2

Basic Knowledge and Developing Tendencies
in Epidemic Dynamics
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Summary. Infectious diseases have been a ferocious enemy since time immemo-
rial. To prevent and control the spread of infectious diseases, epidemic dynamics
has played an important role on investigating the transmission of infectious dis-
eases, predicting the developing tendencies, estimating the key parameters from
data published by health departments, understanding the transmission character-
istics, and implementing the measures for prevention and control. In this chapter,
some basic ideas of modelling the spread of infectious diseases, the main concepts
of epidemic dynamics, and some developing tendencies in the study of epidemic
dynamics are introduced, and some results with respect to the spread of SARS in
China are given.

2.1 Introduction

Infectious diseases are those caused by pathogens (such as viruses, bacte-
ria, epiphytes) or parasites (such as protozoans, worms), and which can
spread in the population. It is well known that infectious diseases have been
a ferocious enemy from time immemorial. The plague spread in Europe in
600 A.C., claiming the lives of about half the population of Europe (Brauer
and Castillo-Chavez 2001). Although human beings have been struggling in-
domitably against various infections, and many brilliant achievements ear-
marked in the 20th century, the road to conquering infectious diseases is still
tortuous and very long. Now, about half the population of the world (6 bil-
lion people) suffer the threat of various infectious diseases. For example, in
1995, a report of World Health Organization (WHO) shows that infectious
diseases were still the number one of killers for human beings, claiming the
lives of 52 million people in the world, of which 17 million died of various
infections within that single year (WHO). In the last three decades, some new
infectious diseases (such as Lyme diseases, toxic-shock syndrome, hepatitis C,
hepatitis E) emerged. Notably, AIDS emerged in 1981 and became a deadly
sexually transmitted disease throughout the world, and the newest Severe
Acute Respiratory Syndrome (SARS) erupted in China in 2002, spreading to
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31 countries in less than 6 months. Both history and reality show that, while
human beings are facing menace from various infectious diseases, the impor-
tance of investigating the transmission mechanism, the spread rules, and the
strategy of prevention and control is increasing rapidly, and such studies ar
an important mission to be tackled urgently.

Epidemic dynamics is an important method of studying the spread rules
of infectious diseases qualitatively and quantitatively. It is based largely on
the specific properties of population growth, the spread rules of infectious dis-
eases, and related social factors, serving to construct mathematical models
reflecting the dynamical property of infectious diseases, to analyze the dy-
namical behavior qualitatively or quantitatively, and to carry out simulations.
Such research results are helpful to predict the developing tendency of infec-
tious diseases, to determine the key factors of spread of infectious diseases,
and to seek the optimum strategy of preventing and controlling the spread
of infectious diseases. In contrast with classic biometrics, dynamical methods
can show the transmission rules of infectious diseases from the mechanism of
transmission of the disease, so that we may learn about the global dynami-
cal behavior of transmission processes. Incorporating statistical methods and
computer simulations into epidemic dynamical models could make modelling
methods and theoretical analyses more realistic and reliable, enabling us to
understand the spread rules of infectious diseases more thoroughly.

The purpose of this article is to introduce the basic ideas of modelling the
spread of infectious diseases, the main concepts of epidemic dynamics, some
development tendencies of analyzing models of infectious diseases, and some
SARS spreading models in China.

2.2 The fundamental forms and the basic concepts
of epidemic models

2.2.1 The fundamental forms of the models of epidemic dynamics

Although Bernouilli studied the transmission of smallpox using a mathe-
matical model in 1760 (Anderson and May 1982), research of deterministic
models in epidemiology seems to have started only in the early 20th century.
In 1906, Hamer constructed and analyzed a discrete model (Hamer 1906)
to help understand the repeated occurrence of measles; in 1911, the Public
Health Doctor Ross analyzed the dynamical behavior of the transmission of
malaria between mosquitos and men by means of differential equation (Ross
1911); in 1927, Kermack and McKendrick constructed the famous compart-
mental model to analyze the transmitting features of the Great Plague which
appeared in London from 1665 to 1666. They introduced a “threshold theory”,
which may determine whether the disease is epidemic or not (Kermack and
McKendrick 1927, 1932), and laid a foundation for the research of epidemic
dynamics. Epidemic dynamics flourished after the mid-20th century, Bailey’s
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book being one of the landmark books published in 1957 and reprinted in
1975 (Baily 1975).

