
Frontiers in Immunology | www.frontiersin.

Edited by:
Soman Ninan Abraham,

Duke University, United States

Reviewed by:
Paras K. Anand,

Imperial College London,
United Kingdom

Carlos Muñoz-Garay,
Universidad Nacional Autónoma
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Mast cells are potent immune sensors of the tissue microenvironment. Within seconds of
activation, they release various preformed biologically active products and initiate the
process of de novo synthesis of cytokines, chemokines, and other inflammatory
mediators. This process is regulated at multiple levels. Besides the extensively studied
IgE and IgG receptors, toll-like receptors, MRGPR, and other protein receptor signaling
pathways, there is a critical activation pathway based on cholesterol-dependent, pore-
forming cytolytic exotoxins produced by Gram-positive bacterial pathogens. This pathway
is initiated by binding the exotoxins to the cholesterol-rich membrane, followed by their
dimerization, multimerization, pre-pore formation, and pore formation. At low sublytic
concentrations, the exotoxins induce mast cell activation, including degranulation,
intracellular calcium concentration changes, and transcriptional activation, resulting in
production of cytokines and other inflammatory mediators. Higher toxin concentrations
lead to cell death. Similar activation events are observed when mast cells are exposed to
sublytic concentrations of saponins or some other compounds interfering with the
membrane integrity. We review the molecular mechanisms of mast cell activation by
pore-forming bacterial exotoxins, and other compounds inducing cholesterol-dependent
plasma membrane perturbations. We discuss the importance of these signaling pathways
in innate and acquired immunity.

Keywords: mast cell, cholesterol-dependent cytolysins, pore-forming toxins, Ca2+ signaling, cytokine production,
streptolysin O, pneumolysin, listeriolysin O
INTRODUCTION

Mast cells are critical initial players in innate and acquired immunity and, in this way, ultimately
influence the outcome of various diseases. They are dispersed throughout the body tissues, but most
abundantly are found at host-environment interfaces such as the skin, respiratory tract, and oral/
gastrointestinal mucosa, suggesting their role as sentinels of infection. Mast cells share some features
with other immune effector cells, such as basophils, macrophages, and neutrophils. However, they
differ by their unique interactions with blood vessels and capacity to rapidly, within seconds and
minutes, release an extensive set of inflammatory mediators such as histamine, proteases, lipid
mediators, cytokines, and chemokines. Like other cell types of the immune system, mast cells
communicate with their environment predominantly via surface receptors recognizing various
org June 2021 | Volume 12 | Article 6702051
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soluble or membrane-bound ligands. Depending on mast cell
location and the overall context, mast cell activation leads to
activation of multiple immune effector mechanisms, cell
differentiation, chemotaxis, or inhibition of ongoing immune
reactions. Various mast cell immune functions have been
summarized in several reviews (1–5).

Mast cells can be activated by engagement of various plasma
membrane receptors. The most studied receptor on the surface of
mast cells is the high-affinity IgE receptor (FcϵRI) associated with
the mast cells’ role in pathological conditions such as allergy,
anaphylaxis, and asthma. Besides FcϵRI, many other surface
receptors recognize a variety of soluble or membrane-bound
ligands that tightly upregulate or downregulate mast cell
responsiveness. Extensively studied are pattern recognition
receptors such as Toll-like receptors (TLRs), which are
activated in response to conserved pathogen-associated
molecular patterns (6, 7), and the Mas-related G protein-
coupled receptor (Mrgpr) family, especially Mrgprb2 in the
mouse and its human ortholog MRGPRX2 (8–10). Many other
receptors present on the mast cell surface have been covered in
numerous reviews (2, 4, 5, 11). Some of the plasma membrane
receptors allow the innate system to identify invading bacteria
and even viruses by their expression of pathogen-associated
molecular patterns and allow mast cells to directly respond to
bacteria by degranulation and production of de novo synthesized
proinflammatory and anti-inflammatory products (3, 12–17).
Thus, there is an intricate network of surface receptors and
regulatory proteins that can either induce mast cell activation or
inhibit mast cell signaling.

There is a widespread notion that mast cells are part of the
antimicrobial host defense. This is based on experiments
showing that mast cell-deficient mice are more sensitive to
bacterial infection than WT mice (13, 18–20). In experiments
with Listeria monocytogenes, mast cell-deficient mice showed
approximately hundred-fold higher bacterial burden and
significantly impaired neutrophil mobilization when compared
to control mice. Although bacteria bound to mast cells triggered
degranulation, their phagocytosis was negligible. Thus, mast cells
Frontiers in Immunology | www.frontiersin.org 2
control bacterial infection not through bacterial uptake, but by
activation and rapid degranulation associated with the release of
pre-synthesized pro-inflammatory mediators, cytokines and
chemokines, which cause influx of other immune cells, mainly
neutrophils, to the site of infection. Once recruited, neutrophils
not only phagocytose and destroy bacteria, but also become
activated and secrete inflammatory mediators, hence amplifying
the anti-bacterial inflammatory response (21). Other studies
showed that animals lacking mast cells or mast cell signaling
molecules respond differentially to bacterial infection when
compared with wild type controls. Interestingly, in response to
bacteria, mast cells, in contrast to other cell types such as
macrophages, elicit only a proinflammatory response but not
the type I interferon (IFN-I) response. It has been found that this
phenomenon could be attributed to the spatial regulation of
proinflammatory and IFN-I responses from different subcellular
sites; proinflammatory responses occur from the cell surface,
whereas IFN-I responses are induced from endolysosomal
compartments (22). This review focuses on the molecular
mechanisms of mast cell activation by cholesterol-dependent
cytolysins (CDCs).
CDCS

CDCs are a class of pore-forming proteins produced by a wide
range of predominantly Gram-positive bacteria. They form the
most prominent toxin family, comprising at least 28 bacterial
species, that mediate bacterial virulence. The most frequently
studied CDCs are those produced by pathogenic Streptococci,
Listeria, and Clostridia. The summary of cytolysins discussed in
this review, their bacterial producers, and a subset of diseases
they cause are presented in Table 1. Various strategies have been
developed to eliminate the pathogens producing CDCs. One
effective way is sensing CDCs produced by the pathogens by
mast cells followed by their activation and mobilizing innate and
adaptive immunity mechanisms. In terms of their effects on mast
cells, extensively studied CDCs were those produced by
TABLE 1 | Summary of cytolysins discussed in this review, their bacterial producers, and a subset of associated diseases.

