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Abstract: Passive acoustic target detection has been a hot research topic for a few decades.
Azimuth recording diagram is one of the most promising techniques to estimate the arrival direction of
the interested signal by visualizing the sound wave information. However, this method is challenged
by the random ambient noise, resulting in low reliability and short effective distance. This paper
presents a real-time postprocessing framework for passive acoustic target detection modalities by
using a sonar array, in which image processing methods are used to automate the target detecting and
tracking on the azimuth recording diagram. The simulation results demonstrate that the proposed
approach can provide a higher reliability compared with the conventional ones, and is suitable for
the constraints of real-time tracking.

Keywords: target detecting; target tracking; image processing; principal component analysis;
direction of arrival; passive detection; template matching

1. Introduction

The passive sonar detection technique is important for ocean exploration. As shown in Figure 1,
the radiated noise of underwater acoustic targets, such as engine noise, active detection pulse,
and underwater acoustic communication pulse, can be used by a passive sonar array for direction
estimation and tracking.

Direction of arrival (DOA) estimation is a crucial topic in the field of passive sonar information
processing [1–3]. Its primary mission is to estimate the performance parameters of space target signal
(e.g., the number of target signal sources, direction of arrival, frequency and polarization of signal
sources, etc.) by using the received array data. A complete DOA estimation system mainly includes
three aspects:

(a) Target space: this space is mainly composed of the target incident signal source and the actual
environment. The DOA estimation systems capture the underwater acoustic information via
some sensors, e.g., optic, pressure, or vector hydrophones.

(b) Observation space: mainly refers to the use of arrays placed in space according to certain rules
(e.g., uniform linear or spherical arrays) in advance to obtain the array information of the target
incident signal source.

(c) Estimation space: the parameter information of the target signal source obtained via the sonar
array is extracted by the DOA estimation algorithm.
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Figure 1. Passive array detection.

The conventional beamforming (CBF) method is recognized as one of the earliest and classical
DOA estimation algorithms for sensor arrays, which is also commonly known as the Bartlett
beamforming method [4–7]. It is a simple extension of space domain in the traditional time domain
Fourier spectrum estimation technique. Its aim is to replace the information data obtained from
each sensor element in the space domain with the time domain information. Unfortunately, like
Fourier constraints in time domain, the resolution of CBF methods is constrained by the physical
aperture of arrays, often referred to as the Rayleigh limit, i.e., in the case of multiple space target signal
sources within the same beam width, it is quite difficult to achieve high resolution. For the purpose
of high accuracy, based on the conversion relationship between time domain processing and spatial
processing of target signals, many nonlinear spectral estimation techniques have been extended to
spatial spectral estimation techniques, and high resolution spectral estimation methods have been
developed, e.g., Maximum Entropy Method [8], Minimum Variance Method [9], and harmonic analysis
method [10]. However, most of them are not suitable for practical applications, especially for passive
detection modalities, because the resolution is improved only when the form and parameters of the
received signals are known.

Based on the CBF-like techniques, azimuth recording diagram is developed to facilitate DOA
estimation by visualizing the received signal information. As shown in Figure 2, the azimuth recording
diagram is a spatial coordinate system whose x- and y-axis correspond to the azimuth and time,
respectively. At each node, the gray levels are used to represent the power of the beamforming. If there
exists an underwater acoustic source in some direction, the output power of the beamforming in that
direction will be higher than that in the other directions. If the noise source persists, a stable and bright
trajectory will appear on the diagram, and the trajectory varies when the target sound source moves.
In realistic applications, if a piece of bright trajectory is detected on the azimuth recording diagram,
the corresponding azimuth can be considered as having a target, and then we can start to track it along
the trajectory manually or automatically.

Due to its benefits of stability and convenience, this technique is widely used. However, detecting
the target on the diagram by using naked eyes is far from easy, because the received signal of a sonar
array is distorted by the ambient noise, which results in a large number of random image noises,
especially in a low SNR (Signal-to-Noise Ratio) environment [11–13]. Additionally, with the noise
in the image level, there is a certain probability that the ambient noise peak is misjudged as the
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target noise, resulting in tracking failure. A postprocessing cycle is therefore necessary to mitigate the
ambient noise in the image level or enhance the interested image patterns.

Figure 2. An example of acoustic target azimuth recording diagram.