Kermack and McKendrick compartment models

In order to formulate the transmission of an epidemic, the population in a re-
gion is often divided into different compartments, and the model formulating
the relations between these compartments is called compartmental model.

In the model proposed by Kermack and McKendrick in 1927, the pop-
ulation is divided into three compartments: a susceptible compartment
labelled S, in which all individuals are susceptible to the disease; an infected
compartment labelled I, in which all individuals are infected by the disease
and have infectivity; and a removed compartment labelled R, in which
all individuals are removed from the infected compartment. Let S(¢),I(t),
and R(t) denote the number of individuals in the compartments S, I, and R
at time ¢, respectively. They made the following three assumptions:

1. The disease spreads in a closed environment (no emigration and immi-
gration), and there is no birth and death in the population, so the total
population remains constant, K, i.e., S(t) + I(t) + R(t) = K.

2. An infected individual is introduced into the susceptible compartment,
and contacts sufficient susceptibles at time ¢, so the number of new in-
fected individuals per unit time is 8S(t), where g is the transmission
coefficient. The total number of newly infected is 55(¢)I(t) at time t.

3. The number removed (recovered) from the infected compartment per unit
time is yI(t) at time ¢, where  is the rate constant for recovery, corre-
sponding to a mean infection period of % The recovered have permanent
immunity.

For the assumptions given above, a compartmental diagram is given in
Fig. 2.1. The compartmental model corresponding to Fig. 2.1 is the following:

S/ — —BSI,
I'=BST —~I, (1)
R =~I.

Since there is no variable R in the first two equations of (1), we only need to
consider the following equations

S' = —pBSI,
{ I' = BSI— I @

S I R
BSI ~I

Fig. 2.1. Diagram of the SIR model without vital dynamics




8 Zhien Ma and Jianquan Li

Fig. 2.2. Diagram of the SIS model without vital dynamics

to obtain the dynamic behavior of the susceptible and the infective. After
that, the dynamic behavior of the removed R is easy to establish from the
third equation of system (1), if necessary.

In general, if the disease comes from a virus (such as flu, measles, chicken
pox), the recovered possess a permanent immunity. It is then suitable to use
the SIR model (1). If the disease comes from a bacterium (such as cephalitis,
gonorrhea), then the recovered individuals have no immunity, in other words,
they can be infected again. This situation may be described using the SIS
model, which was proposed by Kermack and McKendrick in 1932 (Kermack
and McKendrick 1932). Its compartmental diagram is given in Fig. 2.2.

The model corresponding to Fig. 2.2 is

S = —BSI+~I, )
I'=BSI —~I.

Up to this day, the idea of Kermack and McKendrick in establishing these
compartmental models is still used extensively in epidemiological dynamics,
and is being developed incessantly. According to the modelling idea, by means
of the compartmental diagrams we list the fundamental forms of the model
on epidemic dynamics as follows.

Models without vital dynamics

When a disease spreads through a population in a relatively short time, usu-
ally the births and deaths (vital dynamics) of the population may be neglected
in the epidemic models, since the epidemic occurs relatively quickly, such as
influenza, measles, rubella, and chickenpox.

(1) The models without the latent period

ST model In this model, the infected individuals can not recover from their
illness, and the diagram is as follows:

S— 1
BSI

SIS model In this model, the infected individuals can recover from the illness,
but have no immunity.The diagram is shown in Fig. 2.2.