Toxin Abbreviation Bacteria Diseases

Streptolysin O SLO Streptococcus pyogenes Various infectious diseases as pharyngitides, rheumatic fever, scarlet fever, necrotizing soft tissue
infection, toxic shock syndrome (23, 24)

Pneumolysin PLY Streptococcus
pneumoniae

Bacterial pneumonia, otitis media, bacterial meningitis (25, 26)

Listeriolysin O LLO Listeria monocytogenes Listeriosis (manifestations include abortion, sepsis, meningoencephalitis, febrile gastroenteritis syndrome)
(27, 28)

Streptolysin S* SLS Streptococcus equi Disease of the upper respiratory tract and associated lymph nodes in equids (29, 30)
Perfringolysin PFO Clostridium perfringens Histotoxic infections, pathogenesis of gas gangrene (31, 32)
Vaginolysin VLY Gardnerella vaginalis Bacterial vaginosis (33)
Lectinolysin LLY Streptococcus mitis Infective endocarditis, bacteremia and septicemia (34)

Streptococcus
pseudopneumoniae

Suilysin SLY Streptococcus suis Meningitis (35)
Intermedilysin ILY Streptococcus intermedius Associated with brain and liver abscesses (36)
*SLS was also identified in S. pyogenes and most of other group A Streptococcus isolates (37). However, the hemolytic activity of SLS is not affected by cholesterol (29).
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pathogenic Streptococci and Listeria (see below). Numerous
studies have shown that the CDCs’ pore-forming ability
requires the presence of cholesterol in the plasma membrane
of host cells (38–47).

General Mechanism of Plasma
Membrane Pore Formation by CDCs
Formation of the plasma membrane pores by CDCs relies on the
self-assembly of monomers bound individually to cholesterol-
rich membranes, followed by dimerization and oligomerization.
At the protein level, CDCs are conserved across multiple
organisms (46, 48). Structurally, various CDCs are organized
into four functional domains. Figure 1 shows crystal structures
of three CDCs [streptolysin O (SLO) from Streptococcus
pyogenes, pneumolysin (PLY) from S. pneumoniae, and
listeriolysin O (LLO) from Listeria monocytogenes] used in
mast cell research. Domains 1 and 2 retain the contact with
the aqueous environment during the pore formation. Domain 3
is composed of two transmembrane helices that convert to b-
strands involved in penetrating the host membrane. Domain 4 is
involved in cholesterol sensing and membrane binding. This
domain, which shows the highest conservation across CDCs,
consists of a b-sandwich linked by structural loops and a
tryptophan-rich undecapeptide (TR-UDP). A previous study
has shown that the threonine-leucine pair of sequential amino
acids binds to the hydroxyl group of cholesterol in cholesterol-
rich membrane regions (54), but not free cholesterol (55). Thus,
the threonine-leucine pair of CDC recognizes specific features of
cholesterol at the plasma membrane to initiate the cholesterol-
dependent interaction of the CDC with the cell. Although
different CDCs have an identical cholesterol-binding motif,
Frontiers in Immunology | www.frontiersin.org 3
they exhibit different binding parameters depending on the
lipid (56) and glycan (57, 58) environment. These interactions
anchor the CDC monomer in a perpendicular orientation to the
membrane surface. The domain 4-lipid interaction triggers
conformational changes in spatially distant domain 3, which
exposes a previous ly hidden interface involved in
oligomerization and, hence, formation a pre-pore complex.
Then, two sets of short a-helices in domain 3 undergo an a-
helix to b-sheet transition, leading to creation of two pore-
forming transmembrane b-hairpins (TMHs) per monomer,
which are still above the membrane surface. Through this
process, plasma membrane-bound monomers oligomerize into
pre-pores consisting of 35 - 50 monomers sitting on the cell
surface (Figure 2). Next, the pre-pore components undergo
further restructuring, including shape changes, bringing
domain 3 and its TMH regions to the membrane proximity.
This leads to refolding the transmembrane helices into b-strands
and forming a b-barrel pore in the plasma membrane with a
diameter of about 30 nm (43, 45, 46, 48, 59–62).

Recent data (57, 58) showed that of eight CDCs studied [SLO,
PLY, LLO, perfringolysin (PFO) from Clostridium perfringens;
vaginolysin (VLY) from Gardnerella vaginalis; lectinolysin (LLY)
from Streptococcus mitis or S. pseudopneumoniae; suilysin (SLY)
from S. suis, and intermedilysin (ILY) from S. intermedius], all
had high-affinity lectin activity that identified glycans as
candidate cellular receptors. Some of the CDCs, including SLO,
VLY, and PFO, bound multiple glycans, while PLY, LLY, LLO
recognized a single glycan class. All of the glycans functioning as
CDC receptors are found as glycolipids, transmembrane
glycoproteins, or GPI-qanchored (CD-59) glycoproteins that
are frequently associated with the periphery of cholesterol-
FIGURE 1 | Bacterial pore-forming cholesterol-dependent cytolysins used in mast cell research. Crystal structure of SLO (42), PLY (49), and listeriolysin (LLO) (50).
Indicated are N-terminus, C-terminus, and four domains rich in b-sheets: Domain 1 (D1), Domain 2 (D2), Domain 3 (D3) with the transmembrane spanning region, and Domain 4
(D4) involved in the initial direct interaction with cholesterol and glycans (51–53). The molecular weights and protein data bank (PDB) codes are also indicated.
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enriched lipid rafts (63). Further investigation showed no
competition between cholesterol and glycan receptor binding,
indicating that cholesterol and glycans bind to CDCs
independently. Significantly, addition of an exogenous
carbohydrate receptor for each CDC inhibited the toxin
activity. Thus, binding to both the glycan receptor and
cholesterol-rich membrane seems to be essential to the toxic
effect of the CDCs. The combined data indicated that
glycoprotein and/or glycolipid receptors present on the cellular
membrane contribute to the CDCs’ cell and tissue tropism.
Cell Response to CDC in General
The cell response to CDC depends on the cell type examined, type
of CDC, and its concentration. Sensitivity to the toxic effect of
CDC reflects, in part, the cell ability to repair membrane
disruptions. This probably explains why erythrocytes are more
sensitive to SLO than nucleated mammalian cell lines (64, 65).
When used at sublytic concentrations, as is often the case in vivo,
CDCs trigger several cellular processes, including membrane
repair and resealing of the membrane pores by various
mechanisms. The cell ability to reseal a limited number of pores
generated by CDCs is generally dependent on Ca2+ levels (66).
Changes in the concentration of free cytoplasmic Ca2+ could lead
to activation of proinflammatory transcriptional regulators,
including nuclear factor (NF)-kB, c-Jun N-terminal kinase
(JNK), and NFAT (Figures 3 and 4). Various transcriptional
regulators could be activated depending on the calcium signal
Frontiers in Immunology | www.frontiersin.org 4
amplitude and duration (67). Initial studies suggested that the
CDCs’ Ca2+ signaling is mainly due to Ca2+ influx from the
extracellular milieu (68, 69). However, later studies showed that
CDCs could also induce Ca2+ release from intracellular stores via
at least two independent mechanisms. The first one induces
activation of intracellular Ca2+ channels and involves
phospholipase (PLC)-inositol triphosphate receptor (IP3R)-
operated Ca2+ channels activated via G-proteins and protein
tyrosine kinases. The second one is Ca2+ channel independent,
involving injury of intracellular Ca2+ stores such as endoplasmic
reticulum (ER) (70).