Our work focuses on the explorations of robust acoustic target localization methods. This paper is
an extension of our previous work presented in the ICSIP 2019 [14]. It presents an image postprocessing
framework for automatic target detecting and tracking within the underwater acoustic azimuth
recording diagram, where advanced image processing techniques are innovationally applied for
azimuth recoding diagram analysis. The proposed framework consists of three cycles: target detecting,
pattern enhancement and automatic azimuth tracking. The highlights of our work include the following.

(a) The first step of the postprocessing framework is to find the weak trajectory inundated with
the noise on the diagram quickly and accurately. This paper realizes the automatic trajectory
detecting via template matching. To this end, we propose a feasible trajectory template generation
method allowing users to customize the template set for different requirements.

(b) Pattern enhancement is the second step. Conventional target tracking methods based on the
azimuth recording diagram use the local power optima of the beams performed with different
arrival directions as the patterns to track, which is easy to deviate from the trajectory due to the
influences of ambient noise, so we enhance the trajectory patterns by using spatial separation
methods, which significantly facilitates the tracking tasks.

(c) Finally, the pattern enhancement method presented in this paper may lead to the azimuth
migration if the target direction varies fast. An azimuth correction strategy is therefore conceived
to improve the accuracy of the DOA estimation.

The experiment of this work is conducted by the simulated data. The proposed method is
evaluated by comparing with the conventional detecting and tracking technique. The simulation
results demonstrate that the proposed approach has a high stability and reliability by suppressing
noise when tracking target with a strong Gaussian white noise, and its efficiency meets the real-time
data processing requirements.

The reminder of this paper is organized as follows. Section 2 reviews the related works of azimuth
recording diagrams. Sections 3 and 4 present, respectively, the proposed automatic detection and
tracking methods for the azimuth recording diagrams. Section 5 evaluates the new approaches with
simulation data. Finally, some discussions and conclusions are made in Section 6.
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2. Related Work

The underwater signal propagation can be modeled as

r(t) = so(t) + n(t) = h(t, τ) ∗ si(t) + n(t) (1)

where t is time, si is the baseband signal waveform, and n is the additive noise. h(t, τ) is the
time-varying multipath channel impulse response. Berger, C. R. et al. [15] defined h(t, τ) as

h(t, τ) =
L

∑
j=1

Aj(t)δ(τ − τj(t)) (2)

Equation (2) is a simplified description of the classical Wide-Sense Stationary Uncorrelated
Scattering (WSSUS) model [16], and it approximates the underwater acoustic channel by using L
dominant discrete paths. Aj refers to the path amplitudes, which changes with the delays as the
attenuation is related to the distance traveled as well as the physics of the scattering and propagation
processes. With Equation (2), we can simplify Equation (1) to

r(t) =
L

∑
j=1

Aj(t)si(t− τj(t)) + n(t) (3)

Equation (3) shows that the underwater acoustic signals may be distorted by (a) the multipath
effect caused by the sea-surface and bottom reflections; (b) propagation attenuations; and (c) ambient
noise such as random noise, flow noise, radiated noise of the third-party artificial equipment, and self
noise. Furthermore, the relative motions between the signal source and receiving sensors lead to
the Doppler effect, further complicating the mechanisms of the signal distortions [17–19]. Therefore,
retrieving the desired information directly from the distorted signals is difficult.

Passive acoustic detections are used to estimate the directions by analyzing the power of the
synthetic beams from different directions. The conventional (or Bartlett) beamformer is a natural
extension of the classical Fourier-based spectral analysis [20] to sonar array data and has been widely
used. For arbitrary geometric arrays, the algorithm maximizes the beamforming output power of a
given input signal. Given the direction of arrival θ, the received array data with additive noise can be
written as

x(t) = a(θ)r(t) = a(θ)
L

∑
j=1

Aj(t)si(t− τj(t)) + a(θ)n(t) (4)

where x(t) can be considered as a multichannel random process, a(θ) = [a1(θ), · · · , aN(θ)]
T is the

steering vector, and N is the number of elements in a geometric array. Therefore, the problem of
maximizing the output power can be expressed as

maxW E{WTx(t)xT(t)W} = maxWWTE{x(t)xT(t)}W (5)

= maxW{E|s(t)|2|WTa(θ)|2 + σ2|W|2} (6)

where the assumption of spatially white noise is used. W is the weight vector, and different
beamforming approaches correspond to different choices of W; E{} denotes the operation of the
statistical expectation; E{x(t)xT(t)} is the source covariance matrix; σ2 is eigenvalue; and the last
covariance structure is a reflection of the noise having a common variance σ2 at all sensors and being
uncorrelated among all sensors.

