amplification assessed by FISH
(HER2/CEP17 �2.0)

� HER2 overexpression assessed
by IHC (3þ/2þ)

3% (4/148) 3% (5/175) 0 (0/25)

Metastatic or recurrent lung
adenocarcinoma; tissue specimens1

� NGS or Sanger sequencing 2.6% (24/920) NA NA

Australia Primary NSCLC cases administered
curative intent surgical resections;
tissue specimens10

� Sanger sequencing 1% (1/100) NA NA

Europe NSCLC; tissue specimens90 � Direct DNA sequencing 1.7% (65/3800) NA NA
Germany Advanced and/or metastatic stage

IIIB and IV NSCLC; tissue
specimens84

� Amplification assessed by FISH
(HER2/CEP 17 >2.0)

� HER2 expression assessed by IHC
(3þ/2þ)

NA 2% (7/378) 20% (83/410)

Italy NSCLC patients administered
surgical resection; tissue
specimens91

� Amplification assessed by FISH
(HER2/CEP 17 >2.0)

� HER2 expression assessed by IHC
(3þ/2þ)

NA 22% (9/41) 23% (26/115)

Lung adenocarcinoma cases
administered surgical resection;
tissue specimens62

� PCR-single-strand conformational
polymorphism

2.2% (9/403) NA NA

China Wild-type EGFR lung
adenocarcinoma patients
administered no preoperative
neoadjuvant therapy; tissue
specimens85

� Mutations assessed by direct DNA
sequencing

� HER2 expression assessed by IHC
(3þ/2þ)

4.8% (22/456) NA 15.4% (55/357)

NSCLC; tissue specimens or
ctDNA92

� NGS 3.0% (NA/16 015) 1.7% (NA/16 015) NA

Primary NSCLC (Taiwan) cases
administered curative intent
surgical resections; tissue
specimens10

� Sanger sequencing 1.4% (2/145) NA NA

Lung adenocarcinoma patients
administered no neoadjuvant
treatment; tissue specimens93

� Direct DNA sequencing 3.57% (8/224) NA NA

NSCLC cases administered surgical
resection; tissue specimens22

� Direct DNA sequencing 1.9% (35/1875) NA NA

NSCLC cases administered no
chemotherapy or radiotherapy;
tissue specimens94

� Sanger sequencing 2.4% (21/859) NA NA

Japan Primary NSCLC cases administered
surgical resection with curative
intent; tissue specimens10

� Sanger sequencing 3% (8/269) NA NA

Lung cancer patients administered
pulmonary resection

� Direct DNA sequencing 2.6% (13/504) NA NA

Korea Patients initially diagnosed with
metastatic NSCLC; tissue
specimens29

� NGS 2.0% (22/1108) 1.4% (15/1108) NA

NSCLC patients administered
surgical resection; tissue
specimens2

� Mutations assessed by direct DNA
sequencing

� Amplification assessed by FISH
(HER2/CEP 17 >2.0)

� HER2 expression assessed by IHC
(3þ/2þ)

6.7% (7/104) 14.3% (46/321) 7.7% (25/321)

India NSCLC; tissue specimens95 � Direct DNA sequencing 1.5 % (3/204) NA NA

CEP17, chromosome 17 centromere; ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; IHC, immu-
nohistochemistry; NA, not available; NGS, next-generation sequencing; NSCLC, non-small-cell lung cancer.
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life time) and females. Shigematsu et al.10 reported that
HER2 mutations predominantly occur in adenocarcinoma
compared with other histological subtypes (2.8% versus 0%,
P ¼ 0.02) and in never smokers compared with smokers
(More than 100 cigarettes in a life time) (2.8% versus 0%,
P ¼ 0.02). Similarly, Tomizawa et al.3 reported a frequency
Volume 7 - Issue 1 - 2022
of HER2 mutations of 2.6% (13/504) in LC, versus 14.1%
(11/78) in the subgroup of never smokers with adenocar-
cinoma or adenosquamous cell carcinoma without EGFR
mutations. Compared with EGFR and HER2 double wildtype,
HER2 mutations were found more commonly in aden-
ocarcinoma or adenosquamous cell carcinoma cases
https://doi.org/10.1016/j.esmoop.2022.100395 3
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Table 2. Patients recommended for HER2 alterations testing by guidelines in NSCLC

Guidelines HER2 mutation HER2 amplification

NCCN (V5.2021)30 (i) Testing for other genetic variants may also be donedsuch as NTRK
gene fusions, MET amplification and ErbB2 (also known as HER2)
mutationsdto identify these rare oncogenic driver variants for
which effective therapy may be available, although there is less
evidence to support testing.

(ii) Broad molecular profiling is also recommended to identify rare
driver mutations for which effective therapy may be available,
such as NTRK gene fusions, high-level MET amplification, ErbB2
mutations and TMB. Although clinicopathologic featuresdsuch as
smoking status, ethnicity, and histologydare associated with
specific genetic variants (e.g. EGFR mutations), these features
should not be used to select patients for testing.

(i) For patients with an underlying EGFR sensitizing mutation
who have been treated with EGFR TKI, minimum appropriate
testing includes high sensitivity evaluation for p.T790M; when
there is no evidence of p.T790M, testing for alternate
mechanisms of resistance (MET amplification and ErbB2
amplification) may be used to direct patients for additional
therapies.

ASCO (2018)31 (i) ErbB2 (HER2) molecular testing is not indicated as a routine stand-
alone assay outside of the context of a clinical trial. It is appropriate
to include ErbB2 (HER2) mutation analysis as part of a larger testing
panel carried out either initially or in case of negative routine EGFR,
ALK, BRAF and ROS1 testing.