Membrane repair after exposure to sublytic concentrations of
CDCs is usually executed through microvesicular shedding and
endocytosis; this could lead to removing the toxin from the
membrane (71). Using SLO mutants with engineered defects in
pore formation or oligomerization, the authors found that
oligomerization, in the absence of pore formation, was
necessary and sufficient for membrane shedding, suggesting
that the calcium influx and patch formation were not required
for shedding (71). However, the authors did not exclude the
possibility that oligomerization and pre-pore formation induced
changes in the plasma membrane leading to activation of calcium
uptake and other signaling events.

CDC-mediated formation of pores in the plasma membrane
leads to many other cell signaling events, which involve apoptosis
(72), DNA damage and cell cycle arrest (73), unfolded protein
response (74), induction of ubiquitination (75), and
transcriptional activation (76, 77).
FIGURE 2 | Formation of membrane pores by CDCs. CDC monomers released from bacteria bind through their D4 domain to plasma membrane (PM)
microdomains called lipid rafts enriched in cholesterol, GPI-anchored proteins, and Src family kinases. PM-bound monomers form dimers that polymerize into pre-
pore structures containing 30 to 50 CDC monomers. In this process, CDCs induce aggregation of lipid raft components leading to formation of signaling assemblies
called signalosome. The signalosomes are capable to initiate cell activation events. Individual CDCs in the pre-pore structure undergo conformational rearrangement
and formation of membrane-spanning b-strands, leading to concerted membrane insertion and formation of the pore with approximately 25 nm in diameter.
Formation of the transmembrane pore results in influx of Ca2+ into the cytoplasm and efflux of K+, other small molecules (e.g., ATP), and proteins through the plasma
membrane. These processes trigger various cell responses involved in repairing the plasma membrane and activating innate and acquired immunity.
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It should also be mentioned that some CDCs can induce cell
activation in the absence of pore formation. The toxins bind to
plasma membrane microdomains enriched in cholesterol,
gangliosides, GPI-anchored proteins, and Src family kinase
called lipid rafts, which are involved in signal transduction
(78–80). Using LLO and the cholesterol-inactivated form of
LLO (CL-LLO), Gekara et al. demonstrated that both forms of
the toxin bind to and induce clustering of lipid rafts (81).
Consistent with the role of lipid rafts in cell signaling, the
authors found that CL-LLO-induced raft aggregation resulted
in activation of tyrosine kinases in a pore-independent manner.
The aggregation of rafts could have critical physiological
consequences in listeriosis. Under in vivo conditions, secreted
LLO is inactivated by cholesterol present in body fluids.
Although cholesterol-inactivated LLO loses its pore-forming
capacity, CL-LLO can activate target cells by aggregating lipid
rafts and, in this way, influences the course of Listeria
monocytogenes infection. In this process, the lectin activity of
CDCs, discussed above, could play a key role. Interestingly, LLO
was found to bind to carbohydrate structures present on
gangliosides (58), which are found in lipid rafts (82).
CDC INTERACTIONS WITH MAST CELLS

Most of the studies focused on the molecular mechanisms of
CDC interactions with mast cells were performed using rat,
Frontiers in Immunology | www.frontiersin.org 5
mouse, or human mast cell lines, bone marrow-derived mouse
mast cells (BMMCs), or human mast cells isolated from the lungs
or intestine. While mechanisms described in previous section are
common to various cell types, including mast cells, several mast
cell-specific responses are directed towards CDCs. This reflects
the unique properties of mast cells, based on transcriptional
profiles, dramatically different from other cell types of the
immune system (83). This could be in part related to the
findings that mast cells are evolutionarily ancient, dating back
to at least as far as urochordates (84–86), and that mast cells have
unique functions as first-line sentinels of the immune system for
host defense against pathogens (87).