To obtain a non-negative solution, the norm of W is constrained to |W| = 1. The solution can
therefore be expressed as

WBF = a(θ)/
√

a(θ)Ta(θ) (7)
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where BF means conventional Beamformer. The above weight vector can be interpreted as a spatial
filter, which makes the delays (and possible attenuations) experienced by signals on different sensors
equal, thus maximizing the combination of their respective contributions.

Figure 3 displays the framework of classical beamforming. For irregular sensor arrays, the steering
vector a(θ) is a function of the azimuth of arrival θ and the array shape. Let the azimuth of arrival θ be
the angle between the x-axis and the arrival direction, the i-th element of a(θ) will be

ai(θ) = e2π f ∆t (8)

with

∆t =
(x′ − xo) cos θ + (y′ − yo) sin θ

c
(9)

where f is the frequency of the baseband signal, (xo, yo) and (x′, y′) are, respectively, the coordinates
of the reference and interested sensors, and c is the sound velocity. Now, the array data can be
visualized as the azimuth recording diagram by computing the short-time power with Equations (4)–(9).
The power values over the azimuths of each short-time data is defined as a snap. We describe
programmatically computing process of the azimuth recording diagram as follows,

(a) for all the directions of arrival, compute the steer vectors a(θ) with Equation (8), then the weight
vectors WBF(θ) using Equation (7);

(b) for all the weight vectors, compute the expectations of the output power with Equation (5); and
(c) perform the azimuth recording diagram by establishing a time-azimuth space coordinate system,

in which the image intensity is used to represent the power level of the synthetic signals over
time and azimuth.

Figure 3. Classical beamforming framework.

3. Target Detection

The first step of the proposed postprocessing framework is to detect the trajectory automatically.
From the view point of image pattern recognition, detecting the target via azimuth recording diagram
is a pattern detection task, and the interested patterns are those trajectories performed by the power
peaks. We address this problem by using the template matching technique.

3.1. Generation Model of Trajectory Templates

The preliminary preparation for template matching is to establish a suitable matching template set.
To do this, some parameters of the sonar systems should be provided by the users: (a) the minimum
effective distance dmin of sensor array, (b) the maximum navigation speed vmax of the target to be
observed, (c) the system response time delay Tmin (the maximum time delay for the system to react to
the target after it appears), and (d) the azimuth interval step ∆θ.

Next, initialize the template set G, which contains all two-dimensional trajectory templates.
The templates Gi correspond to the trajectories with different forms. As shown in Figure 4, the x-axis of
Gi corresponds to the azimuth, dmin is the minimum effective distance of the desired sensor array, Tmin
is the minimum system response time delay, D is the distance that the target moves from (xa, ya) to
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(xb, yb), and β is the template Gi. Let the scale of the x-axis be [−β, β], which represents the maximum
azimuth-varying range of the target in the response time of the system. β is computed by

β =
90× vmax × Tmin

π × dmin
(10)

The y-aixs of Gi corresponds to time, and each discrete time is the arrival time of the sampling
snapshot within Tmin. The gray values of Gi correspond to the power of the synthetic signals at < ϑ, t >,
where ϑ and t denote azimuth and time, respectively. Because the acoustic target usually moves slowly,
we hypothesize that its azimuth changes linearly over time and describe the corresponding trajectory as

t = Aϑ + B (11)

with
A =

Tmin
θ − θ′

B = t′ − Tmin
θ − θ′

× θ′
(12)

A and B are the parameters of the linear model to be computed. As shown in Figure 4, θ and θ′ are
the initial and ending azimuths of the simulated trajectory, respectively. t′ is the time of θ′. Tmin is the
maximum system response time delay. The template Gi can therefore be discretely modeled as

Gi(ϑ, t) =


1 t = [

ϑ− θ′

θ − θ′
Tmin + t′]

η t = [
ϑ− θ′

θ − θ′
Tmin + t′]± ∆θ

0 otherwise

(13)

where η ∈ [0, 1] is a user-defined constant, and this paper sets it as 0.5. ∆θ is the azimuth interval step.

