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Abstract: Mesenchymal stromal cells (MSCs) are crucial elements in the bone marrow (BM) niche
where they provide physical support and secrete soluble factors to control and maintain hematopoietic
stem progenitor cells (HSPCs). Given their role in the BM niche and HSPC support, MSCs have
been employed in the clinical setting to expand ex-vivo HSPCs, as well as to facilitate HSPC
engraftment in vivo. Specific alterations in the mesenchymal compartment have been described
in hematological malignancies, as well as in rare genetic disorders, diseases that are amenable to
allogeneic hematopoietic stem cell transplantation (HSCT), and ex-vivo HSPC-gene therapy (HSC-GT).
Dissecting the in vivo function of human MSCs and studying their biological and functional properties
in these diseases is a critical requirement to optimize transplantation outcomes. In this review, the
role of MSCs in the orchestration of the BM niche will be revised, and alterations in the mesenchymal
compartment in specific disorders will be discussed, focusing on the need to correct and restore a proper
microenvironment to ameliorate transplantation procedures, and more in general disease outcomes.

Keywords: mesenchymal stromal cells; bone marrow niche; hematopoietic stem and progenitor cells;
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1. Introduction

Mesenchymal stromal cells (MSCs) are a rare population of non-hematopoietic multipotent
cells resident in the bone marrow (BM), which offer physical support and regulate hematopoietic
stem/progenitor cell (HSPC) homeostasis. MSCs were first isolated from the BM [1,2], thanks to their
ability to adhere to plastic and generate colony-forming unit fibroblasts (CFU-Fs) in vitro. MSCs
can be easily expanded for several passages as fibroblast-like cells. In vitro, they are positive for the
expression of specific surface markers, classification determinant (CD)105, CD90, and CD73, whereas
they do not express hematopoietic (CD34, CD45) and endothelial markers (CD31). They express human
leukocyte antigen (HLA) class I but they are negative for HLA class II. MSCs can differentiate into
skeletal, connective, and adipose tissue when exposed to proper conditions [3].

In the human BM, MSCs are localized around the blood vessels, where they offer physical support
to HSPCs and differentiate into osteoprogenitors to guarantee a functional remodeling of the BM
niche. Importantly, BM-MSCs control HSPC homeostasis by direct contact and in a paracrine manner
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through the secretion of soluble factors [4–6]. The concept that MSCs play a fundamental role in the
regulation of hematopoiesis is supported by data showing the co-localization of MSCs with sites of
hematopoiesis, starting from embryonic developmental stages [7]. The understanding of MSC’s role
in the BM niche has been limited for a long time due to the difficulty of identifying specific markers
to localize and prospectively isolate MSCs in vivo. The lack of consensus on surface markers has
generated contradictory results on independent subpopulations of MSCs [8–15]. However, recent
studies have clarified the identity of MSC subsets which are mainly involved in the control of HSPC
homeostasis. Sacchetti et al. first reported that MSCs positive for the CD146 marker reside in the
sinusoidal wall, are enriched for colony forming unit-fibroblast (CFU-F) activity, and can generate a
BM niche supporting hematopoietic activity when transplanted heterotopically in immunodeficient
mice. CD146+ cells express HSPC regulatory genes such as Angiogenin-1 and C-X-C motif chemokine
12 (CXCL12) [11]. Later, CD271 has been used to identify MSCs localized in the trabecular region of
human BM. CD271+ MSCs show an enhanced clonogenic and differentiation capacity and express
higher levels of extracellular matrix and cell adhesion genes compared to bulk MSCs [16–18]. These
data suggest that different subtypes of MSCs interact with HSPCs in specific perivascular regions.
CD271+ and CD271+/CD146-/low MSC have been reported to be bone-lining cells associated with long
term (LT)-HSPC in low oxygen areas, whereas CD146+ and CD271+/CD146+ are located around BM
sinusoids in association with proliferating HSPCs [12] (Figure 1). Increasing evidence supports the
hypothesis that MSCs represent a subpopulation of pericytes associated with the vessels of multiple
human tissues. For this reason, MSCs/MSC-like cells have been isolated from several adult tissues,
including adipose tissue, heart, skin, Wharton’s jelly, dental pulp [19–21]. Despite the broad anatomical
distribution, the majority of available data on MSC functionality have been obtained with ex-vivo
expanded MSCs due to their low frequency. In human BM, MSCs represent 0.001–0.01% of mononuclear
cells, thus requiring extensive ex-vivo manipulation for their functional characterization and clinical
application [13]. Published data indicate that MSCs may become heterogeneous and acquire different
properties upon plastic adherence and culture media exposure [22–24]. It has been shown that MSC
cultures undergo clonal selection during the expansion phase, and selected clones possess different
capabilities [25]. Moreover, MSC function is the result of coordinated interactions with the other BM
niche components and may operate differently in vitro. Abbuehl et al. recently demonstrated that
freshly-isolated murine BM-MSCs, but not ex-vivo expanded, are capable of engrafting long-term
and to repair stromal niche damage after irradiation, translating into a significantly better HSPC
engraftment after co-transplantation with HSPC intra-bone [26]. Genome-wide analysis has revealed
a distinct transcriptional profile of human primary MSCs and corresponding in vitro counterpart,
highlighting an enhanced hematopoietic supportive function in primary MSCs [22]. For this reason,
the manipulation of culture conditions, including cytokines, glucose concentration, oxygen tension,
culture as mesenspheres, have been proposed as a strategy to maintain MSC native properties [27–29],
including their capacity to support HSPCs. More recently, the use of a cocktail of transcription factors
has been shown to reprogram murine ex vivo expanded MSCs to a more primitive state [30].

