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BACKGROUND: Screening programs for the most prevalent condi-
tions occurring in a country is an evidence-based prevention strategy. 
The burden of autosomal recessive disease variations in Saudi Arabia 
is high because of the highly consanguineous population. The optimal 
solution for estimating the carrier frequency of the most prevalent dis-
eases is carrier screening.
OBJECTIVES: Identify the most influential recessive alleles associated 
with disease in the Saudi population. 
DESIGN: We used clinical whole-exome sequencing data from an in-
house familial database to evaluate the most prevalent genetic varia-
tions associated with disease in a Saudi population.
SETTINGS: King Abdullah International Medical Research Center 
(KAIMRC) and King Abdulaziz Medical City.
METHODS: Whole exome sequencing data obtained from clinical 
studies of family members, a cohort of 1314 affected and unaffected in-
dividuals, were filtered using the in-house pipeline to extract the most 
prevalent variant in the dataset.
MAIN OUTCOME MEASURES: Most prevalent genetic variations as-
sociated with disease in the Saudi population.
SAMPLE SIZE: 1314 affected and unaffected individuals.
RESULTS: We identified 37 autosomal recessive variants and two het-
erozygous X-linked variants in 35 genes associated with the most prev-
alent disorders, which included hematologic (32%), endocrine (21%), 
metabolic (11%) and immunological (10%) diseases.
CONCLUSION: This study provides an update of the most frequently 
occurring alleles, which support future carrier screening programs.
LIMITATIONS: Single center that might represent the different regions 
but may be biased. In addition, most of the families included in the 
database are part of the proband’s genetic identification for specific 
phenotypes.
CONFLICT OF INTEREST: None.
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Carrier screening (CS) is widely implemented to 
identify reproductive carriers and reduce the 
consequences of single gene disorders.1 More 

than half of the Saudi population is in a consanguineous 
marriage, which is reflected in the increased number of 
autosomal recessive (AR) conditions.2 Saudi Arabia has 
the highest AR birth rate globally, with founder muta-
tions accounting for 40% of the total mutation pool.2,3 

The genetic pool or the founder effect is restricted to 
the family. Consequently, mating choices are limited in 
the clan or tribe, increasing the probability of mating 
with a carrier.4 The prevalence rate varies in regions; for 
example hemoglobinopathies, cystic fibrosis and Tay 
Sachs disease are prevalent in some regions or sub-
populations, but not in others.5 Genetic screening pro-
grams usually target identified cases, however, carrier 
detection is important for disease prevention to secure 
a healthy progeny.6

Several countries with a high frequency of certain 
AR conditions have implemented CS in their healthcare 
system, including the United States, Mexico, Australia, 
Netherlands, Israel, United Kingdom, Cyprus, Italy, 
Malaysia and Saudi Arabia.1,5,6 A study by Delatycki et 
al identified the carrier frequency using data from 7100 
clinical panels and 350 exome cases to estimate the 
most prevalent disease/variation associated with the 
Saudi population.4 Although the data is valuable, the 
landscape of CS is frequently unstable due to genetic 
drift, population admixture, multiracial and missing 
heritability, which are influenced by immigration and 
in- or outbreeding.7 Pan-ethnic screening, applied to 
targeted high prevalence diseases in subpopulations, 
resolves this problem.8,9 This approach has been pro-
posed by the American College of Medical Genetics 
and Genomics (ACMG) and the American College of 
Obstetricians and Gynecologists (ACOG) to expand CS 
to couples willing to conceive, regardless of the ethnic 
background.8,9

Family-based analysis of whole-exome sequencing 
(WES) provides a high detection rate for prevalent and 
rare variations,10 covering 1% of the whole human ge-
nome and nearly 95% of the coding regions.11 In this 
study, we used clinical WES data from an in-house famil-
ial database and evaluated the most prevalent genetic 
variations associated with disease in the Saudi popula-
tion. The data will provide a newly updated map for the 
most prevalent diseases and support the development 
and implementation of preventive measures. 