Figure 4. An example of template generation.

3.2. Matching Process

3.2.1. Two-Dimensional Matched Filter

We base the target trajectory detection on the two-dimensional (2-D) matched filter. Suppose that
the transfer function and impulse response of the matched filter areH(u, v) and h̄(φ, t), respectively,
and the output is written as

y(φ, t) = (I(φ, t) + n̄(φ, t)) ∗ h̄(φ, t) (14)



Sensors 2018, 19, 5391 7 of 24

where y(φ, t) is the output of the filter, I(φ, t) is the baseband signal, and n̄(φ, t) is the additive noise
in the image level. We, respectively, write the power spectral density of I(φ, t) and the image-level
noise n̄(φ, t) as

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
I(φ, t)e−j(uφ+vt)dφdt (15)

and
N(u, v) =

∫ ∞

−∞

∫ ∞

−∞
n̄(φ, t)e−j(uφ+vt)dφdt (16)

where u and v correspond to the frequencies of the diagram within the different dimensions.
With inverse Fourier transformation, the instantaneous output of the filter at < ϕ, τ > is rewritten as

y(φ, t) =
∫ ∞

−∞

∫ ∞

−∞
H(u, v)(F(u, v) +N(u, v))ej(uϕ+vτ)dudv (17)

Now we have the instantaneous output signal-to-noise ratio (SNR) of the filter as

SNR(ϕ, τ) =
[
∫ ∞
−∞

∫ ∞
−∞H(u, v)F(u, v)ej(uϕ+vτ)dudv]2

[
∫ ∞
−∞

∫ ∞
−∞H(u, v)N(u, v)ej(uϕ+vτ)dudv]2

(18)

Suppose n̄(φ, t) is solely a Gaussian white noise of power density No/2, Equation (18) can be
simplified to

SNR(ϕ, τ) =
2[
∫ ∞
−∞

∫ ∞
−∞H(u, v)F(u, v)ej(uϕ+vτ)dudv]2

No
∫ ∞
−∞

∫ ∞
−∞ |H(u, v)|2dudv

(19)

The optimal matched filter can be obtained by maximizing Equation (19). According to
Cauchy–Bunyakovsky–Schwarz inequality, we have

[
∫ ∞

−∞

∫ ∞

−∞
H(u, v)F(u, v)ej(uϕ+vτ)dudv]2 ≤

∫ ∞

−∞

∫ ∞

−∞
|H(u, v)|2dudv

∫ ∞

−∞

∫ ∞

−∞
|F(u, v)|2dudv (20)

therefore, the optimal output SNR is

SNRopt =
2

No

∫ ∞

−∞

∫ ∞

−∞
|F(u, v)|2dudv (21)

the optimal SNR is achieved when

H(u, v) = k[F(u, v)ej(uϕ+vτ)]∗ = kF∗(u, v)e−j(uϕ+vτ) (22)

The 2-D matched filter of Equation (22) represents the only type of linear 2-D filter, which
maximizes the output SNR.

3.2.2. Implementation of the Matching Process

The azimuth recording diagram is updated snap by snap in real-time applications. As shown in
Figure 5a, we first extract the ROI (Region of Interest) M from the screen of the diagram. M is essentially
a matrix that has the same row size with the template Gi mentioned in Section 3.1. The columns of M
correspond to the angle ranging from −π to π, for example.
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Figure 5. Implementation of matching process.

Next, M is spatially filtered. According to the optimal filters presented in Section 3.2.1, we assign
directly the generated templates Gi to the impulse response of the filters for different trajectory
templates. Therefore, the output of the filter can be discretely expressed as

S(φ, t) =
φ+β

∑
p=φ−β

t

∑
q=t−Tmin

Gi(p− φ, t− q)In(p, q) (23)

As shown in Figure 5c–e, the matching results of all the templates Gi perform a matching score
vector S(φ, t) =< S1(φ, t), S2(φ, t), . . . , Si(φ, t) > over azimuths φ. The maximum of S(φ, t) is selected
as the instantaneous output of the matching process at (φ, t).