SIR model In this model, the removed individuals have permanent immunity
after recovery. The diagram is shown in Fig. 2.1.
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SIRS model In this model, the removed individuals have temporary immunity
after recovery from the illness. Assume that due to the loss of immunity, the
number of individuals being moved from the removed compartment to the
susceptible compartment per unit time is R(¢) at time ¢, where J is the rate
constant for loss of immunity, corresponding to a mean immunity period

1
5 The diagram is as follows:

oR

BSI ~I

Remark 1. In the SIS model, the infected individuals may be infected again
as soon as they recover from the infection. In the SIRS model, the removed
individuals can not be infected in a given period of time, and may not be
infected until they loose the immunity and become susceptible again.

(2) The models with the latent period

Here we introduce a new compartment, E (called exposed compartment),
in which all individuals are infected but not yet infectious. The exposed
compartment is often omitted, because it is not crucial for the susceptible-
infective interaction or the latent period is relatively short.

Let E(t) denote the number of individuals in the exposed compartment
at time ¢. Corresponding to the model without the latent period, we can
introduce some compartmental models such as SEI, SEIS, SEIR, and SEIRS.
For example, the diagram of the SEIRS model is as follows:

OR

S E I R
BSI wE YR

where w is the transfer rate constant from the compartment E to the

1
compartment I, corresponding to a mean latent period —.
w

Models with vital dynamics
(1) The size of the population is constant

If we assume that the birth and death rates of a population are equal while the
disease actively spreads, and that the disease does not result in the death of
the infected individuals, then the number of the total population is a constant,
denoted by K. In the following, we give two examples for this case.
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SIR model without vertical transmission In this model, we assume that the
maternal antibodies can not be inherited by the infants, so all newborn in-
fants are susceptible to the infection. Then, the corresponding compartmental
diagram of the SIR model is as follows:

S I R
bK 1 BSI 1 NI l
bS bl bR

Fig. 2.3. Diagram of the SIR model without vertical transmission

SIR model with vertical transmission For many diseases, some newborn in-
fants of infected parents are to be infected. This effect is called vertical
transmission, such as AIDS, hepatitis B. We assume that the fraction k of
infants born by infected parents is infective, and the rest of the infants are
susceptible to the disease. Then, the corresponding compartmental diagram
of the SIR model is as follows:

bkI
|
S I R
b(S+(1—-k)I+R) l BSI l ~I 1
bS bI bR

(2) The size of the population varies

When the birth and death rates of a population are not equal, or when there
is an input and output for the total population, or there is death due to the
infection, then the number of the total population varies. The number of the
total population at time ¢ is often denoted by N ().

SIS model with vertical transmission, input, output, and disease-related death
The diagram is as follows:

vy

il

PITT [
dSHBSﬂ dlua I

Fig. 2.4. Diagram of the SIS model with vertical transmission

BI

Here, the parameter b represents the birth rate constant, d the natural death
rate constant, « the death rate constant due to the disease, A the input rate
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of the total population, B the output rate constant of the susceptible and
the infective.

MSFEIR model with passive immunity Here, we introduce the compartment
M in which all individuals are newborn infants with passive immunity. After
the maternal antibodies disappear from the body, the infants move to the
compartment S. Assume that the fraction of newborn infants with passive
immunity is p, and that the transfer rate constant from the compartment
M to the compartment S is ¢ (corresponding to a mean period of passive
immunity %) The diagram is as follows:

ubN (1 — p)bN al

b 1

M S E I R
1 SM 1 BST l wE l YR l
dM  dS dE dI dR

According to the diagrams shown above, we can easily write the corre-
sponding compartmental models. For example, the SIR model corresponding
to Fig. 2.3 is as follows:

S =bK — BSI —bS
I'=BSI—bl —~I, (4)
R =~ —bR.

The SIS model corresponding to Fig. 2.4 is as follows:

S"'=A+bS—BSI—dS — BS+AI,
I'=bl+3SI—dl —~I - Bl —a .