MSCs have been employed as tools for tissue engineering and regenerative medicine [31–33], as
well as a cell-therapy approach to counteract inflammation in immune-mediated and inflammatory
diseases thanks to their capacity to sense the inflammatory state and suppressing immune
responses [34–39]. Moreover, several pre-clinical and clinical studies have highlighted the role
of ex-vivo cultured MSCs in promoting hematopoietic recovery and reducing the risk of graft
failure [40,41]. MSCs have also been successfully employed to stimulate ex-vivo expansion and
maintenance of CD34+ HSPCs [42,43].

Given their role in the BM niche and in HSPC support, dissecting the in vivo function of human
MSCs and studying their properties in pathological conditions is a fundamental requirement to
optimize the outcome of HSPC transplantation (HSCT) and ex-vivo HSPC-gene therapy (HSC-GT).
As indicated in the editorial of the Special Issue “Mesenchymal Stromal Cell-Based Therapy: New
Perspectives and Challenges” [44], also in the present review novel findings on the role of MSCs in the
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BM niche will be reported. In particular, alterations in the mesenchymal compartment in hematological
malignancies, as well as in genetic disorders treated with HSCT or HSC-GT, will be discussed, focusing
on the need to correct possible defects and preserve MSC functionality before transplantation.

Figure 1. Schematic representation of a model describing mesenchymal stromal cells (MSCs)
in the human bone marrow (BM) niche. In the human BM niche, different subtypes of MSCs
interact with hematopoietic stem cells (HSCs) in the different perivascular regions and show specific
functional characteristics. In particular, classification determinants (CD) 271 and CD271+/CD146-/low

MSCs are bone-lining MSCs associated with long-term (LT)-HSCs in low oxygen areas, whereas
CD146+ and CD271+/CD146+ are located around the BM sinusoids in association with activated
and fast-proliferating HSCs. Abbreviations: BM—bone marrow; MSC—mesenchymal stromal cells;
HSC—hematopoietic stem cell; CD—classification determinant; LT—long-term; HSPC—hematopoietic
stem and progenitor cell.

2. MSCs as Key Elements of the Bone Marrow Niche

MSCs play a pivotal role in the control of hematopoiesis in the BM niche since the embryonal
stage. MSCs have been identified in the aorta-gonad-mesonephros (AGM) region at E11, following the
hematopoietic system development [7].

These cells have been extensively studied in vivo in several animal models, elucidating important
aspects of MSC biological characteristics and function in the BM niche. In murine BM, MSCs occupy
specific anatomic positions defined as endosteal and vascular niche [5,45]. In particular, MSCs localize
in the endosteal niche, lining the bone surface and physically interacting with both osteoblasts and
HSPCs [6,46,47]. Endosteal MSCs represent a source of osteoprogenitors and indirectly contribute to
osteogenesis by secreting several growth factors and cytokines [48]. It has been shown that MSCs
enhance bone regeneration [49] and mediate the capacity of parathyroid hormone to expand the
osteoblast population, which, in turn, facilitates the expansion of primitive HSPCs through the secretion
of several hematopoietic growth factors (granulocyte colony-forming factor, angiopoietin, interleukin
6 CXCL12) and the activation of Notch signaling [50,51].

In the vascular niche, MSCs are associated with blood vessels in a perivascular position, regulating
HSPCs homeostasis by direct interaction with HSPCs or in a paracrine manner through the secretion
of hematopoietic supportive factors [52,53]. Murine Nestin+ MSCs have been first described as
perivascular MSCs closely in contact with HSPCs. These cells are associated with blood vessels of
the central marrow and are present at a lower frequency, in the endosteum. They are also in contact
with adrenergic nerve fibers of the sympathetic nervous system, known to play an important role in
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regulating HSPC mobilization. Importantly, they express several HSPC maintenance factors, such as
CXCL12, stem cell factor (SCF), angiopoietin-1, IL-7, vascular cell adhesion molecule 1 (VCAM1) [6,54].

Interestingly, Nestin+ MSCs show several similarities to recently identified CXCL12-abundant
reticular cells (CAR) [55]. CAR cells are also associated with sinusoidal endothelium; they have a
morphology similar to vascular pericytes and sustain the maintenance of primitive HSPCs [56,57]. The
reduction of the HSPC pool upon short-term ablation of CAR cells highlights the fundamental role of
CAR cells in sustaining primitive HSPCs in a mouse model. In addition, the absence of CAR cells causes
the upregulation of PU.1 in HSPCs and their commitment towards the myeloid lineage [58]. However,
Nestin+ cells are considered a more primitive MSC population, since they are less abundant than
CAR cells, show a higher clonogenic capacity, self-renewal activity, and differentiation potential [59].
These results sustain the concept of the BM stroma composed of different MSC subpopulations,
localized in specific interconnected areas, which allows the crosstalk among different types of cells and
molecular signaling.