No relevant recommendation

ALK, anaplastic lymphoma kinase; ASCO, American Society of Clinical Oncology; BRAF, v-Raf murine sarcoma viral oncogene homolog B1; EGFR, epidermal growth factor receptor;
ErbB2/HER2, human epidermal growth factor receptor 2; HER2, human epidermal growth factor receptor 2; MET, mesenchymal-epithelial transition; NCCN, National Compre-
hensive Cancer Network; NSCLC, non-small-cell lung cancer; NTRK, neurotrophin tyrosine receptor kinase; ROS1, ROS proto-oncogene 1, receptor tyrosine kinase; TKI, tyrosine
kinase inhibitor; TMB, tumor mutational burden.
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(P ¼ 0.012), never smokers (P < 0.0001) and females
(P ¼ 0.004). Bu et al.22 also found in NSCLC that HER2 in-
sertions were proportionally more common in adenocarci-
noma patients (91.4% versus 71.7%, P ¼ 0.01), never
smokers (97.1% versus 54.0%, P < 0.01) and females (91.4%
versus 42.2%, P < 0.01) compared with the HER2 insertion-
negative group. A study carried out by Sholl et al.23 showed
that HER2 mutations are significantly associated with never-
smoking status (P < 0.001) and Asian origin (P ¼ 0.015).

In addition, Offin et al.24 reported that 47% of LC patients
with HER2 mutations have developed brain metastases at
diagnosis (19%) or during treatment (28%), versus only 32%
in LC patients with Kirsten rat sarcoma viral oncogene ho-
molog (KRAS) mutations; HER2-mutant patients were more
likely to experience brain metastases during treatment in
comparison with KRAS-mutant and EGFR-mutant diseases
(HER2, 28%; KRAS, 8%; EGFR, 16%; HER2 versus KRAS,
P < 0.001; HER2 versus EGFR, P ¼ 0.06). Moreover, patients
who experienced brain metastases had worse overall sur-
vival (OS) compared with those without brain metastasis.
Yang et al.4 reported that exon 20 YVMA insertion is notably
associated with higher lifetime incidence of brain metastasis
in advanced NSCLC (P ¼ 0.002), with an estimated 12-
month brain metastasis incidence of 40.2% compared
with 3.6% in non-YVMA cases. These studies highlighted the
importance of developing HER2-targeted agents with higher
ability to penetrate the blood-brain barrier.25 Moreover,
lung adenocarcinomas with HER2 mutations exhibit a more
aggressive behavior on enhanced computed tomography
compared with KRAS- and EGFR-mutant controls, and show
a more frequent nodal metastatic spread compared with
KRAS-mutant controls.26 A case report described a lung
adenocarcinoma patient with lymphangitic spread and
psammoma bodies harboring an HER2 exon 20 insertion
mutation.27 Differing from HER2 mutations, HER2 amplifi-
cation and HER2 overexpression are not notably associated
with distinct clinical pathological characteristics.28 Another
4 https://doi.org/10.1016/j.esmoop.2022.100395
study by Lee et al.29 compared patients with HER2 ampli-
fication and HER2 mutations: adenocarcinoma histology
(100% versus 73.3%, respectively, P ¼ 0.021), non-smoking
status (63.6% versus 26.7%, P ¼ 0.027) and presence of
liver metastasis (31.8% versus 0%, P ¼ 0.025) were signifi-
cantly higher in patients with HER2 mutations than those
with HER2 amplification. Interestingly, EGFR mutation (40%
versus 0%, P ¼ 0.002) was more common in patients with
HER2 amplification. HER2 overexpression, in accordance
with HER2 amplification, more frequently occurs in adeno-
carcinoma than in squamous cell carcinoma.28 In lung
adenocarcinoma, HER2 expression was reported to notably
correlate with papillary predominant histology, whereas
HER2 amplification correlated well with pleural invasion.2
Current recommendations for HER2 alteration testing

Although there is little evidence to support routine testing
for various HER2 alterations at the current moment, the
National Comprehensive Cancer Network (NCCN) guideline
does suggest that; in addition to testing EGFR, anaplastic
lymphoma kinase (ALK), RET, receptor tyrosine kinase
(ROS1), v-Raf murine sarcoma viral oncogene homolog B
(BRAF) and KRAS, less common oncogenic driver gene
mutations such as HER2 mutations and amplification,
among others, should be tested to guide effective treat-
ment.30 The American Society of Clinical Oncology (ASCO)
guideline suggests that HER2 molecular testing should not
be routinely carried out independent of clinical trials;
however, it does recommend HER2 mutations to be tested
as part of a larger testing panel carried out initially or in
patients with negative test results for classic oncogenic
genes, including EGFR, ALK, BRAF and ROS131 (Table 2).
HER2 amplification testing is recommended in clinical
studies or in case of EGFR TKI resistance. The recommen-
dations of these guidelines may principally be affected by
the availability of targeted drugs for HER2 alterations.
Volume 7 - Issue 1 - 2022
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Besides, due to insufficient data for HER2 expression in
patients with NSCLC, HER2 protein detection is not rec-
ommended for routine testing in current NCCN and ASCO
guidelines. There are no recommendations from the Euro-
pean Society for Medical Oncology (ESMO) regarding the
testing of HER2 mutation, amplification and HER2
expression.

We recommend that HER2 mutation testing should be
carried out upfront as part of a larger routine testing panel
using next-generation sequencing (NGS), preferentially
sequencing exon 20 of HER2. In patients with unresectable
stage III and IV NSCLC who meet two or three of the
following criteria, HER2 mutation testing is recommended:
(i) lung adenocarcinoma or adenosquamous carcinoma; (ii)
never-smoking status; (iii) female.