Molecular Mechanism of Mast Cell
Activation With CDCs
The canonical way of mast cell signaling through FcϵRI involves,
as a first step, ligand (IgE-antigen complexes, lectin, anti-FcϵRI
antibody)-mediated aggregation of FcϵRI. The aggregation of the
FcϵRI receptors leads to Src family protein tyrosine kinase (PTK)
Lyn-mediated phosphorylation of immunoreceptor tyrosine-
based activation motives (ITAMs) in the FcϵRI b and g
subunits by incompletely understood mechanism (88). The
phosphorylated g subunits then serve as binding and activation
sites for the Syk kinase, which phosphorylates many signaling
molecules, including transmembrane adaptor protein LAT1
(linker for activation of T cells) and non T cell activation
linker (NTAL or LAT2), reviewed in (89). Phosphorylated
FIGURE 3 | Mast cell activation by CDCs - calcium response and degranulation. Exposure of mast cells to sublytic concentrations of CDCs leads to aggregation of
lipid rafts and transmembrane insertion of CDC complexes, resulting in phosphorylation of signal transduction molecules, including phospholipase C (PLC). PLC
hydrolyses PM-localized phosphatidylinositol 4,5-bisphosphate (PIP2), producing inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 binds to IP3
receptor (IP3R) on the endoplasmic reticulum (ER), where it stimulates the release of calcium into the cytoplasm. Free cytoplasmic calcium together with DAG
activates protein kinase C (PKC). The reduced Ca2+ level in ER is sensed by stromal interaction molecule 1 (STIM 1), which then binds to and activates the store-
operated ORAI1 calcium ion channel in the PM. Calcium could also be released due to the injury of intracellular Ca2+ stores by CDCs. Increased levels of free
cytoplasmic Ca2+ and other activation events lead to the release of secretory vesicles (degranulation) in which the cytoskeleton plays an important role.
June 2021 | Volume 12 | Article 670205
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FIGURE 4 | Mast cell activation by CDCs - de novo production of inflammatory mediators. Among proteins phosphorylated and activated by CDC-induced
changes is mitogen-activated protein kinase (MPK)3, which is involved in phosphorylation and activation of MPK p38 and Erk1/2. These enzymes are involved in
activation of transcription factors regulating transcription of selected genes for inflammatory cytokines and chemokines (e.g., IL-6 and TNF-a). It is not clear
whether CDCs at the pre-pore stage have any role in these signaling events. Higher concentrations of CDCs lead to killing of target cells in the absence of
production of inflammatory mediators.
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LAT1 recruits molecules containing Src homology (SH)2
domains, such as adaptor protein Grb-2 and PLCg1. An
important intermediate is phosphatidylinositol (PI)-3-OH
kinase (PI3K), which catalyzes synthesis of PI-3,4-bisphosphate
and PI-3,4,5-trisphosphate (PIP3). These phospholipids
contribute to the recruitment of PLCg1 and PLCg2 and other
molecules containing pleckstrin homology domains to the
plasma membrane . PLC cleaves the phosphol ip id
phosphat idy l inos i to l 4 ,5-bisphosphate (PIP2) into
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3).
IP3 diffuses through the cytosol to bind to IP3R, Ca2+ channels
in the ER, and thus causes a rapid but transient release of Ca2+

from ER stores to the cytoplasm. Decreased levels of Ca2+ in ER
are sensed by ER protein STIM1, which then oligomerizes and
interacts with the plasma membrane (PM) protein Orai1 at ER–
PM junctions [reviewed in (90, 91)]. STIM1-Orai1 assembly
forms the active channel responsible for store-operated Ca2+

(SOC) channels, which activates the entry of external Ca2+ into
the cytoplasm. Phospholipids and DAG are used as substrates by
phospholipase A (PLA)2 and diacylglycerol lipase, respectively,
leading to arachidonic acid production. Arachidonic acid is a
precursor in production of eicosanoids such as prostaglandins
and leukotrienes, which exert a complex control over many
bodily systems, mainly in inflammation and immunity (92,
93). The maintenance and amplification of FcϵRI-generated
signals are regulated by the phosphoinositide 3 kinase (PI3K)/
Bruton’s tyrosine kinase (Btk) axis (94). This pathway
contributes to the cytokine and chemokine production
regulation through activation of transcription factors NFAT
and NFkB (95). Production of cytokines, chemokines, and
Frontiers in Immunology | www.frontiersin.org 6
other proteins also requires activation of mitogen-activated
protein (MAP) kinase pathways and enhanced transcription
through the activation of various transcription factors, such as
those that bind to promoter regions of the genes encoding the
proteins mentioned above. There are three major MAP kinase
pathways involving extracellular signal-regulated kinases (ERK),
c-Jun N-terminal kinase (JNK), and p38 MAP kinase activated
via the Ras-Raf pathway in the FcϵRI-activated cells. A key role
in this process is played by Ca2+ influx, as documented by the
possibility to induce degranulation in mast cells by bypassing the
early aggregated FcϵRI-mediated events by thapsigargin or
calcium ionophore A23187 (96, 97). Significantly, the PI3
kinase is involved in mast cell activation induced through both
IgE-dependent and antigen-independent pathways (98, 99).

Based on these and data from other systems showing the
involvement of calcium in the activation of transcription factors
(67, 100), it has been proposed that CDCs induce mast cell
activation by producing pores through which Ca2+ enters the cell
(70). However, as described by Usmani et al. (101), the
interaction of SLO with the cells could increase the
concentration of free Ca2+ through IP3-mediated depletion of
intracellular stores and activation of store-operated Ca2+ (SOC)
entry dependent on the STIM1-Orai1 cross-talk. This
mechanism of Ca2+ entry was independent of the toxin’s
ability to form Ca2+-conducting pores, allowing the cell to
respond to much lower toxin concentrations. Thus, SLO may
induce IP3 release by a mechanism comparable to the one used
by regular surface receptors. The molecular mechanisms of IP3
release by CDCs, however, remain enigmatic. Below, we will
review data on three CDCs (SLO, PLY, and LLO) used in the
June 2021 | Volume 12 | Article 670205
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studies on the molecular mechanisms of mast cell activation. In
several studies, bacteria producing CDCs and their non-
producing forms have been used. Summary data on the effects
of CDCs on degranulation, cytokine and chemokine production,
tyrosine phosphorylation, and Ca2+ responses are presented in
Table 2. Table 3 provides summary data on the effect of CDCs
on cytokines, chemokines, and other mediators produced in
mouse and human mast cells.
Streptolysin O (SLO)
SLO is a multifunctional protein with pore-dependent and pore-
independent functions (112, 113) produced by Streptococcus
pyogenes. This pathogen is responsible for various infectious
diseases, including pharyngitides, rheumatic fever, scarlet fever,
and life-threatening conditions such as necrotizing soft tissue
infection (necrotizing fasciitis) and streptococcal toxic shock
syndrome (23, 24). In initial studies, peritoneal mast cells were
permeabilized by treatment with SLO at concentrations that
generated membrane lesions. The permeabilized mast cells
released histamine and b-N-acetylglucosaminidase, dependent
on the presence of nucleoside triphosphate and micromolar
concentrations of Ca2+. SLO-permeabilized mast cells have
been used as a simplified system for studies to understand the
molecular mechanisms of exocytosis (114–118) and the role of
plasma membrane repair mechanisms (65, 76, 119). In these
Frontiers in Immunology | www.frontiersin.org 7
experiments, relatively high SLO doses were used, allowing
formation of numerous pores in the plasma membrane of
target cells. While such doses are cytocidal, low doses are
tolerated because a limited number of lesions are formed and
can be resealed by repair mechanisms (120).