Similarly, in the human BM niche, MSCs are localized in the endosteum and around the sinusoidal
vessels [12]. Despite the study of the human BM niche, it is challenged by their difficult accessibility;
different subpopulations of MSCs have been identified in vivo based on the expression of CD146
(MCAM), CD271 (Nerve Growth Factor Receptor), Stro-1, and stage-specific embryonic antigen-4
(SSEA-4) markers. CD271 is expressed by bone lining MSCs proximal to the surface of trabecular bone.
CD271+ MSCs show a robust clonogenic capacity with an increased proliferation potential and ability
to differentiate into mesodermal tissues compared to the CD271 negative MSCs [16]. Transcriptional
analysis of CD271+ MSCs sorted from the BM confirmed enhanced expression of extracellular matrix and
cell adhesion genes and increased levels of early osteogenesis/chondrogenesis/adipogenesis genes [18].
CD271+ MSCs have been shown to have enhanced capability in promoting HSPC engraftment [17].
However, the majority of CD271+ MSCs do not co-express CD90 and CD73, two of the markers
included in the minimal criteria used to define ex-vivo expanded MSCs, according to the International
Society for Cellular Therapy position paper [3]. For this reason, CD271+ expression is not an adequate
marker to prospectively isolate bonafide MSCs from BM samples, although it is not clear whether
the expression of CD90, CD73, and CD105 represents an in vitro artifact. Preliminary data obtained
in our laboratory demonstrate the existence of a rare population of cells positive for CD90, CD73,
CD105 in the CD34 negative fraction of BM aspirates. Moreover, CD271 shows different expression
levels among various MSC subsets, and it is not universally expressed in MSCs derived from different
tissues, suggesting that this marker is not sufficient to prospectively isolate MSCs [8,60]. For this
reason, low/negative expression of PDGFR-α has been combined with CD271 expression to identify the
candidate primary MSCs within the CD45−CD271+ cell population [13]. CD146+ MSCs are localized
around the sinusoidal vessels similar to pericytes, show high clonogenic capacity, and are able to
re-establish the hematopoietic microenvironment when transplanted into xenograft models [11,61].
CD146 expression also defines MSCs with higher multipotency [62]. Importantly, CD146 expression
differentiates between perivascular and endosteal localization of MSCs. Evidence to date suggests that
CD271+ and CD271+/CD146-/low MSCs are bone-lining cells associated with long-term (LT)-HSPCs
in low oxygen areas, whereas CD146+ and CD271+/CD146+ are located around BM sinusoids in
association with proliferating HSPCs. In both regions, HSPCs are located close to MSCs [12], which
control their fate by secreting specific factors or by regulating the activity of the other niche components
(Figure 1).

The use of Stro-1 and SSEA-4 as MSC markers is more debated. Stro-1 has been used in
combination with negative selection for glycophorin-A to isolate highly clonogenic and multipotent
MSCs from the BM [63]. However, in vivo studies demonstrated that Stro-1 negative MSCs support
HSPCs engraftment in NOD/SCID mice [64]. SSEA-4 identifies a subpopulation of MSCs with high
proliferation capacity, capable of differentiating into osteoblasts [65]. Nonetheless, other studies have
demonstrated that SSEA-4 expression is an in vitro artifact due to serum exposure [66].
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In light of these data, a deeper biological characterization of human BM-MSC subpopulations is
required to better clarify their localization within the niche, the expression of specific surface markers
for their prospective isolation, and their interaction with HSPCs. In this sense, the development
of humanized niche models represents a powerful tool to dissect the hematopoietic supportive
function of different MSC subpopulations in vivo within a microenvironment mimicking the human
situation [67,68].

3. MSCs in the Clinical Use

Thanks to their biological and functional properties, MSCs have emerged as a new therapeutic
strategy for a wide range of clinical conditions. In particular, MSCs provide support to HSPCs in the BM
niche and display potent inflammatory sensing capacities and immunomodulatory functions. Indeed,
MSCs have been shown to interact and regulate the activity of innate and adaptive immune cells,
despite several differences existing according to MSCs’ tissue sources [69]. In particular, MSCs are able
to inhibit B-, T-, and natural killer (NK)-cell proliferation by direct interaction and through the release
of soluble molecules, such as transforming growth factor (TGF)-β1 [70], indoleamine 2,3-dioxygenase
(IDO) [71], prostaglandin E2 (PGE2) [72], which induces immune cells to arrest in G0, preventing
their expansion. Besides, MSCs control T-cell activation inhibiting the production and secretion of
inflammatory cytokines, and prevent the activation and maturation of dendritic cells [73]. Based on
these properties, MSCs are considered an attractive “tool” to manage immune-mediated disorders,
such as Graft-versus-Host-Disease (GvHD), a complication arising in patients undergoing allogeneic
HSCT and associated with a high mortality rate. In 2004, Le Blanc first demonstrated in a seminal case
report that the intravenous infusion of ex-vivo expanded BM-derived MSCs can effectively control
manifestations of steroid-resistant, acute GvHD, in an allogeneic context. In the following Phase II trial,
of the 55 patients treated with third-party donor MSCs for acute GvHD following allogeneic HSCT, 30
had a complete remission, and nine showed partial improvement. Indeed, these data demonstrate
that MSCs might be a safe and effective treatment for patients suffering from acute GvHD who do not
respond to standard immunosuppressive therapies [74]. Hereafter, other Phase II clinical trials have
confirmed these results in terms of safety and efficacy of third-party donor MSC administration in the
GvHD setting, suggesting that the timing of MSC infusions is critical to increasing their effectiveness
and that the inflammatory state in the patients plays a fundamental role in the immunoregulatory
activity of MSCs [75]. For these reasons, a precocious infusion after GvHD development and multiple
administrations have been suggested as the best options for successful control of the disease [76].
Concerning chronic GvHD, the impact of MSC infusion is still debated, although combining MSCs and
immunosuppressive therapies may be a safe and effective therapeutic option [77].