Figure 5f depicts an example of matching scores S(t) over the azimuths φ. The targets are detected
with matching score peaks. To do this, S(t) is first smoothed by using a mean filter:

S̄(φ, t) =
1
N

N−1
2

∑
k=− N−1

2

S(φ + k∆φ, t) (24)

where ∆φ = ∆θ refers to the azimuth interval step. Next, a target exists when a peak of S̄(t) is higher
than a user-defined threshold ε. This determination condition is described as

D(φ, t) ∈ {S̄(φ, t)|S̄(φ− ∆φ, t) ≤ S̄(φ, t) ≤ S̄(φ + ∆φ, t) and S̄(φ, t) ≥ ε} (25)

Equation (25) includes two constraints: (1) S̄(φ− ∆φ, t) ≤ S̄(φ, t) ≤ S̄(φ + ∆φ, t), which defines
the peaks (the value of S̄(φ, t) is higher than either of the neighbors), and (2) S̄(φ, t) ≥ ε, which is used
to judge whether the peaks are higher than the user-defined threshold. Once both the constraints are
satisfied, we have the azimuth of the target φ̂(t) as

φ̂(t) = φD + θ′ (26)

where φD is the azimuth satisfying the constraint in Equation (25) and θ′ is the ending azimuth of the
simulated trajectory of the optimal template at (φD, t).

4. Target Enhancement and Tracking

The underwater acoustic target azimuth recording diagram is essentially a fusion of useful
information and interference noise, so it can be projected into useful information and interference noise
subspaces. This paper enhances the azimuth recording diagram using principal component analysis
(PCA), which has been used in the sonar or radar systems [21–25].

As shown in Figure 6a,b, when a new snap comes, the current region of interest M(τ) is
first decomposed into the form of M(t) = U(t)ε(t)V(t)T via singular value decomposition (SVD),
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where U(t) and V(t) are the left and right singular value vectors of M(t), respectively, and ε is the
singular value matrix of M(t). This paper makes the singular value decompositions by using Jacobi’s
method [26,27]. The diagonal elements of ε(t) are singular values of M(t) arranged in descending
order, and the other elements are 0. Next, the first k singular values are kept to reconstruct M(t):

P(t) = U(t)ε′(t)VT(t) (27)

Equation (27) projects M into signal subspace, and the projected matrix P(t) is the PCA spectrum
of the snap at t. The principal component map P of the diagram shown in Figure 6d is obtained by
repeating this process snap by snap. In this time-azimuth coordinate system, the image intensity is
used to represent the spectral amplitude of the principal component spectral.

Figure 6. Principal component analysis of azimuth history diagram.

Now, we can start to track the target trajectories. The acoustic target is used to being automatically
tracked in the azimuth recording diagrams by searching for the maximum power of the received signal
over the azimuths, then the corresponding azimuth is considered as the current target azimuth. Despite
high stability, the peaks of PCA spectra cannot be considered as the real azimuth of the sound source,
because enhancing the azimuth recording diagrams with PCA is essentially to alter the optimizing
function from maximizing the power into maximizing the power dependency within a certain period,
resulting in the tracking migrations. More precisely, the singular value vectors U and V of M are
computed by decomposing MMT and MT M via eigen decomposition, respectively. That is, PCA
analyzes the relationship among the power values within the horizontal and vertical directions instead
of along the trajectories. Therefore, when there exists some angle difference between the axis and
trajectory, an azimuth tracking misplacement occurs.

Figure 7 compares the power and PCA spectra of the same simulated target, in which there is
no ambient noise. We can see that an azimuth misplacement exists between them, mainly at −50◦,
so if a high-accuracy positioning result is desired, it is not enough to trace the PCA spectrum only.
Therefore, when a snap comes, we first determine the position of the maximum peak value in the
PCA spectrum in order to ensure the tracing stability. Next, the power spectrum is smoothed with the
meaning filter. Finally, the optima of the smoothed power spectrum around the maximum peak of the
PCA spectrum is computed within a user-defined range. In this way, the search criteria return back to
the optimal power again, therefore the target can be tracked stably and a more precise azimuth can be
obtained as well.
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Figure 7. Power and principal component analysis (PCA) spectra of the acoustic target without
ambient noise.