2.2.2 The basic concepts of epidemiological dynamics
Adequate contact rate and incidence

It is well known that infections are transmitted through direct contact. The
number of times an infective individual comes into contact with other mem-
bers per unit time is defined as the contact rate, which often depends on the
number N of individuals in the total population, and is denoted by a func-
tion U(N). If the individuals contacted by an infected individual are suscepti-
ble, then they may be infected. Assuming that the probability of infection by
every contact is Gy, then the function SoU(N), called the adequate contact
rate, shows the ability of an infected individual infecting others (depending
on the environment, the toxicity of the virus or bacterium, etc.). Since, except
for the susceptible, the individuals in other compartments of the population
can not be infected when they make contact with the infectives, and the frac-
tion of the susceptibles in the total population is %, then the mean adequate
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contact rate of an infective to the susceptible individuals is SoU (N )%, which
is called the infective rate. Further, the number of new infected individu-
als resulting per unit time at time ¢ is SoU(N )%I (t), which is called the
incidence of the disease.

When U(N) = kN, that is, the contact rate is proportional to the size of
the total population, the incidence is SokS(¢)I(t) = 3S(¢)I(t) (where 8 = Gok
is defined as the transmission coefficient), which is described as bilinear
incidence or simple mass-action incidence. When U(N) = k/, that is,
the contact rate is a constant, the incidence is Sk’ %I (t) = %()tl)(f) (where
B = Bok’), which is described as standard incidence. For instance, the in-
cidence formulating a sexually transmitted disease is often of standard type.
The two types of incidence mentioned above are often used, but they are
special for real cases. In recent years, some contact rates with saturation

_ _aN

features between them were proposed, such as U(N) = #7 5 (Dietz 1982),
U(N)= ﬁm (Heesterbeek and Metz 1993). In general, the satura-
tion contact rate U(N) satisfies the following conditions:

U(0) =0, U'(N) >0, (%)I <0, lim UN)="Up.

In addition, some incidences which are much more plausible for some special
Pra
cases were also introduced, such as 3SPI1, @STI (Liu et al. 1986, 1987).

Basic reproduction number and modified reproduction number
In the following, we introduce two examples to understand the two concepts.
Ezxample 1

We consider the SIS model (3) of Kermack and McKendrick. Since S(t) +
1(t) = K(constant), (3) can be changed into the equation

S' = B(K - S) <1—S> . (5)
B

When % > K, (5) has a unique equilibrium S = K on the interval (0, K]
which is asymptotically stable, that is, the solution S(¢) starting from any
So € (0, K) increases to K as t tends to infinity. Meanwhile, the solution I(t)
decreases to zero. This implies that the infection dies out eventually and does
not develop to an endemic.

When % < K, (5) has two positive equilibria: S = K and S = %, where
S = K is unstable, and S = % is asymptotically stable. The solution S(t)
starting from any Sy € (0, K) approaches to % as t tends to infinity, and

I(t) tends to K — % > 0. Thus, point (1, K — %) in S-I plane is called the

endemic equilibrium of system (3). This case is not expected.
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Therefore, 2 = K, i.e., Ry := 2£ = 1 is a threshold which determines
whether the disease dies out ultimately. The disease dies out if Ry < 1, is
endemic if Ry > 1.

The epidemiological meaning of Ry as a threshold is intuitively clear. Since
%y is the mean infective period, and GK is the number of new cases infected
per unit time by an average infective which is introduced into the suscep-
tible compartment in the case that all the members of the population are
susceptible, i.e., the number of individuals in the susceptible compartment
is K (this population is called a completely susceptible population), then Rg
represents the average number of secondary infections that occur when an
infective is introduced into a completely susceptible population. So, Ry < 1
implies that the number of infectives tends to zero, and Ry > 1 implies that
the number of infectives increases. Hence, the threshold Ry is called the basic
reproduction number.

Ezxample 2

Consider an SIR model with exponential births and deaths and the standard
incidence. The compartmental diagram is as follows:

SR
| |
— S I R
N | BSI dluoz ;o
s dR

The differential equations for the diagram are

S"=bN —dS — B 1 SR,
I'=81 _(a+d+)I, (6)
R =~I—(d+ )R,

where b is the birth rate constant, d the natural death rate constant, and «
the disease-related death rate constant.