In addition to immunoregulatory functions, MSCs are known to promote and support HSPC
engraftment. In vitro MSCs enhance the expansion and maintenance of HSPCs [78], whereas they
promote long-term engraftment when co-transplanted with HSCPs in different animal models [79–81].
The molecular mechanism underlying the supportive effect of MSCs on HSC engraftment is still
controversial. However, the capacity of MSCs to reduce inflammation in the BM niche and support
HSPCs by secreting soluble factors render MSCs an attractive tool to ameliorate transplantation
outcomes [82]. Indeed, conditioning regimens based on radiotherapy and chemotherapy administered
before HSCT may profoundly affect the BM microenvironment, thus delaying hematopoietic
reconstitution. MSCs have been co-infused with HSPCs in Phase I/II clinical trials with the aim
of facilitating hematopoietic engraftment and reducing the risk of graft rejection, demonstrating
its safety and efficacy [41,82]. Taking advantage of their hematopoietic supportive function, MSCs
have been exploited to enhance HSPC expansion in vitro before HSCT with umbilical cord blood
(UCB)-derived cells resulting in faster neutrophil and platelet recovery [42,43]. The use of MSCs is
intended to mimic the stromal compartment of the BM niche by providing supportive factors for
HSPC expansion and maintenance. Although MSCs have been demonstrated to preserve and support
HSPC proliferation been through co-culture systems [42,83], differences may exist according to the
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source of MSCs. For example, placenta-derived MSCs have been reported to be a better feeder than
UCB-derived MSCs, as they could maintain HSPCs in a more primitive state [84].

MSCs have also exploited clinically in the field of Regenerative Medicine, considering their ability
to differentiate into bone and chondrocytes, especially when combined with biomaterial scaffolds.
Scaffold employment and stimulating factors, such as BMP-2, are generally used to promote successful
osteoblast differentiation for the regeneration of skeletal tissues [85]. Use of MSCs to repair damaged
cartilage and other tissues, such as tendons, ligaments, and intervertebral discs, represents a novel
and promising therapeutic strategy, especially for those tissues with avascular nature [86,87]. MSCs
have been also employed for the regeneration of the central nervous system (CNS), heart and liver,
cornea, and trachea [88]. In these cases, MSCs are thought to promote regeneration by secreting
paracrine factors, despite there is no clear explanation. However, recent studies suggest that the main
driving force behind the therapeutic efficacy of MSCs is the paracrine factors secreted by these cells and
propose the administration of MSC-conditioned media for regenerative medicine applications [89]. In
particular, MSCs have been demonstrated to provide beneficial effects in the treatment of neurological
diseases, such as Parkinson [90], ischemic stroke [91], and multiple sclerosis [92]. Also, MSCs have
been tested to promote- myocardium and liver regeneration.

In conclusion, MSCs are emerging as a promising strategy for cellular-based therapies in the context
of inflammatory and immune-mediated diseases thanks to their ability to modulate inflammatory
responses and immune cells. In the field of HSCT, MSCs have been extensively studied for their capacity
to sustain HSPC and facilitate their engraftment. These properties have been exploited both in vitro
in expansion strategies and in vivo in co-infusion approaches with the final goal to optimize HSCT
outcome. Finally, the ability to differentiate and release growth factors in a damaged microenvironment
render MSCs a valid tool for tissue regeneration. However, further pre-clinical studies and clinical
trials are required to better elucidate the molecular mechanisms responsible for the therapeutic efficacy
of MSCs. Furthermore, it must be taken into account that manufacturing MSCs in vitro, before
administration, may affect some of their biological characteristics. The culture conditions should be
refined and optimized to preserve primary MSC biological and functional properties and to minimize
culture-induced alterations [93–95].

4. MSCs in Hematological Malignancies

In recent years an active role of the BM niche is emerging in the pathogenesis of human
hematological malignancies. In particular, alterations in the mesenchymal compartment have been
described to support the expansion and survival of leukemic stem cells (LSCs). The abnormal activity
of MSCs is mainly caused by tumorigenic signals, which render the BM stroma immunologically
tolerant to tumor growth and instruct MSCs to sustain LSCs at the expense of normal hematopoiesis.
Several studies observed a reduced proliferative capacity of MSCs isolated from BM samples of
patients affected by different hematological malignancies. In particular, it has been reported that
MSCs derived from acute myeloid leukemia (AML) patients have a reduced capacity to form CFU-Fs,
with a failure of 25% in MSCs isolation, and a lower population doubling compared to healthy
controls [96]. AML-MSCs display an abnormal adipogenic potential [97], together with impaired
osteogenic capacity and a diminished capacity to support CD34+ HSPCs [98]. In line with these
observations, a genome-wide analysis of AML-MSCs confirmed reduced expression of hematopoietic
supportive genes, including KIT ligand (KITLG), thrombopoietin (THPO), and angiopoietin (ANGPT1),
associated with a reduced proliferation capacity and a perivascular signature of leukemic MSCs [99].
This defect was associated with an altered methylation profile of AML-MSCs, which impaired the
expression of several genes fundamental in the BM niche. For instance, reduced expression of KITLG
and overexpression of jagged canonical Notch ligand 1 (JAG1) in AML-MSCs was reported to favor
BM niche support to LSCs. In particular, NOTCH/JAG1 signaling resulted in playing a fundamental
role in MSC-dependent control of tumor initiation, growth, and chemoresistance. JAG1 overexpression
has been shown to induce AML in mice [100], whereas NOTCH1, JAG1, and the main Notch target
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gene HES1 are overexpressed in AML-MSCs thus promoting survival of tumor cells exposed to
chemotherapeutic agents [101] (Figure 2). Several studies have demonstrated that the tumor BM
milieu is sufficient to convert a healthy BM stroma into a tumor supporting microenvironment. For
example, the exposure of healthy donor MSCs to AML-MSC conditioned medium is sufficient to
decrease MSC proliferation and osteogenic differentiation [98]. Other studies reported an increased
immunosuppressive/anti-inflammatory potential in AML-MSCs compared to controls. In particular,
IL-10 secretion by AML-MSCs resulted in correlating directly with overall patient survival [102,103].
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Figure 2. Representative image describing the role of the NOTCH/JAG1 pathway in AML-MSCs
of a model describing MSCs in human BM niche. NOTCH/JAG1 signaling plays a fundamental
role in the MSC-dependent control of tumor initiation, growth, and chemoresistance. NOTCH1,
JAG1, and HES1 are overexpressed in AML-MSCs, promoting survival of tumor cells treated with
chemotherapeutic agents. Abbreviations: NOTCH—Notch Homolog 1, Translocation-Associated;
JAG1—of jagged canonical Notch ligand 1; AML-MSCs—acute myeloid leukemia derived mesenchymal
stroma cells; MSC—mesenchymal stromal cells; BM—bone marrow; HES1—hairy and enhancer of split
1; KITLG—KIT ligand; LSCs—leukemic stem cells; HSPCs—hematopoietic stem and progenitor cells.