Evidence suggesting companion diagnostics and treat-
ment in NSCLC with HER2 amplification and HER2 expres-
sion is limited. Thus, HER2 amplification and expression
testing is not routinely recommended for all NSCLC pa-
tients. NGS and FISH for HER2 amplification as well as IHC
for HER2 expression are recommended if tests are needed,
especially for individuals in clinical studies and in case of
EGFR TKI resistance, to explore the related resistance
mechanisms.
CONSENSUS ON THERAPIES FOR NSCLC PATIENTS WITH
HER2 ALTERATIONS

Trastuzumab is a monoclonal antibody targeting HER2,
which improves the outcome of HER2-positive BC.32,33

Trastuzumab or another HER2/HER3-targeted drug, pertu-
zumab, however, demonstrated minimal clinical value with
an ORR of only 13% in NSCLC patients with HER2 amplifi-
cation/overexpression.20 The ORR was 29% in HER2 exon
20-mutant NSCLC patients who received trastuzumab and
pertuzumab in combination with docetaxel.34 Currently,
there is no FDA-approved targeted therapy for HER2-pos-
itive NSCLC. Chemotherapy shows unsatisfactory efficacy.
It was reported that HER2-mutant NSCLC patients derive
less benefit from pemetrexed-based chemotherapy (mPFS
5.1 months) than those with ALK/ROS1 rearrangements
(mPFS 9.2 months, P ¼ 0.004).35 Immune checkpoint in-
hibitors (ICIs) targeting the programmed cell death protein
1 and programmed death-ligand 1 (PD-L1) axis, including
pembrolizumab and nivolumab, have demonstrated supe-
riority over chemotherapy.36-38 Recent research, however,
showed that HER2-mutant subgroups do not derive similar
benefit from these ICIs: the ORR in NSCLC patients with
HER2 alteration administered ICI monotherapy was 7%,
which was much lower than those of patients with KRAS
(26%), BRAF (24%), ROS1 (17%), MRT (16%) and EGFR
(12%) mutations.39 Chen et al.40 also reported an ORR of
0 (0/6) among HER2-mutant NSCLC patients treated with
immunotherapy, and PD-L1 expression was significantly
higher in patients with EGFR mutations than in those with
HER2 mutations (48.6% versus 19.0%, P ¼ 0.027). These
studies highlight the urgent clinical need to develop novel
Volume 7 - Issue 1 - 2022
therapeutic strategies for NSCLC with various HER2
alterations.

Recently, ADCs have shown promising therapeutic effects
in early clinical studies (Table 3). Based on these trials, two
ADCs (T-DM1 and T-DXd) were recommended for NSCLC
with HER2 mutations in the NCCN 2021 guidelines.30 T-DXd
is a novel ADC composed of an anti-HER2 antibody, a
cleavable tetrapeptide-based linker and a topoisomerase I
inhibitor payload. In a phase II trial, HER2-mutant NSCLC
patients administered T-DXd had a confirmed ORR of 72.7%
(8/11) and an mPFS of 11.3 months.41 DESTINY-Lung01 is an
ongoing, multicenter, phase II study of T-DXd in patients
with nonsquamous NSCLC overexpressing HER2 or con-
taining an HER2-activating mutation. In the DESTINY-Lung01
study, T-DXd demonstrated an ORR of 55% and an mPFS of
8.2 months in the HER2-mutant NSCLC cohort.7 T-DM1, an
ADC incorporating the HER2-targeted monoclonal antibody
trastuzumab with the cytotoxic microtubule inhibitor DM1,
was shown to be effective and tolerable in 18 patients with
HER2-mutant NSCLC in a clinical study conducted in the
USA, with an ORR of 44% and an mPFS of 5 months.42 A
phase II study of T-DM1 monotherapy in relapsed HER2-
positive NSCLC was terminated early, however, due to
limited efficacy. This trial showed that among 15 HER2-
positive (IHC 2þ/3þ and FISH-positive, or exon 20 muta-
tion) patients, only 1 with HER2 mutation achieved a partial
response.43

The therapeutic values of HER2 TKIs, including afatinib,
dacomitinib, neratinib, poziotinib and pyrotinib are sum-
marized in Table 3. Afatinib was reported to have antitumor
activity in pretreated HER2-mutant NSCLC patients, with an
ORR of 19% (3/16) and a disease control rate (DCR) of
69% (11/16), especially in the subgroup harboring the
p.A775_G776insYVMA insertion in exon 20, which had an
ORR of 33% (2/6) and a DCR of 100% (6/6).44 A retro-
spective multi-centered study in Chinese patients, however,
reported an opposite outcome that afatinib yielded no
response in the YVMA subgroup.45 Afatinib was recom-
mended by NCCN guidelines (2018 update, version 1.0) as
single-agent therapy for HER2-mutant NSCLC; however, this
recommendation was subsequently omitted in NCCN
guidelines version 3, 2018, due to poor response.46 In a
single-arm phase II trial, afatinib therapy resulted in a lower
DCR than expected in NSCLC harboring HER2 exon 20 mu-
tations.47 A retrospective, nationwide study showed that
chemotherapy might bring more benefit than afatinib in
HER2-mutant advanced LC cases, particularly in those with
A775_G776insYVMA.48 A recently published study may
explain this result by suggesting that YVMA insertion in the
HER2 kinase domain generated a more rigid conformation,
which led to less potent inhibition by TKI monotherapy and
the greater need of adding chemotherapy.49 Another TKI
targeting HER2, pyrotinib, was reported to have supe-
rior antitumor activity over afatinib and T-DM1 in both
HER2YVMA insertion patient-derived organoid and xenograft
models, with significant inhibition of pHER2 and down-
stream pERK and pAKT. In addition, pyrotinib also demon-
strated promising clinical efficacy in 15 HER2-mutant NSCLC
https://doi.org/10.1016/j.esmoop.2022.100395 5
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Table 3. Efficacy of targeted drugs in NSCLC with HER2 alterations

Class Drugs Targets Study type Patients Total number Efficacy in NSCLC with HER2 alterations