5. Experiments

5.1. Target Detection with Template Matching

First, a template set of target azimuth trajectory is established by using the method proposed
in Section 3. As shown in Figure 8, the set G contains 17 2-D matching templates, and each one
corresponds to a change state of target azimuth in the system response time Tmin = 13 s. It is
supposed that the maximum speed of the targets is 40 kn (~74 km per hour) and the minimum
effective distance of the system is 2 km. The azimuth range of Gi can be approximately computed as
β = (90× vmax × Tmin)/(π × dmin) ≈ 3.83◦. This paper sets β as 4◦ for the convenience of calculating.
For any Gi (i = 1, 2, 3, ..., 17), set the initial azimuth state of the target θ = (i− 9)× ∆θstep and the end
azimuth θ

′
= (9− i)× ∆θstep, then it can be computed via Equation (13).

Figure 8. Target azimuth trajectory matching template.



Sensors 2018, 19, 5391 11 of 24

Figure 9 shows an example of azimuth recording diagram of three underwater acoustic targets in
the ideal state. The observation time is 13 s, the snap time interval tsnap is 1 s, the azimuth angle range
is from −180◦ to 180◦, and the azimuth observation interval ∆θstep is 0.5◦. Figure 10 shows the noised
azimuth diagram. It can be seen that the recognizability of the three trajectories becomes much weaker.
The weakest trajectory in the middle is completely submerged in the noise and is unrecognizable for
the naked eyes.

Figure 9. An example of azimuth recording diagram.

Figure 10. Azimuth recording diagram of underwater acoustic target with noise.

Figure 11 plots the matching results of Figure 10, in which three peaks can be easily observed.
That is, the ambient noise is effectively mitigated by using the optimal matched filter presented in this
paper. Figure 12 displays the smoothed matching results, which is helpful to avoid fault detection by
suppressing the interference peaks. The detected targets are marked with black circles. Detecting these
peaks is relatively easy, because the trajectory enhancement method presented in this paper enables
the threshold ε to have a large confidence interval.
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Figure 11. Template matching results.

Figure 12. Azimuth estimation results.

5.2. Target Tracking

In this subsection, we evaluate the proposed target tracking method with simulated data. Three
target azimuth trajectories (see Figure 10) are first detected then tracked. Figure 13 shows the original
simulated azimuth recording diagram, whose observation range is from −180◦ to +180◦ with a step
of 0.5◦. It is supposed that three acoustic targets are captured, and their normalized power levels are
1, 0.2, and 0.5, respectively. Figure 14 displays the azimuth recording diagram noised by the white
Gaussian noise.

The experiment is formed within the environment of SNR = −14 dB, and the time period of the
size of ROI M is reset as 40 s. Figure 15a displays the diagram to be processed, in which we highlight
the ROI M with red box and zoom in it in Figure 15b. The trajectory in the middle is too weak to be
detected in Figure 15b by the naked eye.
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Figure 13. The original azimuth recording diagram.

Figure 14. The azimuth recording diagram noised by using Gaussian white noise.

Figure 15. Information window extraction.

Figure 16 plots the singular values of the PCA spectrum at t = 100, 200, . . . , 700 s. The first
singular values are far above the others, demonstrating that the first subspace of M can be considered
as the unique principal component, which corresponds to the target subspace. Figure 17 shows the
extracted PCA map of the azimuth recording diagram. The image-level noise is well mitigated, and
the visual effect of the diagram is significantly improved compared to the noised diagram shown in
Figure 14.
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Figure 16. Singular value vectors.

Figure 17. PCA map.

Next, the target tracking stability is evaluated by comparing the tracking results of the conventional
and the proposed methods at different noise levels. We simulate the ambient noise with the white
Gaussian noise. The variances of the noise are set as 0.01, 0.05, 0.1, 0.15, and 0.2, and their image
level signal-to-noise ratios are approximately 2,−14,−21,−25, and −28 dB. Figure 18 displays the
comparison results. The white circles are the initial target azimuths of the weakest target, and the
real trajectory of the target is marked with blue plus signs and the tracked results the red diamonds.
In Figure 18a,b, the noise level is lower than the signals (SNR = 2 dB), and either the original or
proposed method is able to track the target successfully.

With the increasing of the noise level, the gap of the stability performance between the original
and proposed methods becomes more and more significant. At SNR = −14 dB, we can see that the
tracking result of the proposed method shown in Figure 18d is as stable as Figure 18c, whereas in
Figure 18c some considerable deviations occur due to the influences of the noise on the original method.
In Figure 18e,g,i, the conventional method fails completely but the proposed method still works well,
with some minor errors.