METHODS
We used the King Abdullah International Medical 
Research Center (KAIMRC) Genomic Database (KGD, 

KAIMRC Genomic Database) to extract the variants 
frequently occurring in the Saudi population. The data 
had been collected from 2014 to 2021, and populated 
with WES results from a mixed cohort of affected and 
unaffected individuals (n=1314) from 650 families with 
2 173 863 filtered variants. The WES was performed 
for diagnostic purposes in the Genetic Department at 
King Abdulaziz Medical City, a College of American 
Pathologists accredited genetic laboratory. The re-
sults were obtained in variant calling files (VCF) and 
the pathogenic or likely pathogenic variants classified 
based on the ACMG scoring system 12 and the latest 
release of the ClinVar database.12 The database was 
extensively investigated, including the allele frequen-
cy from the local database, the Exome Sequencing 
Project (ESP, https://evs.gs.washington.edu/EVS/), 
the Genome Aggregation Database (gnomAD v2.1.1, 
https://gnomad.broadinstitute.org/), dbSNP/1000, 
the Saudi Human Genome Project database (SHGP 
dbm latest release, https://shgp.kacst.edu.sa/index.
en.html) and other ethnically matched databases. The 
data include patient and variant information. The vari-
ant filtration pipeline includes all variants with a read 
depth more than 15×, with an allele frequency of more 
than 2%, based on the dbSNP/1000 genome, ESP, 
gnomAD (v2.1.1), and KGD. To avoid variant bias, only 
one family member was included, excluding affected 
individuals, the entire homozygous pathogenic variant 
and the autosomal dominant. This study was approved 
by the Institutional Review Board of King Abdullah 
International Medical Research Center (#RC19/315/R).

RESULTS
The data obtained from the KGD identified the vari-
ants with a high carrier frequency in the Saudi popula-
tion, identifying 37 heterozygous AR variants and two 
variants carried by females as heterozygous X-linked 
variants. The pathogenic variants identified in the 35 
genes and occurring in more than five individuals in the 
KGD, are available online on the Zenodo data reposi-
tory at the following URL https://doi.org/10.5281/ze-
nodo.5905071. The disease-related variants, reported 
to be associated with AR, had homozygous mutant 
patterns. The top 13 variants obtained from the KGD 
(Table 1) occurred in more than 10 of the 1314 individu-
als. The most prevalent diseases, in sequential order, 
were hematologic (32%), endocrine (21%), metabolic 
(11%) and immunologic (10%), occurring in more than 
10% of the total number of variants (Figure 1).

The data indicated that the most prevalent het-
erozygous mutation, caused by the missense muta-
tion rs750046020 with a minor allele frequency (MAF) 
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of 0.00007953 gnomAD, in the MPL proto-onco-
gene thrombopoietin receptor (MPL), is associated 
with congenital amegakaryocytic thrombocytopenia 
(OMIM:604498). Two variants, found in the cytochrome 
P450 family 21 subfamily A member 2 (CYP21A2) 
gene, are associated with congenital adrenal hyper-
plasia (CAH) (OMIM: 201910), and one variant occur-
ring in 24 individuals was in the introducing stop co-
don rs7755898 (MAF=0.0003601). A missense variant 
rs776989258 (MAF=0.0005244) in 11 carriers was also 
observed in the CYP21A2 gene. This indicated that 
the pathogenic variants in the CYP21A2 gene con-
stituted 20% of the total number of pathogenic vari-
ants obtained from the KGD (Figure 2). This variant 
was followed by the frequently carried missense vari-
ant rs377659326 (MAF=0.00001425) in spectrin alpha, 
erythrocytic 1 (SPTA1), which is associated with heredi-
tary spherocytosis (HS) (OMIM: 270970). The third was 
the missense variant rs28936700 (MAF=0.0002919) in 
the cytochrome P450 Family 1 subfamily B member 
1(CYP1B1), which is associated with congenital glau-
coma (OMIM: 231300). 