ORR, % Median PFS, months Median OS, months References

Humanized
monoclonal
antibody

Trastuzumab þ
pertuzumab

HER2 Phase IIa HER2, EGFR, BRAF or
Hedgehog pathway-
altered advanced
refractory solid
tumors

251 (Total)
30 (HER2-altered
NSCLC
treated with
trastuzumab
þ pertuzumab)

13% (2/16): HER2-
amplified or HER2-
overexpressed NSCLC
21% (3/14): HER2-
mutant NSCLC

NA NA (Hainsworth et al.,
2018)20

Phase II HER2 exon 20-mutant
advanced NSCLC

45 29% (13/44) 6.8 (4.0-8.5) NA (Mazieres et al.,
2021)34

ADC T-DM1 HER2 Phase II HER2-mutant
advanced NSCLC

18 (Total)
11 (HER2 exon 20
mutations)

44% (8/18): Total
54.5% (6/11): HER2
exon 20 mutations

5.0 (3.0-9.0): total NA (Li et al., 2018)42

Phase II Pretreated HER2-
positive (IHC/FISH/
mutant-positive)
NSCLC

15 (Total)
7 (HER2 exon 20
mutations)

6.7% (1/15): Total
14.3% (1/7): HER2 exon
20 mutations

2.0 (1.4-4.0): total 10.9 (4.4-12.0): total (Hotta et al., 2018)43

Phase II HER2-overexpressed
NSCLC

49 0% (0): IHC (2þ)
20% (4/20): IHC (3þ)

2.6 (1.4-2.8): IHC (2þ)
2.7 (1.4-8.3): IHC (3þ)

12.2 (3.8-23.3): IHC
(2þ)
15.3 (4.1-NE): IHC (3þ)

(Peters et al., 2019)96

Phase II ErbB2- and/or
mutant lung cancers

49 (Total)
11 (ErbB2
amplification)
28 (ErbB2 mutation)
10 (concurrently
ErbB2 mutation
and amplification)

51% (25/49): Total
55% (6/11): ErbB2
amplification
50% (14/28): ErbB2
mutations
50% (5/10):
concurrently ErbB2
mutation and
amplification

5.0 (3.5-5.9): total NA (Li et al., 2020)55

T-DXd Phase I Pretreated, HER2-
overexpressed (IHC
�1þ), non-breast/
non-gastric or HER2-
mutant solid tumors

60 (Total)
18 (HER2-
overexpressed or
-mutant NSCLC)
11 (HER2-mutant
NSCLC)

55.6% (10/18): HER2-
overexpressed or
-mutant NSCLC
72.7% (8/11): HER2
-mutant NSCLC

11.3 (7.2-14.3): HER2-
overexpressed or
-mutant NSCLC
11.3 (8.1e14.3): HER2-
mutant NSCLC

NA (Tsurutani et al.,
2020)41

Phase II HER2-overexpressed
or HER2-mutant
metastatic NSCLC

49 ((HER2-
overexpressed)
42 (HER2 mutation)

24.5% (12/49):
HER2-overexpressed
61.9% (26/42): HER2
mutation

5.4 (2.8-7.0): HER2-
overexpressed
14.0 (6.4-14.0): HER2
mutation

NA (Nakagawa et al.,
2021)54; (Smit et al.,
2021)97

TKI Afatinib EGFR, HER2
and HER4

Phase I HER2-mutant positive
NSCLC

80 0 2.76 (NA) 10.02 (NA) (Fan et al., 2020)98

Phase II Pretreated HER2
exon 20-mutant
advanced NSCLC

13 7.7% (1/13) 15.9 Weeks (6.0-35.4) 56 Weeks (16.3-NE) (Dziadziuszko et al.,
2019)47

Retrospective
study

HER2-mutant
advanced NSCLC

32 15.6% (5/32) 3.2 (2.0-4.5) NA (Fang et al., 2020)45

Retrospective
study

HER2-altered NSCLC 66 (Total)
54 (HER2 mutations)
12 (HER2
amplification)

24% (16/66): Total
22% (12/54): HER2
mutations
33% (4/12): HER2
amplification

3.3 (2.2-4.4): total
3.4 (1.4-4.7): HER2
mutations
3.3 (2.6-4.0): HER2
amplification

13.9 (11.4-16.5): total
14.6 (11.6-17.6): HER2
mutations
13.4 (0-27.6): HER2
amplification

(Song et al., 2021)56
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Table 3. Continued

Class Drugs Targets Study type Patients Total number Efficacy in NSCLC with HER2 alterations

ORR, % Median PFS, months Median OS, months References

Dacomitinib HER2, EGFR
and HER4

Phase II HER2-mutant or
amplified advanced
NSCLC

30 (Total)
26 (HER2 mutations)

11.5% (3/26): HER2
mutations
0 (0): HER2
amplification

3 (2-4): HER2mutations
NA (1-5): HER2
amplification

9 (7-21): HER2
mutations NA (5-22):
HER2 amplification

(Kris et al., 2015)99

Neratinib HER2, EGFR
and HER4

Phase II HER2- and HER3-
mutant cancers

141 (Total)
26 (HER2-mutant
lung cancer)

NA 5.5 (NA): HER2 mutant
lung cancer

NA (Hyman et al., 2018)100

Poziotinib HER2, EGFR
and HER4

Phase II NSCLC with EGFR or
HER2 exon 20
mutations

205 (Total)
90 (HER2 mutations)

27.8% (NA): HER2
mutations

NA NA (Cornelissen et al.,
2021)52

Phase II NSCLC patients with
EGFR or HER2 exon
20 mutations

30 (Total)
8 (HER2 mutations)