Finally, the acoustic target is lost in the PCA-enhanced diagram when SNR =−28 dB (see Figure 18j).
Overall, the evaluation results of this subsection demonstrate that the original acoustic tracking method
is prone to be influenced by the ambient noise on the azimuth recording diagram, such that the azimuth
corresponding to a probabilistic noise peak might be mistaken as the azimuth of the target. On the
contrary, PCA is able to effectively suppress image noise and achieve stable tracking results, and the
performance gap between the two methods is obvious. This conclusion is further verified with five
repeated experiments, within which five azimuth recording diagrams having different trajectories are
used in order to evaluate the performance of the proposed method with different target movement
situations. The experiments are displayed in Figures A1–A5 in Appendix A.
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(a) Conventional: SNR = 2 dB (b) Proposed: SNR = 2 dB

(c) Conventional: SNR = −14 dB (d) Proposed: SNR = −14 dB

(e) Conventional: SNR = −21 dB (f) Proposed: SNR = −21 dB

(g) Conventional: SNR = −25 dB (h) Proposed: SNR = −25 dB

(i) Conventional: SNR = −28 dB (j) Proposed: SNR = −28 dB

Figure 18. Acoustic tracking results at SNR = 2, −14, −21, −25, −28 dB.
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5.3. Accuracy Evaluation

As discussed in Section 5.2, PCA may migrate the azimuth trajectories of the targets, resulting
in constant azimuth errors, especially for fast-moving targets. Therefore, an error correction process
is performed after the PCA-based tracking to achieve high accuracy. This subsection evaluates the
accuracy performance of the proposed method by comparing the tracking results before and after
error correcting.

We quantify the accuracy performance by measuring the mean absolute deviations of each
running within different SNR environments. In order to obtain an unbiased conclusion, the measuring
process is repeated three times and the average results are considered as the azimuth errors at different
noise levels. Figure 19 compares the tracking results before and after error correcting. As expected,
the azimuth error of the PCA-only curve can be approximated to a horizontal line, demonstrating that
PCA migrates the target tracing. On the other hand, after error correcting, the mean absolute deviation
decreases with the increasing of SNRs linearly.

Figure 19. Evaluation results of accuracy performance.

Within the SNR measure scope of Figure 19, the error correcting method of this paper leads to
lower errors than the PCA-only tracking, and it seems that the accuracy of the former will be higher
than the latter if SNR is low enough. However, it should be noted that all the discussions regarding
the accuracy performance are based on the hypothesis that the target is tracked successfully and stably.
According to our measurements, the PCA-only tracking loses the targets at SNR ≈ −25.5 dB, which
is still far away from the noise level threshold where the two methods change places. Consequently,
the proposed error correcting method is able to well compensate the weakness of the PCA-based
diagram enforcement method regarding the accuracy within its effective SNR range.

5.4. Temporal Efficiency

Acoustic target tracking is a typical real-time application, being constrained by the time interval
of the data sampling. In this paper, the processing time of each snap must be shorter than the snap
interval if the real-time processing capacity is desired. This subsection estimates the running time of the
proposed method. We base the algorithm implementing on Matlab 2017b within 64-bit Windows-10
operation system. The processor is Inter (R) Core (TM) i7-8550U, CPU @1.80 GHz. Because the
extraction process of PCA spectrum possesses high data dependency, resulting in low parallelism,
we do not make any parallel optimizations on the final implementation.

The running time measurement includes the PCA enforcement and tracking processes of each snap.
Figure 20 compares the measurement results of four different implementations. “original” performs
the target tracking directly on the original azimuth recording diagram without any enforcements.
“error_correcting” optimizes the tracking results of the “original” version by using the proposed error
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correcting method. “pca_only” tracks the target in the PCA-enforced diagram without error correcting.
Finally, “proposed” version combines the PCA enforcement and error correcting.

Figure 20. Comparison of computation time among the related methods.