Further studies showed that sublethal doses of SLO rapidly
activated BMMCs to degranulate and to induce production of
mRNAs of several cytokines, including tumor necrosis factor
(TNF)-a, IL-13, IL-4, IL-6, and GM-CSF (Figures 3 and 4).
Production of TNF-a was blunted upon pharmacological
depletion of protein kinase C by phorbol-12 myristate-13
acetate. Exposure to low, nontoxic concentrations of SLO also
resulted in enhanced phosphorylation of stress-activated protein
kinases p38 mitogen-activated protein (MAP) kinase and c-jun
N-terminal kinase (JNK). Inhibition of p38 MAP kinase
markedly reduced production of TNF-a, suggesting that
transcriptional activation of mast cells following transient
permeabilization might contribute to the host defense against
streptococcal infections via the beneficial effects of TNF-a.
However, mast cell hyperstimulation might also lead to
overproduction of TNF-a, promoting development of the toxic
streptococcal syndrome (102). The involvement of TNF-a in the
host defense against streptococcal infection was described in
previous studies (13, 76, 107, 108).

The resistance to CDCs is affected by the levels of surface
cholesterol and proteins exposed to the plasma membrane.
TABLE 2 | Effect of various cytolysins at sublytic concentrations on mast cell degranulation, production of cytokines, chemokines, and other mediators, tyrosine
phosphorylation of signaling molecules, and Ca2+ response.

MC response
Activating agents

Degranulation Level of cytokines, chemokines and
other mediators

Tyrosine phosphorylation Ca2+ levels

Histamine
release

b-Hexosaminidase release* mRNA Protein P38 MAPK JNK Erk1/2

Cytolysins
SLO ↑ (102) ↑ (102) ↑ (102) ↑ (102) ↑ (102)

↑ (103, serotonin*)
PLY − (104) ↑ (104)
LLO ↑ (70) ↑ (70) ↑ (70) ↑ (70)
Cholesterol-inactivated LLO − (70) − (70) − (70)
Cytolysin-producing and non-producing bacteria
SLS producing S. equi live
bacteria

↑ (105) ↑/− (106) ↑ (105, 106) ↑ (106)

SLS non-producing S. equi
live bacteria

− (106) − (106) − (106) − (106)

PLY producing S.
Pneumoniae live bacteria
(107) lysed bacteria (102,
108)

− (104) ↑ (26, 109) − (109)
↑/− (26)
↑ (104)

PLY-non-producing
S. pneumoniae

− (104) − (26) − (26, 104)

LLO-producing Listeria
monocytogenes

↑ (70) ↑ (70, 110) ↑ (70)
↑ (110, CD107a*)

LLO-non-producing Listeria
monocytogenes

− (70) − (70)

Others
Saponin ↑ (106) ↑ (106) ↑ (106) ↑ (106)
June 2021 | Volume 12 | Ar
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*In these studies, serotonin release or CD107a surface expression were used for quantification of degranulation instead of b-hexosaminidase release.
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Schoenaurer et al. (121) described that toxin-induced plasma
membrane perforation caused by SLO in human mast cells
(HMC1) is affected by expression levels of the P2X7 receptor.
The P2X7 receptor is an ATP-gated trimeric membrane cation
channel, which after activation with ATP triggers Ca2+ influx and
induces blebbing (122). This protective effect of the P2X7
receptor can be increased by activating the P2X7 receptor with
ATP and abolished by selective P2X7R antagonists, A-438079 or
blebbistatin (121).

Other studies showed that SLO is not the only activator of the
mast and other immune cells, but also inhibits immune cell
activity. Experiments with neutrophils revealed that SLO sublytic
concentrations suppressed the oxidative burst in neutrophils,
facilitating bacteria escape from innate immune killing (123).
Thus, SLO functions as a virulence factor that is necessary and
sufficient for suppressing bactericidal ROS production, thereby
subverting neutrophil ROS-dependent killing. Interestingly, S.
aureus, producing pore-forming virulence factor a-hemolysin
(H1a), did not modulate the oxidative burst of neutrophils,
suggesting a specific unique role of SLO, not a general
consequence of membrane perturbation and disruption.
Further studies showed that LLO and PFO could suppress the
oxidative burst in murine macrophages by preventing NADPH
oxidase localization with phagosome (124). In addition to
oxidative burst suppression, low concentrations of SLO
Frontiers in Immunology | www.frontiersin.org 8
prevented release of IL-8 and elastase and blocked formation
of neutrophil extracellular traps (123). It should also be
mentioned that Logsdon and colleagues (113) showed that
SLO at low levels reduced bacteria internalization by
keratinocytes and concluded that SLO interferes with the
internalization through local perturbations of the cell
membrane and disruption of clathrin-dependent uptake
pathways. They suggested that by forming plasma membrane
pores in cholesterol-rich membrane domains, SLO may mimic
cholesterol depletion and, in this way, inhibit the clustering of
lipid rafts, thereby interfering with integrin signaling and
bacterial internalization. These results are compatible with a
model in which SLO binding (through fibronectin) to integrins
of the cell surface acts to cluster integrin-containing membrane
domains, thereby enhancing integrin-mediated cell signaling to
stimulate the process of bacterial internalization. The results
obtained in vitro were confirmed by experiments in vivo in which
injection of SLO into ears of mast cell-deficient mice (KitW/
KitW-v) resulted in a weak inflammatory response when
compared to KitW/KitW-v mice that had been selectively
engrafted with BMMCs (103).