50% (4/8): HER2
mutations

NA NA (Prelaj et al., 2021)53

Pyrotinib HER2, EGFR,
and HER4

Phase II Pretreated HER2
exon 20-mutated
advanced NSCLC

15 53.3% (8/15) 6.4 (1.60-11.20) 12.9 (2.05-23.75) (Wang et al., 2019)50

Phase II Pretreated HER2-
mutant advanced
lung adenocarcinoma

60 30% (18/60) 6.9 (5.5-8.3) 14.4 (12.3-21.3) (Zhou et al., 2020)51

Phase IIa Pretreated NSCLC
patients with diverse
HER2 alterations

33 45.5% (15/33) 6.8 (5.3-9.77) NE (10.23-NE) (Yang et al, 2021)101

ADC, antibody-drug conjugates; BRAF, v-Raf murine sarcoma viral oncogene homolog B1; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; HER3, human epidermal growth factor receptor 3; HER4,
human epidermal growth factor receptor 4; IHC, immunohistochemistry; NE, not evaluable/missing; NA, not available; NSCLC, non-small-cell lung cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; T-DM1,
trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TKI, tyrosine kinase inhibitor.
a The treatment regimen in this study was pyrotinib combined with apatinib.
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patients, with an ORR of 53.3% and an mPFS of 6.4
months.50 In a subsequent multicenter phase II clinical
study enrolling 60 HER2-mutant lung adenocarcinoma
patients previously treated with platinum-based chemo-
therapy, pyrotinib resulted in an ORR of 30%, an mPFS of
6.9 months and a median OS of 14.4 months.51 Another
study also assessed the clinical effect of poziotinib in pre-
viously treated NSCLC patients harboring EGFR and HER2
exon 20 mutations, with ORRs of 14.8% and 27.8%,
respectively. In addition, ORRs were 30% and 39%,
respectively, in HER2-mutant LC patients who received two
or three lines of therapy.52 Furthermore, poziotinib
demonstrated benefits in metastatic NSCLC with EGFR/
HER2 exon 20 insertion mutation, with an ORR of 30%
(EGFR/HER2: 23%/50%) and a DCR of 80%.53

A few trials have assessed targeted agents in NSCLC pa-
tients with HER2 amplification and/or overexpression
(Table 3). The DESTINY-Lung01 study also enrolled patients
with HER2-overexpressing metastatic NSCLC, with an ORR of
24.5% and an mPFS of 5.4 months.54 In a study where
HER2-mutant and/or -amplified NSCLC patients were
treated with T-DM1,55 the ORR of HER2-amplified, and
concurrently HER2-mutant and -amplified patients were
55% and 50%, respectively. A phase II study of T-DM1 in
Japan, however, showed no definitive benefit in HER2-
positive NSCLC patients.43 A multicenter retrospective study
included metastatic NSCLC patients harboring HER2 alter-
ations administered afatinib, revealing an ORR of 33%, an
mPFS of 3.3 months and a median OS of 13.4 months in
HER2 amplification.56 These results indicate that effective
targeted drugs for NSCLC with HER2 amplification and/or
overexpression need to be further investigated.

Several ongoing studies in HER2-altered NSCLC patients are
listed on ClinicalTrials.gov (https://clinicaltrials.gov/). These
include PYRAMID-1 (NCT04447118), a phase III randomized
clinical trial comparing pyrotinib and docetaxel in patients
with advanced nonsquamous NSCLC harboring HER2 exon 20
mutation with failed platinum-based chemotherapy;
DESTINY-Lung02 (NCT04644237), a phase II cohort study of T-
DXd in HER2-mutated metastatic NSCLC patients; DESTINY-
Lung03 (NCT04686305), a phase Ib study investigating the
safety of T-DXd in combination with immunotherapy and
chemotherapy in patients with HER2-positive advanced and
metastatic NSCLC; a phase IIb study (NCT04311034) of RC48
in patients with HER2-overexpressing or HER2-mutant NSCLC;
and a phase I/II study (NCT04818333) of SHR-A1811 (HER2
ADC) in HER2-altered NSCLC patients. In summary, targeted
drugs, such as HER2-targeted ADCs and pyrotinib, are being
actively examined with the expectation that they might be
new treatment options for NSCLC with HER2 mutations and
other HER2 alterations.

RECOMMENDATIONS FOR HER2 ALTERATIONS TESTING IN
NSCLC

Sample collection

Tumor tissues, cytologic specimens and circulating tumor
DNA (ctDNA) could be used for HER2 testing. Tumor
8 https://doi.org/10.1016/j.esmoop.2022.100395
tissues are preferred and should contain a substantial part
of tumor cells without obvious necrosis, mucus and in-
flammatory changes. Alternatively, cytologic specimens
and ctDNA can be used.30,31 It is well established that
ctDNA, a tumor-specific DNA fragment released into
plasma from apoptotic and necrotic tumor cells, can be
used for mutations detection in NSCLC.57-59 Mack et al.60

demonstrated the ability to detect HER2 mutations in
ctDNA from NSCLC cases, with 126 mutations identified in
a series of >8000 plasma samples analyzed on a
commercially available NGS platform. In this series, small
in-frame insertions in exon 20 represented >60% of cases,
and HER2 mutations were significantly mutually exclusive
with other known NSCLC driver genes. Considering that
the false-negative rate of ctDNA testing is as high as 30%,
tissue collection for re-testing is recommended in case the
initial peripheral blood ctDNA testing fails to identify HER2
mutations.30
Sample processing and storing for HER2 alteration testing