Similar to AML-MSCs, MSCs isolated from myelodysplastic (MDS) patients show a reduced
proliferation rate [96]. Several pieces of evidence suggest a fundamental role of MSCs in the initiation
of MDS in aged patients. Indeed, aged MSCs undergo replicative senescence and activate a specific
senescence secretome in response to stress signals, including abnormal mitogenic signals, oxidative
and genotoxic stress [104,105]. Among these secreted factors, several inflammatory cytokines sustain
chronic inflammation, which could initiate and sustain cancer progression [106,107]. MDS-MSCs
display in vitro several senescence features, including large, flat, and granular morphology, impaired
proliferation, and increased β-galactosidase expression [108,109]. MSD-MSCs undergo premature
cell-cycle arrest due to a significant upregulation of cyclin-dependent kinase inhibitor 2B (CDKN2B)
compared to healthy counterparts, highlighting a possible role of MSCs in the control of tumor growth.
Moreover, MDS-MSCs has been shown to support LSC expansion by different mechanisms specifically.
These cells produce high levels of IL-6, which may modify HSPC biology. Indeed, from one side,
IL-6 may induce HSPCs differentiation to the detriment of self-renewal, and, from the other side,
it might increase LSC proliferation. Thus, MSCs, or better, dysfunctional MSCs, may affect cancer
microenvironment [110]. Similarly, MDS cells proliferate to a greater extent on MDS-MSCs compared
to normal MSCs. This is due to the downregulation of metalloproteinase 1 (MMP1), which renders
MDS-MSCs unable to induce apoptosis in cancer cells [111]. Moreover, it has been shown that the
expression of several hematopoietic supportive factors was reduced in MDS-MSCs, including KITLG
and Angiopoietin-1. This results in a diminished cell cycle activity of HSPCs cultured on MDS-MSCs,
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highlighting that impaired stromal support contributes to ineffective hematopoiesis [98,112,113].
Moreover, several studies demonstrated an altered immunomodulatory function of MDS-MSCs,
affecting tumor immune surveillance [114]. Evidence to date suggests that MSCs from neoplastic
niche are educated to polarize macrophage toward an M2, anti-inflammatory, phenotype and they are
responsible for increase Treg through the secretion of indoleamine 2,3-dioxygenase (IDO). In addition,
MDS-MSCs have been shown to inhibit dendritic cell maturation and alter their functions, including
endocytosis, IL-12 secretion, their ability to inhibit T cell proliferation. [115–117]. In this light, BM
stroma contributes to the creation of a protective and immune-tolerant microenvironment capable of
supporting the survival of leukemic cells and affect the response to therapies.

MSCs have also been isolated and characterized from BM samples of patients affected by acute
lymphoblastic leukemia (ALL). ALL-MSCs isolated from children at different times in the course
of the disease show reduced proliferation, increased adipogenic capacity, and impaired supportive
function when co-cultured with HSPCs [118]. ALL-MSCs show a significantly higher level of
pro-inflammatory cytokines, including IL-8 and CXCL2 [119], and express α-smooth muscle actin,
linked with cancer-associated fibroblasts that contribute to the acquisition of invasive phenotypes
(CAFs) [120].