The variant creating the stop codon rs867425110 
(MAF=C=0.0003/1 KOREAN, C=0.0046/1 Qatari) db-
SNP, found in complement C6 (C6), is associated with 
C6 deficiency (OMIM: 612446). Another stop codon 
initiated variation rs145360423 (MAF=0.0006412) 
was found in the neutrophil cytosolic factor 1 (NCF1), 
and is associated with chronic granulomatous disease 
(OMIM: 233700). A variant affecting the initiated codon 
rs1354476372 (MAF=0.000007435) was found in the 5 
prime of the untranslated region (UTR) in the leucine 
zipper transcription factor like 1 (LZTFL1) gene, which 
is associated with Bardet-Biedl syndrome (BBS) (OMIM: 
615994). A loss of function in the B double prime 1, 
subunit of RNA polymerase iii transcription initiation 
factor IIIB (BDP1) gene, caused by the stop codon 
rs199721728 (MAF=0.0007889), is associated with 
deafness (OMIM: 618257). The insertion of two base 
pairs in the aminoacylase1 (ACY1) gene rs770702363 
(MAF=0.0001309) is associated with aminoacylase 1 
deficiency (OMIM: 609924). A missense variant, ob-
served in the most prevalent variant in KGD, rs334 
(MAF=0.004374), found in the hemoglobin subunit 
beta (HBB), is associated with sickle cell anemia (OMIM: 
603903). Ten female carriers had an X-linked mutation 
rs5030868 (MAF=0.002301), which is associated with 
G6PD deficiency (hemolytic anemia) (OMIM: 300908). 
Finally, a stop codon rs199689137 (MAF=0.0001702), 
causing a gain in the function in the ATP binding cas-
sette subfamily G member 5 (ABCG5), is associated 
with sitosterolemia 2 (OMIM: 618666). The variations 

have been compared to a global population MAF us-
ing the GnomAD, in parallel with results of the SHGP 
database.

DISCUSSION
Globally, multi-ethnic databases such as the Exome 
Aggregation Consortium (ExAC)13 and the gnomAD14 

still lack a Middle East genetic representation.15 The 
KAIMRC Genomic Database, the first WES published 
database in the region, although still underpowered 
and diverse, represents the Middle East region. The 
results obtained from the KGD provide additive value 
to the most prevalent diseases occurring in the Saudi 
population (Figure 1). This result is confirmed by the 

Figure 1. The prevalent disease types occurring in the Saudi population.

Figure 2. The most affected genes with most frequent pathogenic variants in 
the Saudi population.
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SHGP database, which indicates a higher trend in the 
Saudi population compared to the GnomAD. The data 
also identified new variants, observed in KGD but not 
in SHGP database, such as the rs7755898 in CYP21A2, 
and other variants in the KGD have a different presen-
tation compared to the SHGP-db observations and 
in a higher frequency than the GnomAD. Multiple re-
search projects have been conducted to identify the 
most prevalent disease or genetic variation in the Saudi 
population,4,16,17 resulting in screening programs that 
improved the healthcare service and reduced disease-
related complications in Saudi Arabia.18

On the basis of the mutation frequency in the Saudi 
population, the KGD results provide an estimate of dis-
ease prevalence in the Saudi population. It is possible, 
however, that the actual prevalence of disease will be 
affected by several factors, including whether or not 
a screening program is implemented in the country. 
Most of the variations identified are associated with AR. 
However, the carrier frequency is still outstanding, due 
to the WES being requested for cases and not carriers. 
This family-based database facilitates the investigation 
of healthy carriers, estimating the carrier frequency for 
several diseases.

Hematologic disorders are the most prevalent vari-
ant in the Saudi population. The rs750046020 in the 
MPL gene has been reported as a pathogenic variant 
associated with thrombocytosis in the Saudi popula-
tion.19 The second (rs7755898) observation, associated 
with CAH, has been included in the National New-Born 
Screening Program.18 It is known that mutations in the 
CYP21A2 gene are associated with more than 95% of 
the CAH cases, resulting in 21-hydroxylase deficiency 
(21-OHD).20 The disease is associated with compound 
heterozygous pattern of inheritance.21,22 A variant in the 
SPTA1 gene, c.5263C>G, usually found as compound 
heterozygous, causes a hematological disease affecting 
the red blood cell (RBC) cytoskeleton, namely heredi-
tary hemolytic anemia (HHA).23 The mutation c.182G>A 
in the CYP1B1 has been reported as the most common 
variant associated with congenital glaucoma.24