Time from tissue acquisition to fixation (within 1 h) or
storage in liquid nitrogen (within 10 min) should be as short
as possible, and tissue specimens should be sliced at 5- to
10-mm intervals and fixed in sufficient volume of 10%
neutral buffered formalin for 6-72 h.61,62 Unstained sections
should not be left at room temperature for >6 weeks to
prevent antigen loss.61 When ctDNA in plasma extracted
from peripheral blood is collected for testing, disposable
closed EDTA anticoagulant vacuum blood collection tubes
should be used for sampling. Alternatively, Streck tubes or
other cell-free DNA collection tubes can be used, granting
additional storage time at room temperature before pro-
cessing. Minimally 6-10 ml of whole blood should be
collected; the plasma should be separated using a double-
spin technique, and ctDNA should be extracted within 6
h. Finally, ctDNA should be stored at �80�C, and repeated
thawing should be avoided.63 Additional considerations for
ctDNA collection and extraction from plasma are provided
in Rolfo et al.63

A sufficient proportion of tumor cells in samples is the
key to determining the reliability of the test results. A study
including 665 lung adenocarcinoma specimens (558 TKI-
naive and 107 TKI-recurrent samples) explored the effect
of tumor cellularity on NGS test results. It was found that
biopsied samples with <20% tumor cellularity are associ-
ated with lower frequency of HER2 mutations compared
with those with �20%.64 Literature suggested minimal tu-
mor cell content should exceed twice the limit of detection
of the testing method used.65 Accordingly, the optimal tu-
mor cell content in tissue samples for NGS is 40%, and the
minimum is 10%-20%.66 In addition to the number of tumor
cells, intratumor heterogeneity should not be ignored dur-
ing genetic testing, as it may result in inaccurate findings,
especially false-negatives.67 It was shown that intratumor
heterogeneity exists in HER2-mutant lung adenocarcinomas,
and the heterogeneity score of HER2 is significantly higher
in metastatic tumors compared with primary tumors.
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Therefore, it is crucial to carry out preassessment before
sample processing to achieve optimal test quality.64

Techniques and platforms for detecting HER2 mutations

The methods used to assess HER2 mutations mainly include
Sanger sequencing, NGS, amplification refractory mutation
system-PCR (ARMS-PCR) and droplet digital PCR (ddPCR).
These methods have different sensitivities, specificities and
sample requirements, and vary in the types of genetic al-
terations tested, difficulty of operation and speed of testing.
It is recommended to carefully select the testing method
based on local laboratory conditions, sample type, sample
size and clinical needs.

Sanger sequencing can read a given DNA sequence
directly and identify new mutation sites; it has high re-
quirements regarding the content and proportion of tumor
cells in the sample, and is not suitable for small biopsies or
cytological specimens.68,69 ARMS-PCR shows high sensitivity
and specificity, and its operation is simple; however, it
cannot identify new and unknown mutations. When
different mutation sites need to be tested, the required
DNA amount for ARMS-PCR increases, and the probability
of non-specific binding increases correspondingly.70 The
ddPCR method also has excellent sensitivity and specificity,
but no advantage in processing samples with high DNA
concentrations.71 NGS can sequence millions or even bil-
lions of DNA molecules simultaneously; in particular, it re-
quires less DNA for testing and shows high sensitivity.59,72,73

Therefore, NGS is recommended for HER2 mutation testing.
An ideal NGS testing platform should be able to identify all
types of variations in HER2 related to clinical treatment,
including exon-20 YVMA insertions, non-YVMA insertions,
missense point mutations, copy number variation and
amplification, etc., with low requirement of required DNA
amount, high speed and high repeatability.

Techniques for detecting HER2 amplification

Gene amplification refers to an increase in copy number of
a specific chromosomal location in comparison with the
remainder.74 HER2 copy number elevation can occur
through focal amplification or a balanced copying of chro-
mosome 17 where HER2 is located (defined as polysomy).75

A study conducted by Han et al.76 showed that focal
amplification of HER2 may predict early relapse after adju-
vant chemotherapy in patients with lung adenocarcinoma.
In NSCLC tumors, however, increased copy number of HER2
is largely due to the polysomy of chromosome 17.77,78

Although several studies showed that high HER2 gene
copy number is associated with reduced survival in LC, the
prognostic and therapeutic implications of polysomy in LC
need to be examined in prospective clinical trials.77,79

Various techniques can be used for detecting HER2 copy
number changes. These include NGS, real-time quantitative
(qRT)-PCR and FISH. In current clinical practice, NGS is a
commonly used method for HER2 amplification in NSCLC.
There is currently no uniform standard for defining ampli-
fication across NGS platforms. The advantage of NGS-based
Volume 7 - Issue 1 - 2022
testing for copy number changes lies in its ability to assess
variants across hundreds of genes simultaneously and to
identify focal gene amplifications from numerous chromo-
somal gains, with a high level of resolution. Although qRT-
PCR has also been used to detect HER2 amplification, this
method has no obvious advantage over NGS; besides, the
cut-off points used to define HER2 amplification vary, and
no clear definition criterion has been proposed.

FISH, a technique leveraging fluorophore-coupled DNA
fragments to tag and detect target genomic regions, is rec-
ommended for HER2 amplification testing in NSCLC clinical
studies for more evidence. As a dual-probe technique, FISH
allows the determination of copy number changes for both
the HER2 gene and the centromere of chromosome 17
(CEP17).80 HER2 copy number gain can be defined by
calculating the gene copy number or the ratio of HER2 to
CEP7. In comparison with the mean HER2 copy number, the
HER2/CEP17 ratio is sometimes considered a better reflec-
tion of HER2 amplification status, as the former may be
influenced by multiple factors, including abnormal chromo-
some copy number (aneusomy), mitotic index of the tumor,
section thickness and nuclear truncation effects.81 The
interpretation of FISH test results in NSCLC could refer to BC
as follows. (i) HER2 to CEP17 ratio �2.0, positive result
indicating HER2 amplification. (ii) HER2 to CEP17 ratio <2.0:
HER2 copy number �6.0, positive result indicating HER2
amplification; HER2 copy number <4.0, negative result
indicating no HER2 amplification; HER2 copy number �4.0
but <6.0, uncertain result, with not determinable HER2
status. (iii) If numerous HER2 signals are connected into
clusters, there is no need to calculate as this is clearly
indicative of HER2 amplification.82 In clinical studies, FISH is
recommended for HER2 amplification testing in NSCLC.
Techniques for detecting HER2 overexpression