Let N(t) = S(t) + I(t) + R(t), which is the number of individuals of total
population, and then from (6), N(t) satisfies the following equation:

N =b-dN-al. (7)

The net growth rate constant in a disease-free population is 7 = b —d. In the
absence of disease (that is, & = 0), the population size N(t) declines expo-
nentially to zero if » < 0, remains constant if » = 0, and grows exponentially
if » > 0. If disease is present, the population still declines to zero if r < 0.
For r > 0, the population can go to zero, remain finite or grow exponentially,
and the disease can die out or persist.
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On the other hand, we may determine whether the disease dies out or

not by analyzing the change tendency of the infective fraction % in the

total population. If hm T is not equal to zero, then the disease persists;

if hm ]{,—(t)) is equal to zero, then the disease dies out.
Let
S 1 R
xr= — = — z = —
N VTN N’

then x, vy, and z represent the fractions of the susceptible, the infective, and
the removed in the total population. From (6) and (7) we have

' =b—br — fry +dz + azy,
Y =Py — (b+a+y)y+ay®, (8)
2=y —(b+)z+ ayz,

which is actually a two-dimensional system due to x +y + z = 1.
Substituting « = 1 — y — z into the middle equation of (8) gives the
equations

Yy =B1-y—2)y—(b+a+y)y+ay®, (9)
Z=qyy—(b+0d)z+ ayz.
Let
A
b+a+~

It is easy to verify that when R; < 1, (9) has only the equilibrium Py(0,0)
(called disease-free equilibrium) in the feasible region which is globally
asymptotically stable; when R; > 1, (9) has the disease-free equilibrium
Py(0,0) and the positive equilibrium P*(y*, z*) (called the endemic equilib-
rium), where P, is unstable and P* is globally asymptotically stable (Busen-
berg and Van den driessche 1990).

The fact that the disease-free equilibrium Py is globally asymptotically

stable implies tlim y(t) = hm % = 0, i.e., the infective fraction goes to
— 00

zero. In this sense, the dlsease dies out finally no matter what the total
population size N(t) keeps finite, goes to zero or grows infinitely. The fact
that the endemic equilibrium P* is globally asymptotically stable implies
lim y(t) = hm % = y* > 0, i.e., the infective fraction goes to a positive

t—o0

constant. ThlS shows that the disease persists in population.

It is seen from (6) that the mean infectious period is ﬁ, the incidence
is of standard type, and the adequate contact rate is 3, so that the basic
reproduction number of model (6) is Ry = ﬁ.

From the results above we can see that, for this case, the threshold to
determine whether the disease dies out is R; = 1 but not Ry = 1. Therefore,
the number R; is defined as modified reproduction number.
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2.3 Some tendencies in the development of epidemic
dynamics

2.3.1 Epidemic models described by ordinary differential
equations

So far, many results in studying epidemic dynamics have been achieved. Most
models involve ordinary equations, such as the models listed in Sect. 2.2.1.
When the total population size is a constant, the models SIS, SIR, SIRS
and SEIS can be easily reduced to a plane differential system, and the re-
sults obtained are often complete. When the birth and death rates of the
population are not equal, or the disease is fatal, etc., the total population is
not a constant, so that the model can not be reduced in dimensions directly,
and the related investigation becomes complex and difficult. Though many
results have been obtained by studying epidemic models with bilinear and
standard incidences, most of these are confined to local dynamic behavior,
global stability is often obtained only for the disease-free equilibrium, and
the complete results with respect to the endemic equilibrium are limited.

In the following, we introduce some epidemic models described by ordi-
nary differential equations and present some common analysis methods, and
present some related results.

SIRS model with constant input and exponent death rate and bilinear
incidence

We first consider the model

S'=A—-dS—pSI+6R,
I'=pSI—(a+d+)I, (10)
R =~I—(d+d)R.

Let N(t) = S(t) + I(t) + R(t), then from (10) we have
N'(t)=A—dN —al, (11)

and thus it is easy to see that the set
3 A
D=<(S,I,R)eR|0<S+I+R< E,S>O,IZO,R20

is a positive invariant set of (10).