Pneumolysin (PLY)
Most pathogenic isolates of Streptococcus pneumoniae produce
PLY. These bacteria are the leading source of bacterial
TABLE 3 | Effect of cytolysins or bacteria producing the corresponding cytolysins on production of selected cytokines, chemokines, and other mediators by various
mast cell types.

Mast cell type Changes in production of cytokines, chemokines, and other mediators in response to cytolysins or
bacteria producing the corresponding cytolysins

At the mRNA level At the protein level Ref.

Mouse
BMMC ↑: TNF-a, IL-4, IL-6, IL-13, GM-

CSF, MCP-1, Nr4a3
↑: TNF-a, IL-2, IL-4, IL-5, IL-6, IL-12, IL-13, CCL2/MCP-1, CCL3,
CCL4, CCL5, RANTES, GM-CSF

(26, 70, 102, 105,
106, 110)

−: TNF-a, IL-1b, IL-4, IL-10, IL-12, IL-17A, IFN-g, TGF-b
BMMC (response to SLS-deficient
strain)

−: TNF-a, IL-6, Nr4a3 −: TNF-a, IL-6, CCL2/MCP-1 (106)

BMMC (response to PLY-deficient
strain)

−: IL-6, -CCL2/MCP-1 (26)

PCMC ↑: IL-6, Nr4a3 ↑: TNF-a, IL-6, CCL2/MCP-1 (106)
−: TNF-a

PCMC (response to SLS-deficient
strain)

−: TNF-a, IL-6, Nr4a3 −: TNF-a, IL-6, CCL2/MCP-1 (106)

Human
HLMC ↑: LTC4 (104)
Human intestinal MC ↑: TNF-a, IL-3, -5, -6, CXCL8 ↑: TNF-a, CXCL8, LTB4, sLT (111)
Human intestinal MC (response to
Hly-deficient strain)

−: TNF-a, IL-5, CXCL8 −: LTB4, sLT (111)

HMC-1 ↑: LTC4 (104)
HMC-1 (response to PLY-deficient
strain)

−: LTC4 (104)

LAD2 ↑: LTC4 (104)
June 2021 | Volume
↑ increased level.
− unchanged level.
BMMC, Bone marrow-derived mast cells.
PCMC, Peritoneal cell-derived mast cells.
HLMC, Human lung mast cells.
HMC-1, Human mast cell line.
LAD2, Human mast cell line.
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pneumonia and could cause otitis media and bacterial meningitis
(25, 26). Experiments in vitro showed that exposure of rat RBL-
2H3 cells to various strains of S. pneumoniae leads to
degranulation in a dose- and time-dependent manner. The
degranulation was only partially controlled by cytosolic
calcium and was not accompanied by production of TNF-a
and IL-6 (109). The authors suggested that the induction of mast
cell degranulation by pneumococcal factors not accompanied by
the production of proinflammatory cytokines may be a specific
strategy elaborated by this bacterium to promote its spreading
from the respiratory mucosa and reducing neutrophil
infiltration. Thus, the PLY amount could be meager, and other
bacterial proteins could play a dominant role.

Human lung mast cells (HLMCs) and human mast cell lines
HMC-1 and LAD2 were cocultured with pneumococci or
stimulated with PLY. HLMCs and cell lines exhibited
antimicrobial activity against S. pneumoniae. PLY induced
release of antimicrobial peptide cathelicidin LL-37. These data
suggested that mast cells limit pneumococcal dissemination early
in the course of pneumococcal pulmonary disease (104). A recent
study extended these findings and showed that mouse BMMCs
degranulated and released IL-6, CCL2, CCL3, and CCL4 (but not
IL-1b, TNF-a, IFN-g, and several other cytokines) after exposure
to S. pneumoniae (104, 125).

Furthermore, the response of BMMCs varied among different
pneumococcal serotypes and was dependent on PLY but
independent of TLR activation (26). These studies suggested
that the absence of mast cells or pharmacologic mast cell
stabilizer (cromoglycate) may reduce inflammation and
ameliorate the disease severity following intracisternal infection
in mice with S. pneumoniae. Surprisingly, experiments in vivo
using mast cell-deficient strains (WBB6F1-KitW/Wv and
C57BL/6 KitW-sh/W-sh mice) showed no significant effect on
the disease phenotype of experimental pneumococcal meningitis
(26). Thus, the results do not support previous in vivo data
showing that mast cell-deficient KitW-sh/W-sh mice exposed to
S. pneumoniae exhibited reduced inflammation, lower bacterial
outgrowth, and longer survival compared with wild-type (WT)
mice (126).

Listeriolysin (LLO)
Pore-forming toxin LLO is the main virulence factor of Listeria
monocytogenes. LLO is known to induce a broad spectrum of
host responses that ultimately influence the outcome of
listeriosis. Unlike the other pathogens producing CDCs,
Listeria monocytogenes is an intracellular pathogen that
requires its CDC, LLO, for intracellular survival. LLO is thus
the only cytolysin that is secreted by a facultative intracellular
pathogen, while all other CDCs are produced by pathogens that
are largely extracellular. LLO monomers bind to plasma
membrane microdomains in target cell membranes, dimerize
and oligomerize to form pre-pore complexes, followed by
formation of pores of 50-80 subunits. Formation of pre-pores
leads to aggregation of lipid rafts and signal transduction.
Formation of pores and reparation processes are other steps of
CDC-mediated cell activation in which extracellular components
Frontiers in Immunology | www.frontiersin.org 9
(Ca2+) enter the cytoplasm, and cytoplasmic components (such
as K+ and proteins) are released from the cell. This leads to
signals in target host cells resulting in degranulation, cytokine
and chemokine production, suppression of phagocytosis, and
induction of apoptosis (127–130) (Figures 3 and 4).