IHC is recommended as a standard method for the detec-
tion of HER2 expression in solid tumors such as BC, gastric
cancer, intestinal cancer and NSCLC. HER2 IHC can be
assessed using two different methods, including the H-
scoring system and ASCO/College of American Pathologist
(CAP) BC guidelines. H-scoring assessment is determined by
multiplying the intensity of staining (0-3) by the percentage
of positive cells (0%-100%), with a possible range from 0 to
300. A score >200 is generally considered to indicate
overexpression, but the cut-offs of the H-scoring system
vary in different studies.2,83 More research is needed to
achieve an applicable standard in NSCLC.

In the ASCO/CAP guidelines for BC, the final score is 0,
1þ, 2þ or 3þ based on membranous staining, among
which scores of 0/1þ and 3þ are considered to be negative
and positive for overexpression, respectively; a score of 2þ
is considered equivocal and needs to be confirmed by
additional in situ hybridization testing.61 Since HER2
expression is not routinely tested in clinical practice for
NSCLC, detection of HER2 overexpression in NSCLC in gen-
eral follows the diagnostic criteria for BC.82,84,85 Intriguingly,
there is no obvious correlation between HER2 amplification
https://doi.org/10.1016/j.esmoop.2022.100395 9
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sampling and whether adequate tissue are available? 
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Test repeated when any one of 
following is presented:
(i) results are inconclusive
(ii) initial sample quality is low
(iii) plasma testing is negative
(iv) close to a cut-off limit
(v) a novel mutation is found

NGS/PCR

HER2 mutation

HER2 alterations testing results reported
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HER2-negative
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Figure 1. Recommended algorithm for testing HER2 alterations in non-small-cell lung cancer.
The definitions of HER2 expression and amplification in this consensus were determined based on available clinical studies; further verification is recommended when
HER2 amplification is detected by NGS or PCR.
ctDNA, circulating tumor DNA; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; NGS, next-generation sequencing.
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and overexpression in NSCLC, which is in sharp contrast
with BC. A study was designed to elucidate the concordance
between HER2 IHC and ISH in NSCLC; the results showed
that the concordance rate of the HER2 IHC (2þ) subgroup
was 0.091, which was much lower than 0.975 found in the
HER2 IHC (0/1þ) subgroup.86 Another study also reported
the poor concordance between IHC and silver-enhanced in
situ hybridization. In addition, the sensitivity and specificity
of IHC for detecting amplification were 23.9% and 94.9% at
a cut-off of �2þ, respectively.2 These findings indicate that
detection of HER2 protein expression in NSCLC is different
from that in BC, as there are much less IHC (2þ) cases in
FISH-positive LC patients, and IHC 2þ to detect HER2
amplification has poor sensitivity. Therefore, we recom-
mend FISH confirmation is not required for NSCLC patients
with HER2 IHC 2þ. Companion diagnostic criteria of HER2
expression in NSCLC is suggested as follows: (i) 0, HER2
expression negative; (ii) 1þ, currently considered to be
negative. With the increased application of ADC therapy
and update of research evidence,87 however, it needs to be
confirmed whether 1 þ should be considered to be HER2
expression negative or HER2-low expression; (iii) 2þ, 3þ:
HER2 expression positive.

Testing reports and laboratory requirements

Reports should contain the following information: sample
source, size and quality, methodology used and assay
sensitivity. Critically, for mutation reporting, the specific
amino acid substitutions must be reported, as different
point mutations and insertions will likely prove to be
differentially responsive to the various targeted agents
currently available or in development. Samples used for
10 https://doi.org/10.1016/j.esmoop.2022.100395
DNA extraction should also indicate the content of tumor
cells.88 In an HER2 amplification report, both the HER2/
CEP17 ratio and the copy number of HER2 should be
included.

When testing results near the cut-off limits resulting in
difficulty to determine, an alternative method for re-testing
should be recommended, or the relevant information
should be provided in the testing report to notify the
clinician. If a novel (unreported) mutation is observed,
testing should be repeated to avoid false-positives. In case
of negative peripheral blood tests, we recommend the
clinician to closely monitor the patient’s disease status,
reassess the feasibility of tissue biopsy, and re-test HER2
with the tissue or other samples as appropriate. It should be
cautioned that the presence of molecular alterations cannot
be ruled out when the quality/quantity of specimens used
for testing are low and/or when the results are negative.

Laboratories carrying out HER2 alteration testing should
meet national and international quality standards and be
accredited by relevant bodies [e.g. CAP and Clinical Labo-
ratory Improvement Amendments (CLIA)].30,89 The labora-
tories must participate in regular quality control programs
such as Pathology Quality Control Center (PQCC) and Eu-
ropean Molecular Genetics Quality Network (EMQN) and
other inter-laboratory quality assessment programs on an
annual basis. When testing results are inconsistent (with a
low confidence level) or otherwise unexpected, the labo-
ratory should ensure that there are available alternative
methods or samples to overcome these challenges.31 The
testing personnel should have relevant educational back-
ground and corresponding work experience, with profes-
sional training and relevant qualification certificates, and
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Table 4. Key points of the consensus on the testing of HER2 alterations in NSCLC

1. Epidemiology of HER2 alterations in NSCLC
(i) The incidence of HER2 mutation in Asian populations seems to be numerically higher than that of the European and US populations (1.4%-6.7% versus