Theorem 1. (Mena-Lorca and Hethcote 1992) Let Ry = ﬁ. The
disease-free equilibrium Ey (%,0,0) s globally asymptotically stable on the
set D if Ry < 1 and unstable if Ry > 1. The endemic equilibrium E*(z*,y*, z*)
is locally asymptotically stable if Ry > 1. Besides, when Ry > 1, the endemic
equilibrium E* is globally asymptotically stable for the case § = 0.
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Proof

The global stability of the disease-free equilibrium Ejy can be easily proved
by using the Liapunov function V' = I, LaSalle’s invariance principle, and
the theory of limit system if Ry < 1.

In order to prove the stability of the endemic equilibrium E* for Ry > 1,
we make the following variable changes:

S=S"1+z), I=I"(1+y), R=R(1+2),

then (10) becomes

=B (5 +1 ,
i AR AR o
Z=d(y—=z).

Noticing that the origin of (12) corresponds to the endemic equilibrium E*
of (10), we define the Liapunov function

.1:2
V=55 T 55

[y —In(1 +y)] ,

and then the derivative of V' along the solution of (12) is

)
V/|(12) B (6[* +1 —|—y> <0.

Thus, the global asymptotical stability of the origin of (12) (i. e., the endemic
equilibrium E*) can be obtained by using LaSalle’s invariance principle.

Models with latent period

In general, some models with latent period (such as SEIR and SEIRS) may
not be reduced to plane differential systems, but they may be competitive
systems under some conditions. In this case, the global stability of some of
these models can be obtained by means of the orbital stability, the second
additive compound matrix, and the method of ruling out the existence of
periodic solutions proposed by Muldowney and Li (Li and Muldowney 1995,
1996; Muldowney 1990).

For example, the SEIR model with constant input and bilinear incidence

S'=A-dS—pSI,
E' = BSI— (e +d)E,
I'=eE—(v+a+d)I,
R =~I —dR

(13)

has the following results:
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Theorem 2. (Li and Wang to appear) Let Ry = @ A The disease-

dte)(d+y+a)”
free equilibrium is globally asymptotically stable if Ry < 1 and unstable if
Ry > 1; the unique endemic equilibrium is globally asymptotically stable if

Ry > 1.
For the SEIR model with exponent input and standard incidence

S'=bN —dS — 5L
E’:%—(e—i—d)E,
I'=eE—(v+a+d)I,

R =~I —dR,

Li et al. (1999) introduced the fraction variables: s = £,e = £, = £ and

r= %, and they obtained the following results:

Theorem 3. (Li and et al. 1999) Let Ry = ME)(g—iv-S-M' The disease-free
equilibrium is globally asymptotically stable if Ry < 1 and unstable if Ry > 1;
the unique endemic equilibrium is locally asymptotically stable if Ry > 1 and
globally asymptotically stable if Rg > 1 and o < e.

Recently, Zhang and Ma (2003) applied the saturation incidence
bN
C(N) =
() 1+bN ++v1+2bN

instead of the bilinear one in (13), analyzed its global stability completely
by using analogous methods, and obtained the basic reproduction number of
the corresponding model

Bbe A
(d+ v+ a)(d+€)(d + bA + V/d2 + 2bdA)

For the SEIS model with constant input, Fan et al. (2001) obtained the com-
plete global behavior with respect to the bilinear incidence. Zhang and Ma (to
appear) generalized the incidence to the general form SC(N)3L, where C/(N)
satisfies the following conditions: (1) C'(IV) is non-negative, non-decreasing,
and continuous differentiable with respect to N; (2) €N is non-increasing
and continuous differentiable with respect to N > 0, and obtained the fol-

lowing results by similar methods for the model

S"=dK —dS — BC(N)5L
E'=[ON)Y — (e+d)B,
I'=¢E—(y+a+dl,

R =~I —dR,

Theorem 4. (Zhang and Ma to appear) Let Ry = 0 BeC(K) The disease-

(d+e)(d+y+a) -
free equilibrium is globally asymptotically stable if Ry < 1 and unstable if
Ry > 1; the unique endemic equilibrium is globally asymptotically stable if

Ro > 1.
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The similar method is also used to discuss the global behavior of an SEIR
model with bilinear incidence and vertical transmission (Li et al. 2001).