Using BMMCs and RBL-2H3 cells, Gekara et al. (70) showed
that LLO triggers cellular responses such as degranulation and
cytokine synthesis in a Ca2+-dependent manner. They also found
that LLO-mediated Ca2+ signaling is due to Ca2+ influx from the
extracellular milieu and release of Ca2+ from intracellular stores.
Ca2+ release from intracellular stores occurs via activation of
intracellular Ca2+ channels, which involve tyrosine
phosphorylation of several proteins, including PLC-g1 and
IP3R-operated Ca2+ channels activated via G-proteins and
protein tyrosine kinases. These data and the fact that the Ca2+

release could partially be blocked by tyrosine kinase inhibitor
genistein and G-protein inhibitor pertussis toxin suggested that
LLO activated the IP3R Ca2+ channels via tyrosine
phosphorylation and G-protein activation of PLC g and PLC b
isoforms, respectively. Another mechanism of Ca2+ release from
intracellular stores is Ca2+ channel independent, which could
reflect injury of intracellular stores, such as the ER (70). The data
are relevant to previous studies showing that exposure of human
embryonic kidney cells to sublytic concentrations of LLO caused
long-lasting oscillation of the intracellular Ca2+ levels, leading to
a pulsed influx of extracellular Ca2+ through pores that LLO
forms in the plasma membrane. Calcium influx did not require
the activity of endogenous Ca2+ channels. These data indicated
that Ca2+ oscillations modulate cellular signaling and gene
expression and could form a basis for the broad spectrum of
Ca2+-dependent cellular responses induced during Listeria
infection (68).

Later studies using macrophage cell line J774 indicated that
LLO is a potent aggregator of plasma membrane components,
including GPI-anchored proteins CD14, CD16, ganglioside
GM1, and protein tyrosine kinase Lyn. Abrogation of the
cytolytic activity of LLO by cholesterol pretreatment was found
not to interfere with the ability of LLO to aggregate the above-
mentioned surface molecules nor to trigger tyrosine
phosphorylation of Lyn and Syk kinases in the cells. When the
oligomerization of LLO was blocked by monoclonal anti-LLO
antibody, aggregation of surface molecules and tyrosine
phosphorylation were blocked. The combined data suggested
that LLO induces signaling through coaggregation of the plasma
membrane receptors, kinases, and adaptors (81). Recently
discovered lectin activity of LLO could play a vital role in this
process (58). However, cholesterol-inactivated LLO, which binds
and aggregates plasma membrane components such as the active
form of LLO, could not induce Ca2+ release in mast cells. Thus, it
is likely that membrane binding or plasma membrane protein
aggregation is not sufficient to activate the IP3R-dependent
pathways and that LLO oligomerization and transmembrane
insertion leading to pore formation are essential in this
process (70).

Contrary to the study of Gekara et al. (70), Jobbings et al.
(110) found that in the absence of Ca2+, LLO-mediated
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degranulation was enhanced, whereas antigen and PMA/I-
mediated degranulation was completely inhibited. This
discrepancy could be explained by LLO-mediated pore
formation in granules resulting in degranulation and mediator
release. Thus LLO is required for mast cell degranulation,
independent of extracellular Ca2+. The authors also found that
in mast cells, LLO induces transient downregulation of cell
surface c-kit receptor (CD117) without any effect of the FcϵRI
expression. Detailed analysis showed that in response to L.
monocytogenes, mast cells release in addition to the key
inflammatory cytokines (TNF-a and IL-6) a range of other
mediators including Osteopontin, IL-2, IL-4, IL-13,
granulocyte-macrophage colony-stimulating factor (GM-CSF),
and several chemokines (CCL2, CCL3, CCL4, and CCL5). These
cytokines are released in a MyD88-dependent manner.

A recent study (51) showed that four D4 subunits of LLO in
the membrane-bound state are placed in the bilayer interface in a
pre-pore configuration. In contrast, the membrane-inserted state
consists of a tetrameric arc-like pore configuration. The binding
of LLO leads to induced spatial heterogeneity that occurs in both
membrane-bound and membrane-inserted states. This
heterogeneity is primarily driven by the local density
enhancement of cholesterol in the vicinity of LLO D4 subunits
in the membrane-bound state. The induced heterogeneity after
plasma membrane binding of LLO could be at least in part
responsible for the observed changes in signaling machinery in
cells exposed to low concentrations of CDCs. In this process,
aggregation of lipid raft components (Figure 2) could play an
important role.
COMPARABLE RESPONSE OF MAST
CELLS TO CDCS AND OTHER PORE-
FORMING COMPOUNDS

The results so far discussed indicate that various CDCs at
sublytic concentrations induce similar mast cell activation
events. This could reflect the structural similarity of CDCs
examined (Figure 1) or the general effect of compounds
leading to plasma membrane perturbation. Several lines of
evidence indicate that the mast cell inflammatory response
described for CDCs is comparable to other pore-forming and
membrane destabilizing compounds.

Extensive studies have been devoted to SLS produced by
Streptococcus equi, which causes a highly contagious and
common disease of the upper respiratory tract and associated
lymph nodes in equids (29). SLS was also identified in
Streptococcus pyogenes and other Streptococcus species.
Genomic analysis has identified gene clusters that are similar
to the SLS-associated cluster in other pathogens such as Listeria
monocytogenes, Clostridium botulinum and Staphylococcus
aureus (131). SLS belongs to a distinct group of toxins whose
hemolytic activity is sensitive to trypan blue, which are resistant
to cholesterol and unaffected by oxidation. In these properties it
differs from SLO and other CDCs (29, 131, 132). An initial
Frontiers in Immunology | www.frontiersin.org 10
ultrastructural study using BMMCs as a model showed the
extensive formation of dilated ER in response to S. equi
exposure, indicating enhanced protein synthesis (105). Further
analysis revealed that exposure of BMMCs to S. equi did not
show signs of extensive degranulation. However, the coculture of
live bacteria with BMMCs resulted in profound secretion of IL-4,
IL-6, IL-12, IL-13, TNF-a, CCL2, CCL7, MCP3, CXCL2, CCL5.
In contrast, heat-inactivated bacteria caused only minimal
cytokine/chemokine response (105).