1%-3%). HER2-ex20ins is the most common mutation (48%);
(ii) The incidence rates of HER2 amplification and HER2 expression vary in different studies, which needs further investigation.
2. Clinicopathologic features of HER2 alterations in NSCLC
(i) NSCLC with HER2 mutations are more likely to occur in adenocarcinoma or adenosquamous carcinoma, never smokers and females;
(ii) No distinct characteristics are observed in NSCLC patients with HER2 amplification or HER2 expression.
3. Current recommendations for HER2 alterations testing
(i) HER2 mutation testing should be carried out as part of an initial larger testing panel applying next-generation sequencing, and exon 20 of HER2 mutations

should be preferentially included;
(ii) In patients with unresectable stage III and stage IV NSCLC meeting two or three of the following criteria, HER2 mutation testing is recommended whenever

possible: (a) lung adenocarcinoma or adenosquamous carcinoma; (b) no or mild smoking history; and (c) female sex.
(iii) HER2 amplification is recommended when resistance to EGFR TKI develops. In addition, HER2 amplification and expression are recommended for NSCLC in

clinical trials.
4. Therapies for NSCLC patients with HER2 alterations
(i) Monoclonal anti-HER2 antibodies, chemotherapy with or without ICIs targeting PD-1/PD-L1 have limited efficacy in NSCLC with HER2 alterations;
(ii) ADCs (e.g. T-DXd, T-DM1) and TKIs (e.g. pyrotinib) are expected to be new treatment options for NSCLC with HER2 alterations. Targeted therapies for NSCLC

with HER2 overexpression need to be further investigated.
5. Sample collection for the testing of HER2 alterations
(i) Tumor tissue is preferred for HER2 testing whenever it is available;
(ii) In case of unavailable or too small tissue sample, other specimens, such as ctDNA, should be used.
6. Techniques and platforms for detecting HER2 mutations
(i) Sanger sequencing, ARMS-PCR, ddPCR and NGS can all be used for HER2 mutation testing. NGS is preferred, and an ideal NGS testing platform should be able

to identify all types of HER2 exon 20 mutations related to clinical treatment, including exon 20 YVMA insertions, non-YVMA insertions and missense mutations.
7. Techniques and platforms for detecting HER2 amplification
(i) FISH is recommended for the testing of HER2 amplification in NSCLC-related clinical studies. In current clinical practice, NGS is a commonly used method for

detecting HER2 amplification in NSCLC.
(ii) HER2 amplification criteria by FISH

> HER2 to CEP17 ratio �2.0: HER2 amplification positive;
> HER2 to CEP17 ratio <2.0:

� HER2 copy number �6.0: HER2 amplification positive;
� HER2 copy number <4.0: HER2 amplification negative;
� HER2 copy number �4.0 but <6.0: amplification status cannot be determined;

> Numerous HER2 signals connected into clusters: no need to be calculated, i.e. HER2 amplification positive.
8. Techniques and platforms for detecting HER2 expression
(i) Although HER2 expression is not frequently tested in clinical practice in NSCLC, IHC is recommended as the standard method for the detection of HER2

expression;
(ii) HER2 expression criteria by IHC

> 0: HER2 expression negative;
> 1þ: needs to be confirmed by further studies whether 1þ should be considered to be negative or HER2-low expression;
> 2þ, 3þ: HER2 expression positive.
> Due to the poor concordance between FISH and IHC in NSCLC, FISH confirmation is not required for NSCLC patients with IHC 2þ/3þ to define positive

HER2 expression.
9. Future directions and optimization strategies for detecting HER2 alterations
(i) Further refinement of the testing procedure and companion diagnostics for HER2 mutation, amplification and HER2 expression are needed;
(ii) Clinical trials in NSCLC patients with HER2 alterations should be encouraged to provide high-quality evidence so that relevant detection methods can be

further optimized;
(iii) Exploration of HER2 TKI resistance mechanisms in NSCLC with HER2 alterations is warranted.

ADC, antibody-drug conjugate; ARMS-PCR, amplification refractory mutations system-PCR; CEP17, chromosome 17 centromere; ctDNA, circulating tumor DNA; ddPCR, droplet
digital PCR; EGFR, epidermal growth factor receptor; HER2, human epidermal growth factor receptor 2; ICIs, immune checkpoint inhibitors; IHC, immunohistochemistry; NGS,
next-generation sequencing; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; T-DM1, trastuzumab emtansine; T-
DXd, trastuzumab deruxtecan; TKI, tyrosine kinase inhibitor.
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operate in strict accordance with the standard operating
procedures.

CONCLUSION

The testing procedure and companion diagnostics of HER2
alterations need to be standardized worldwide. Here, we
reached a consensus and recommended an algorithm for
testing HER2 alterations in non-small-cell lung cancer (Table
4, Figure 1). More translational studies are warranted for
establishing the criteria for HER2 companion diagnostics of
HER2 amplification and HER2 expression, and confirming the
relationships among HER2 mutation, amplification and
protein expression in NSCLC. The definitions of HER2
expression and amplification in this consensus were
Volume 7 - Issue 1 - 2022
determined based on available clinical studies. Further
verification is recommended when HER2 amplification was
detected by NGS or PCR.

Several targeted drugs have shown promising efficacy in
HER2-altered NSCLC patients. The optimal management of
HER2-altered NSCLC, however, requires further high-quality
trials (e.g. randomized phase III studies) and the explora-
tion of new treatment strategies such as ADC combined
with TKI, ICIs or chemotherapy for HER2 alterations, as well
as TKI or ADC for HER2 amplification, etc. In addition, un-
derstanding the mechanisms underlying TKI or ADC resis-
tance in NSCLC with HER2 alterations is warranted.
Therefore, more attention needs to be paid to HER2-altered
NSCLC, which would also help refine the companion
https://doi.org/10.1016/j.esmoop.2022.100395 11
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diagnosis and treatment of HER2 alterations in other solid
tumors such as gastric cancer, intestinal cancer and uro-
thelial carcinoma.
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