The dysregulation of BM stroma is mainly the result of extensive crosstalk between cancer cells
and MSCs. However, a novel concept highlighting the primary role of MSCs in tumor initiation is
emerging. In particular, it has been shown that primary stroma alterations can induce a malignant
transformation of the hematopoietic compartment in different mouse models. In the first model, the
deletion of Dicer1 in mouse osteoprogenitors impairs osteogenic differentiation and causes ineffective
hematopoiesis with myelodysplasia [121]. Malignant cells acquire several genetic abnormalities while
having intact Dicer1. Importantly, myelodysplasia is environmentally induced. When wild-type BM is
transplanted into mutant mice or control mice, mutant recipients develop signs of myelodysplasia.
Similarly, Dicer null osteoprogenitors induce abnormal modification of HSPCs in vitro. Dicer1 deletion
is associated with reduced expression of the ribosome maturation factor Shwachman-Bodian-Diamond
Syndrom (SBDS), encoded by the gene mutated in Schwachman–Bodian–Diamond syndrome, a human
BM failure, and leukemia pre-disposition condition. Importantly, decreased expression of Dicer1 was
detected in MSC-derived osteoprogenitors from myelodysplastic syndrome (MDS) patients, along
with a reduction of the SBDS gene [122]. Similarly, conditional loss of nuclear factor kappa B (NFkB)
inhibitor in stromal cells causes upregulation of JaG1/Notch signaling in HSPCs, resulting in a disorder
similar to chronic myelomonocytic leukemia (CMML). On the contrary, constitutive activation of the
NFkB pathway in myeloid cells does not recapitulate in a cell-autonomous manner the leukemia
phenotype, clearly indicating that the malignant transformation of hematopoietic cells is initiated by
BM stroma [123]. Increased expression of Notch1 and Jagged1 has been observed in cell lines from
patients with AML [124]. Moreover, the deletion of the Retinoic Acid Receptor γ (RARγ) in mice
resulted in a chronic myeloproliferative disorder. Transplant studies revealed that RARγ-hematopoietic
cells functioned normally when transplanted into normal mice. However, transplantation of normal
hematopoietic cells into the RARγ-microenvironment resulted in a myeloproliferative disorder in the
transplanted cells, revealing the capability of the microenvironment to be the only cause of hematopoietic
disorders [125]. Finally, the inactivation of the retinoblastoma (RB) gene in the hematopoietic system
induces myeloproliferation, which is due to the mobilization and differentiation of HSPCs from the
BM. HSPC homeostasis is preserved when mutated HSPCs are transplanted into wild-type recipients,
highlighting an RB-dependent interaction between BM stroma and HSPCs as causative of malignant
transformation. Importantly, a mutation in the retinoblastoma (RB) pathway has been described in a
vast majority of multiple myeloma (MM) cases [126], which is the best-studied example demonstrating
that the interaction of hematopoietic cells, in this case, B cells, and the BM microenvironment is a
major contributor to disease [127,128]. In particular, myeloma cells directly interact with BM stroma or
extracellular matrix through various adhesion molecules that lead to the activation of proliferation
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and anti-apoptotic pathways. On the other side, these interactions trigger the stromal compartment to
release a variety of cytokines that support tumor cell growth.

In conclusion, MSCs represent a key component of the BM niche regulating HSPC homeostasis.
Several works have described specific alterations of MSC functional characteristics in hematological
malignancies that in the majority of the cases, are induced by tumor cells. Primary alterations in the BM
stroma have also been described and demonstrated to be sufficient to initiate malignant transformation.

5. Targeting BM Stroma: A Novel Therapeutic Approach to Treat Hematological Malignancies

Considering the emerging active role of the BM microenvironment in the pathogenesis of
hematological malignancies, the possibility to target the BM niche to contribute to the eradication
of the disease has been evaluated in several clinical trials as an adjuvant treatment (Figure 3). One
of the best representative cases is the use of Denosumab, a monoclonal antibody inhibiting receptor
activator of nuclear factor-kappa-B ligand (RANKL) in multiple myeloma (MM) patients. RANKL
expression is increased in MSCs of patients affected by MM, altering the normal balance of bone
formation/reabsorption that is the cause of osteolytic lesions, bone pain, and related pathological
fractures [129,130]. Several clinical trials demonstrated that Denosumab is capable of ameliorating bone
disease in MM [131,132] and was associated with prolonged survival of treated patients, confirming
an active role of BM stroma in the progression of the pathology [133]. The use of Dickkopf-related
protein 1 (DKK-1) antagonist has been studied for their ability to restore osteoprogenitor function and
prevent osteolytic bone lesions [134]. DKK1- plays an important role in MM-induced osteolysis by
inhibiting osteoblast differentiation [135]. Besides, a key role of IGF1 in skeletal lesions formation has
been described in MM patients [136]. The administration of small insulin growth factor-1 receptor
(IGF-1R) inhibitors blocks the interaction of IGF1 released by BM stroma and tumor cells, causing a
dose-dependent inhibition of cell proliferation and induction of cell death (Figure 3). Importantly, the
altered balance of bone formation/bone resorption is not only the cause of bone lesions but also induces
the release of proliferation/pro-survival factors from the BM stroma, which favor malignant cells at
the dispense of HSPCs, favoring cancer progression [137]. For instance, the release of tumor necrosis
factor-α (TNF-α) induces a change in the adhesion molecule profile of MM cells, which become more
adherent to the BM niche displacing normal HSPCs [138]. This mechanism guarantees a higher level
of protection from differentiation signaling and chemotherapeutic agents [139,140]. In this view, the
VLA4-CD44 axes have been shown to increase the adhesion of cancer cells to MSCs and facilitate
drug efflux [141]. Similarly, overexpression of N-cadherin mediates the adhesion of malignant cells
to MSCs by increasing the number of N-cadherin-β-catenin complexes that promote the activation
of Wnt signaling, mediating the resistance against tyrosine kinase [142]. An active form of TGF-β is
released upon bone remodeling, increasing the production of IL-6 in MSCs and tumor cells, which plays
an essential role in promoting cancer progression [143,144]. The upregulation of C-X-C chemokine
receptor type 4 (CXCR4) is another strategy adopted by cancer cells to find protection within the
BM niche. Indeed, CXCR4-CXCL12 interaction is one of the best-studied players in the cross-talk
between cancer cells and BM-MSCs. CXCR4 has been shown to be overexpressed in several types of
hematological malignancies, conferring an increased capacity of LSCs to seed in the BM niche where
the microenvironmental conditions are more conducive to cell proliferation and viability [145–147].
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Denosumab reduces osteolytic lesions by inhibiting the RANK–RANKL pathway (1). The mobilization of
leukemic stem cells by plerixafor increase the efficacy of chemotherapy (2). Inhibition of DKK-1 prevents
bone damage by inducing osteoblast differentiation (3). Inhibition of IGF1-R blocks the proliferation
cascade activated by IGF1 released by osteoblast and tumor cells (4). Abbreviations: RANK—receptor
activator of nuclear factor-kappa-B ligand; RANKL—RANK ligand; DKK-1—Dickkopf-related protein
1; IGF1—insulin growth factor 1; IGF1-R—IGF1 receptor; BM—bone marrow; HD-MSCs—healthy
donor-derived mesenchymal stromal cells; MM-MSCs—multiple myeloma-derived mesenchymal
stromal cells.