A recent study showed that BMMCs responded vividly to
wild-type S. equi by upregulating a panel of proinflammatory
genes and secreting proinflammatory IL-6, TNF-a, and
monocyte chemoattractant protein (MCP)1 (106). However,
this response was abrogated entirely in S. equi lacking the sagA
gene encoding SLS. Several lines of evidence indicated that mast
cell activation is not the result of mast cell lysis and release of
components capable of mast cell triggering. Immunoblotting
analysis revealed that exposure of mast cells to wild-type S. equi,
but not to a SLS-deficient mutant, induced phosphorylation of
p38 and Erk1/2, which could be inhibited by the corresponding
inhibitors. Based on these data, the authors concluded that
bacteria-derived SLS at sublytic concentrations is a major
stimulus for mast cell activation leading to proinflammatory
gene expression and cytokine production. It should be noted,
however, that in contrast to CDCs, SLS induced only week
degranulation (106).

Kramer et al. (111) examined the effect of a-hemolysin, a
protein toxin that assembles on membranes to form a
heptameric pore structure (133). They found that Escherichia
coli strains producing a-hemolysin induced release of histamine,
leukotrienes, and proinflammatory cytokines from intestinal
human mast cells. Blocking the extracellular Ca2+ and
calmodulin/calcineurin pathway by cyclosporine A inhibited
the response to a-hemolysin. Activation of mast cells by a-
hemolysin was also inhibited by blocking MAPKs p38 and ERK.
Pharmacological blockade of Ca2+-dependent PKCa, and
PKCb1 or PI3K had an only weak effect on a-hemolysin
activation of mast cells, but a robust inhibitory effect on FcϵRI-
mediated cell activation. The data indicate that mast cell
activation by FcϵRI and a-hemolysin utilize different signal
transduction pathways (111).

During their experiments focused on S. equi interaction with
mast cells, von Beek et al. (106) used another pore-forming
compound, saponin, and a steroid glycoside detergent digitonin
to determine whether SLS and saponins trigger BMMCs in a
similar way. They found that saponin, which forms tiny pores in
the plasma membrane (134, 135) at sublytic concentrations,
triggered IL-6 and TNF production similarly to SLS. They
concluded that mast cell activation by S. equi SLS could be
phenocopied by low sublytic concentrations of saponin. When
steroidal saponin, digitonin, was used at sublytic concentrations,
profound production of IL-6 in mast cells was also observed.
Altogether, these data suggest that multiple lytic agents at
sublytic concentrations could induce mast cell activation by
similar mechanisms.
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CONCLUSIONS AND FUTURE
DIRECTIONS

Despite impressive progress in understanding the molecular
mechanism of CDCs’ interaction with plasma membranes and
CDC-mediated activation of the mast and other cell types, the
picture is far from complete. The involvement of similar signaling
pathways triggered by CDCs and saponins suggests a similar cell
response towards plasma membrane perturbations. These
perturbations involve (I) binding of ligands to plasma
membrane structures (GPI-anchored proteins, cholesterol-rich
domains, glycoconjugates), (II) aggregation of monomers
(oligomerization process) and pre-pore formation, (III) plasma
membrane pore formation, and (IV) activation of the signaling
machinery leading to cell activation and production of
inflammatory mediators. The molecular-level details
of individual steps are yet to be determined. Although studies of
membranes can now benefit from the large-scale detailed analysis
of lipid molecular species, there is currently a paucity of data
regarding some of the critical points, such as (I) lipid
compositional analysis of plasma membrane domains from cells
at various stages of pore formation and (II) complete
compositional analysis of proteins associated with lipid pre-
pores and pores at various time intervals after exposure to
CDCs. Furthermore, a comparison of phosphoproteomes from
cells activated via IgE-antigen complexes, sublytic concentrations
of CDCs, or sublytic concentrations of saponins could be
informative in delineating specific signaling pathways involved
in cell activation by CDCs.
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Most of the experiments described in this review were
performed in vitro. Models that more closely resemble in vivo
conditions are needed to unravel the relevance of CDCs and
other pore-forming compounds to the pathogenesis of various
diseases caused by CDC-producing bacteria. Such studies will be
of great value in rational usage of CDCs as anti-cancer
therapeutics (136, 137), vaccine adjuvants (138–141), and
adjuvants stimulating inflammasome activity (142).
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80. Dráber P, Draberova L. Lipid Rafts in Mast Cell Signaling. Mol Immunol
(2002) 38:1247–52. doi: 10.1016/S0161-5890(02)00071-8

81. Gekara NO, Jacobs T, Chakraborty T, Weiss S. The Cholesterol-Dependent
Cytolysin Listeriolysin O Aggregates Rafts Via Oligomerization. Cell
Microbiol (2005) 7:1345–56. doi: 10.1111/j.1462-5822.2005.00561.x

82. Wilson BS, Steinberg SL, Liederman K, Pfeiffer JR, Surviladze Z, Zhang J,
et al. Markers for Detergent-Resistant Lipid Rafts Occupy Distinct and
Dynamic Domains in Native Membranes. Mol Biol Cell (2004) 15:2580–92.
doi: 10.1091/mbc.e03-08-0574

83. Dwyer DF, Barrett NA, Austen KF. Expression Profiling of Constitutive
Mast Cells Reveals a Unique Identity Within the Immune System. Nat
Immunol (2016) 17:878–87. doi: 10.1038/ni.3445

84. Cavalcante MC, Allodi S, Valente AP, Straus AH, Takahashi HK, Mourao
PA, et al. Occurrence of Heparin in the Invertebrate Styela Plicata (Tunicata)
is Restricted to Cell Layers Facing the Outside Environment. An Ancient
Role in Defense? J Biol Chem (2000) 275:36189–6. doi: 10.1074/
jbc.M005830200

85. Cavalcante MC, de Andrade LR, Du BS-P, Straus AH, Takahashi HK, Allodi
S, et al. Colocalization of Heparin and Histamine in the Intracellular
Granules of Test Cells From the Invertebrate Styela Plicata (Chordata-
Tunicata). J Struct Biol (2002) 137:313–21. doi: 10.1016/s1047-8477(02)
00007-2

86. Wong GW, Zhuo L, Kimata K, Lam BK, Satoh N, Stevens RL. Ancient
Origin of Mast Cells. Biochem Biophys Res Commun (2014) 451:314–8.
doi: 10.1016/j.bbrc.2014.07.124

87. Marshall JS, Portales-Cervantes L, Leong E. Mast Cell Responses to Viruses
and Pathogen Products. Int J Mol Sci (2019) 20:1–18. doi: 10.3390/
ijms20174241
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