In Figure 20, it can be first found that the proposed error correcting method does not use too much
more computation resource compared to the original. Second, the cycle of PCA is very time-consuming.
The running time increases by more than 24 × (4.95× 10−4 vs. 1.2× 10−2 s per snap). Consequently,
if the real-time processing capacity is desired, the time interval of the snaps should be greater than
1.2 × 10−2 s. Considering that the time interval of the snaps is usually set as multiple seconds,
the hardware resource cost of the proposed method can satisfy the requirements of real-time processing
with the up-to-date computation devices.

6. Discussion and Conclusions

This paper presents a post-framework for the azimuth recording diagram based acoustic target
detection and tracking. The presented approach successfully realizes automatic target detections
and highly robust target tracking by incorporating the image processing methods into the passive
sonar information processing modalities. First, we base the automatic target detection on the 2-D
template matching. A feasible target trajectory template generation method is developed, allowing
for specializing the template set for different sensor array designs. Next, inspired by the idea of
separating the array signal into the signal and noise subspaces, the target trajectories are significantly
enhanced. Based on the separation of useful information subspace obtained by singular value
decomposition, the stability of target tracking is greatly improved. Additionally, we find that the
azimuth migrations constantly occur if only the PCA spectrum is used. This is because the PCA spectrum
transform alters the azimuth tracking constraint from energy optima to that of the dependency of the
recorded azimuths. An error-correction strategy is therefore specifically designed by combining the
PCA-enhanced and original azimuth recording diagram. The simulation experiments demonstrate
that the proposed method can greatly improve the stability of the azimuth tracking technique in
underwater acoustic applications.

In the future, improvements will be made regarding the accuracy of azimuth tracking. Additionally,
the proposed method will be further evaluated in sea trials.
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Appendix A

(a) Conventional: SNR = 2 dB (b) Proposed: SNR = 2 dB

(c) Conventional: SNR = −14 dB (d) Proposed: SNR = −14 dB

(e) Conventional: SNR = −21 dB (f) Proposed: SNR = −21 dB

(g) Conventional: SNR = −25 dB (h) Proposed: SNR = −25 dB

(i) Conventional: SNR = −28 dB (j) Proposed: SNR = −28 dB

Figure A1. Experiment 1: tracking results at SNR = 2,−14,−21,−25,−28 dB.
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(a) Conventional: SNR = 2 dB (b) Proposed: SNR = 2 dB

(c) Conventional: SNR = −9 dB (d) Proposed: SNR = −9 dB

(e) Conventional: SNR = −16 dB (f) Proposed: SNR = −16 dB

(g) Conventional: SNR = −18 dB (h) Proposed: SNR = −18 dB

(i) Conventional: SNR = −21 dB (j) Proposed: SNR = −21 dB

Figure A2. Experiment 2: tracking results at SNR = 2,−9,−16,−18,−21 dB.
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(a) Conventional: SNR = 3 dB (b) Proposed: SNR = 3 dB

(c) Conventional: SNR = −8 dB (d) Proposed: SNR = −8 dB

(e) Conventional: SNR = −16 dB (f) Proposed: SNR = −16 dB

(g) Conventional: SNR = −18 dB (h) Proposed: SNR = −18 dB

(i) Conventional:vSNR = −21 dB (j) Proposed: SNR = −21 dB

Figure A3. Experiment 3: tracking results at SNR = 3,−8,−16,−18,−21 dB.
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(a) Conventional: SNR = 2 dB (b) Proposed: SNR = 2 dB

(c) Conventional: SNR = −8 dB (d) Proposed: SNR = −8 dB

(e) Conventional: SNR = −15 dB (f) Proposed: SNR = −15 dB

(g) Conventional: SNR = −18 dB (h) Proposed: SNR = −18 dB

(i) Conventional: SNR = −21 dB (j) Proposed: SNR = −21 dB

Figure A4. Experiment 4: tracking results at SNR = 2,−8,−15,−18,−21 dB.
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(a) Conventional: SNR = 2 dB (b) Proposed: SNR = 2 dB

(c) Conventional:SNR = −8 dB (d) Proposed: SNR = −8 dB

(e) Conventional: SNR = −15 dB (f) Proposed: SNR = −15 dB

(g) Conventional: SNR = −18 dB (h) Proposed: SNR = −18 dB

(i) Conventional: SNR = −21 dB (j) Proposed: SNR = −21 dB

Figure A5. Experiment 5: tracking results at SNR = 2,−8,−15,−18,−21 dB.
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