Therefore, there are several levels of intervention to modulate the interaction of tumor cells with
the BM stroma and reach a therapeutic effect. For instance, blocking CXCL12 binding to CXCR4
with the use of plerixafor (AMD3100) renders MM cells more susceptible to chemotherapeutic drugs
through their mobilization into the circulation [148]. Similarly, several monoclonal antibodies against
cell adhesion molecules (such as integrins) have been successfully evaluated pre-clinically to mobilize
malignant cells from the BM [149]. Several drugs have been developed to neutralize the effect of
IL-6 [150]. Conventional agents, such as INF-γ and all-trans retinoic acid (ATRA), has been shown to
inhibit MM cell growth [151,152]. More recently, histone deacetylase (HDAC) inhibitors have been
used to suppress the stromal production of IL-6 in co-culture models of MM cells and BM-derived
MSCs [153,154].

Overall, these results support the central role of the BM stroma in the pathogenesis and progression
of cancer. Considering that HSCT is curative in many of the disorders under discussion, a proper
correction of tumor BM stroma is emerging as a strategy to ameliorate transplantation outcomes.
Indeed, stromal cells remain of host origin after transplantation [155]. There have been reports of
patients who are unable to achieve engraftment despite numerous attempts at HSCT [156], as well as
cases in which leukemia arises after transplantation in donor cells [157–159] and one may speculate
that these patients represent groups that do indeed have an underlying stromal defect which may
benefit from targeted correction.

6. MSCs in Rare Genetic Diseases

The concept of a properly functional BM niche as a key requirement for the outcome of HSPC
transplantation could be extended to all those diseases for which this procedure is indicated as a
curative option, including a wide variety of rare genetic diseases, ranging from defects in the immune
system, HSPC functionality, or metabolic diseases. In this sense, profound knowledge of BM stroma
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biology is fundamental for the optimization of transplantation strategies, especially in the context of
HSC-GT, where the relationship between HSPCs and the stroma may influence harvest and behavior
in culture, as well as HSC engraftment kinetics after gene modification. Indeed, the functionality of
HSPCs could be affected by the diseased microenvironment, and, on the other side, the diseased niche
could have a reduced capacity to sustain the engraftment of gene-corrected HSPCs [160–163].

In support of this hypothesis, different studies have highlighted specific alterations in the
MSCs isolated from the BM samples of patients affected by genetic disorders that are treated with
(hematopoietic stem progenitor cell transplantation (HSPCT) or HSC-GT. These results evidence the
need for novel strategies to correct the BM niche before or during transplantation and the development of
biological conditioning to avoid further damage of the BM stroma to improve transplantation protocols,
by sparing their supporting niche [164,165]. In particular, MSCs have been isolated and characterized
from pediatric patients affected by primary immune-deficiencies (PIDs) and undergoing HSCT or
HSC-GT. Despite the fact that primary immunodeficiencies-mesenchymal stromal cells (PID-MSCs) do
not display any alterations in terms of proliferation, differentiation, expression of MSC surface markers,
the immunomodulatory capacity of PID-MSCs is altered compared to age-matched controls [166,167].
In particular, MSCs isolated from ADA-SCID, Wiskott–Aldrich Syndrome, Chronic Granulomatous
Disease, and other SCID patients showed decreased inhibitory effect on T-cell proliferation. This is
accompanied by a dysregulated production of pro- and anti-inflammatory cytokines. Alterations have
also been observed in B-cell inhibition and maturation in the presence of PID-MSCs. On the other hand,
priming of PID-MSCs with Toll-like receptor (TLR)3 and TLR4 evidence defects in the production of
immunoregulatory molecules [167]. These data highlight defects in the immunoregulatory properties
of PID-MSCs, which may be exhausted due to frequent, ongoing infections and extensive inflammation
characteristic of PID patients (Figure 4). Importantly, from a clinical view, the altered secretory profile
of PID-MSCs could impair their capacity to support gene-corrected HSPCs after gene therapy (GT).
Indeed, a decreased functional activity and tendency to differentiation and exhaustion of HSPCs have
been demonstrated in CGD patients [168].
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Figure 4. Representative pictures of pathological BM niches in PIDs. MSCs derived from primary
immune-deficient (PIDs) patients, suffering from frequent infection and extensive inflammation, which
compromises the capacity of MSCs to control T cell proliferation and alters their immunoregulatory
profile. Abbreviations: BM—bone marrow; PID—primary immunodeficiencies; MSCs—mesenchymal
stromal cells; TLR—Toll-like receptor.