The SHGP database identified most of the variants 
in Table 1, with minor differences in the MAF. A vari-
ant, such as rs867425110 in C6, is associated with a 
pathogenic phenotype.25 The rs145360423 in the NCF1 
is in the SHGP database and the Omani population 
database.26 The variant found in the LZTFL1 is associ-
ated with a retinitis pigmentosa diagnosis, relatively 

Table 1. The most prevalent pathogenic variations carried in the Saudi population, with the minor allele frequency obtained from Saudi 
Human Genome Project database (dbSNP) and the King Abdullah International Medical Research Center Genomic Database (KGD), and 
compared with the Genome Aggregation Database (gnomAD).

Disorder Gene Disease associated dbSNP CDNA KGD SHGP db GnomAD

Hematology MPL Thrombocytopenia rs750046020 c.317C>T 2.46% 2.96% 0.01%

SPTA1 Spherocytosis rs377659326 c.5263C>G 1.31% 0.72% 0.00%

HBB Sickle cell anemia rs334 c.20A>T 0.85% 2.34% 0.44%

G6PD Hemolytic anemia, G6PD 
deficient rs5030868 c.653C>T 1.08% 2.60% 0.23%

Endocrine CYP21A2 Congenital adrenal 
hyperplasia rs7755898 c.955C>T 1.85% 0.00% 0%

rs776989258 c.1447C>T 0.85% 1.11% 0.05%

Metabolic C6 C6 deficiency rs867425110 c.2049C>G 1.15% 0.54% 0%

ACY1 Aminoacylase 1 
deficiency rs770702363 c.575dupG 0.85% 0.88% 0.01%

ABCG5 Sitosterolemia 2 rs199689137 c.1336C>T 0.77% 0.51% 0.02%

Immunology 
disorder NCF1 Chronic granulomatous 

disease rs145360423 c.579G>A 1.00% 0.42% 0.06%

Otolaryngology BDP1 Deafness rs199721728 c.7873T>G 1.00% 2.44% 0.08%

Ophthalmology CYP1B1 Glaucoma rs28936700 c.182G>A 1.31% 2.51% 0.03%

Multisystem LZTFL1 Bardet-Biedl syndrome rs1354476372 c.3G>A 1.00% 0.33% 0.00%

Minor allele frequency calculated for the KGD sample size.
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unique to BBS.27,28 The rs199721728, identified in the 
BDP1 gene, is associated with hearing loss in a num-
ber of populations, including the Saudi population.29 
Rs770702363, found in the ACY1, is associated with 
aminoacylase 1 deficiency.30 In addition, several genes, 
previously linked to hematological disorders, are also 
associated with HBB,31 G6BD32-34 and ABCG5,35 were 
identified in several populations, including Saudi, with 
a higher MAF compared to the other variants (Table 1).

The current study expanded our knowledge base 
regarding the most prevalent genetic variations asso-
ciated with disease in the Saudi population. This up-
date enhances the existing list of diseases included 
in premarital programs and supports new screening 
methodologies, including CS panels and biochemical 
testing. The significance of the database will increase 
with contributions from the whole nation, facilitating 
the identification of carriers in subpopulations to create 
a national pan-ethnic CS program. Such a program will 
provide insight for at-risk couples belonging to a geo-
graphical region or specific tribe, through prompt ac-
tion and preventive measures before conception. The 
program can be established through fertility clinics or 
genetic counselors. Discussion options include aspects 
such as preimplantation genetic diagnosis (PGD), preg-
nancy termination or family planning. Additional value 
for implementing CS programs is reducing the risk of 
having babies with an inherited disease and reducing 
the burden on healthcare providers and families. An up-
dated platform for the most prevalent cases and carrier 
states will support up-to-date screening programs and 

raise awareness regarding the most prevalent condi-
tions and variations in Saudi Arabia.  

The limitations of this study include the use of a 
single center, although the center represents different 
regions of the country. The sample size may not be rep-
resentative of the nation and could be biased by the 
single center. In addition, most of the families included 
in the database are part of proband’s genetic identifica-
tion for certain phenotypes.
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