MSCs have also been isolated from the BM aspirates of Mucopolysaccharidosis type I Hurler
(MPSIH) patients, where the intracellular accumulation of glycosaminoglycans (GAGs) causes
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multiorgan dysfunction, including skeletal defects [169]. Considering the fundamental role of
bone remodeling in support of HSPC homeostasis [5], the capability of MPSIH-MSCs to differentiate
into functional osteoblasts has been evaluated in vitro and in vivo. Although MPSIH-MSCs can
differentiate into osteoblasts, an unbalanced bone remodeling status has been noticed; indeed, an
upregulation of RANKL/RANK/OPG (osteoprotegerin) has been found in patient-derived MSCs
compared to controls, indicating increased ability to support osteoclastogenesis [170] (Figure 5). An
extensive characterization of HSPCs in MPSIH patients is missing and may highlight possible defects
in HSPC homeostasis, taking into consideration that osteoclasts play a fundamental role in HSPC
mobilization and other functions [171–173]. An important aspect to be considered is that the extensive
ex vivo culture of MPSIH-MSCs may change their functional characteristics, reducing the extent of the
functional defects [30]. The culture of MSCs in conditions of glycosaminoglycans (GAGs) overload may
represent a valid strategy to reproduce in vitro the pathological conditions of the MPSIH BM niche.
Following this hypothesis, MSCs isolated from BM samples of transfusion-dependent β-thalassemia
(BT) patients have been exposed in vitro to iron to study their antioxidant response in a condition
mimicking the iron overload state of the BM niche. BT-MSCs show an impaired clonogenic capacity,
reduced proliferation rate, and altered differentiation potential. A condition of iron overload has
been identified in the BM niche of BT patients causing a significant upregulation of ROS level in
BT-MSCs. The exposure of BT-MSCs to increasing doses of iron revealed an inappropriate antioxidant
response, which is responsible for the pauperization of the most primitive MSC fraction [174]. In
addition, β-thalassemia-mesenchymal stromal cells (BT-MSCs) express lower level of hematopoietic
supportive factors compared to controls, that negatively affect their ability to attract HSPCs in vitro, to
sustain HSPC expansion and primitive phenotype in 2D co-culture model, to favor HSPC engraftment
and immunological reconstitution in xenogenic transplant models, and to form a proper BM niche
in vivo [174] (Figure 6). These results highlight a profound defect in the BM niche of BT patients, which
may explain the increased risk of graft rejection and mixed chimerism observed after HSTC [175,176]
and prove the need to treat the BM niche with the aim of reducing oxidative stress, thus potentially
ameliorating transplantation outcome.
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upregulation of RANKL/RANK/OPG pathway causes unbalanced bone remodeling. Abbreviations:
BM—bone marrow; MPSIH-MSCs—Mucopolysaccharidosis type I Hurler–derived mesenchymal
stroma cells; RANK—receptor activator of nuclear factor-kappa-B ligand; RANKL—RANK
ligand; OPG—osteoprotegerin.
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Oxygen Species (ROS), which causes a pauperization of the primitive MSC pool and alters the MSC
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In light of these studies, the use of MSCs in co-transplantation strategies in the clinical setting
to facilitate the engraftment of HSPCs [41,177] and to promote the rescue of the resident stromal
compartment may be evaluated in some pathologies. Indeed, considering the disease-specific defects
observed in patient-derived MSCs, co-administration of third-party, healthy donor-derived MSCs is to
be preferred in co-transplantation settings [178]. In conclusion, recent data show specific alterations
in the mesenchymal compartment of patients affected by rare genetic disorders and evidence the
need to investigate the functional properties of diseased MSCs, to restore a proper microenvironment
supporting HSPC engraftment and long-term hematopoiesis, with the final goal to improve the efficacy
of HSC transplantation.

7. Conclusions

HSCT is an available curative option for several hematological malignant and nonmalignant
disorders, including genetic diseases. A proper functional bone marrow niche is a fundamental
requirement to guarantee an efficient HSC engraftment and hematological reconstitution. The
co-infusion of MSCs has emerged as a feasible and safe therapeutic strategy to improve the HSCT
outcome. Indeed, MSCs have been shown to support the engraftment of transplanted HSCs reducing
the risk of graft failure by secreting soluble factors, and limiting the risk of GvHD thanks to their
anti-inflammatory properties. However, several alterations of the stromal compartment have been
described in malignant and nonmalignant diseases, which compromises MSC biological characteristics
and hematopoietic supportive capacity. These findings have important implications for the clinical
practice of HSCT. First, they suggest that BM stromal compartment associated defects may contribute to
the reduced HSC engraftment leading to graft failure in some specific diseases, such as beta-thalassemia
or other hematological disorders. Moreover, considering that the BM stroma plays a central role in the
control of HSC homeostasis, the altered functionality of MSCs may negatively affect the hematopoietic
dynamics of HSCPs following transplantation. Several cases also report that BM stroma contributes to
hematological disease-relapse in donor cells after transplantation for malignant disorders by modifying
the BM microenvironment in support of tumor cells. All these observations highlight the need to
deeply study the BM microenvironment with the aim to restore the proper signaling to support
HSPC engraftment and long-term hematopoiesis, improving the efficacy of HSC transplantation.
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Furthermore, considering the impaired function of MSCs in some specific diseased contexts, the
co-administration of allogeneic, HD-derived MSCs is to be preferred in co-transplantation settings
with the aim to ameliorate HSC engraftment in patients.
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