Models with quarantine of the infectives

So far, there are two effective measures to control and prevent the spread of
the infection, these being quarantine and vaccination. The earliest studies on
the effects of quarantine on the transmission of the infection was achieved
by Feng and Thieme (2003a, 2003b), and Wu and Feng (2000). In those pa-
pers, they introduced a quarantined compartment, ), and assumed that all
infective individuals must pass through the quarantined compartment before
going to the removed compartment or back to the susceptible compartment.
Hethcote, Ma, and Liao (2002) considered more realistic cases: a part of
the infectives are quarantined, whereas the others are not quarantined and
enter into the susceptible compartment or into the removed compartment
directly. They analyzed six SIQS and SIQR models with bilinear, standard
or quarantine-adjusted incidence, and found that for the SIQR model with
quarantine-adjusted incidence, the periodic solutions may arise by Hopf bi-
furcation, but for the other five models with disease-related death, sufficient
and necessary conditions assuring the global stability of the disease-free equi-
librium and the endemic equilibrium were obtained.
For instance, for the SIQS model with bilinear incidence

S'=A—-05I—dS+~I+€Q,
I'=[BS—(d+a+d+)I, (14)
Q' =0l—-(d+a+eQ,

the following hold:

Theorem 5. (Hethcote, Ma, and Liao 2002) Let R, = m. The
disease-free equilibrium is globally asymptotically stable if R, < 1 and un-
stable if R, > 1; the unique endemic equilibrium is globally asymptotically

stable if Ry > 1.

To prove the global stability of the endemic equilibrium of system (14), let
N(t)=S5(t) + I(t) + Q(t), and then system (14) becomes the system

N'=—d(N-N")—a(l-I)-a(Q-Q"),
I'=pB[(N=N*)=(I=1I") = (Q - QI
Q=0I-I)—(d+a+e)(@Q—-Q),
where the point (N*, I*,;Q*) is the endemic equilibrium of this last system.
Define the Liapunov function

V(N.I1.Q) = W {I_I* _I*lnli*}
p _ N*)2

(c+20)(Q - Q)
+ 5 } )
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then the global stability of the endemic equilibrium can be obtained by com-
puting the derivative of V(N, I, Q) along the solution of the system.

Since the quarantined individuals do not come into contact with the un-
quarantined individuals, for the case that the adequate contact rate is con-
stant, the incidence should be jgle = %, which is called the quarantine-
adjusted incidence. Then, the SIQR model with quarantine-adjusted inci-

dence is

S =A— LB _ g9

B;IS+I+R o
Q =6l—-(d+a1+6Q,
R =~ +eQ —dR.
For (15), we have
Theorem 6. (Hethcote, Ma, and Liao 2002) Let R, W%. The

disease-free equilibrium is globally asymptotically stable if R, < 1 and un-
stable if Ry > 1. If Ry > 1, the disease is uniformly persistent, and (15)
has a unique endemic equilibrium P* which is usually locally asymptotically
stable, but Hopf bifurcation can occur for some parameters, so that P* is
sometimes an unstable spiral and periodic solutions around P* can occur.

From Theorem 5 and Theorem 6, we know that the basic reproduction num-
bers of (14) and (15) include the recovery rate constant v and the quarantined
rate constant § besides the disease-related death rate constant «, but do not
include the recovery rate constant e and the disease-related death rate con-
stant a1 of the quarantined. This implies that quarantining the infectives and
treating the un-quarantined are of the same significance for controlling and
preventing the spread of the disease, but this is not related to the behavior
of the quarantined.

Models with vaccination Vaccinating the susceptible against the in-
fection is another effective measure to control and prevent the transmission
of the infection. To model the transmission of the infection under vaccina-
tion, ordinary differential equations, delay differential equations and pulse
differential equation (Li and Ma 2002, 2003, 2004a, 2004b, to appear; Li et
al. to appear; Jin 2001) are often used. Here, we only introduce some results
of ordinary differential equations obtained by Li and Ma (2002, to appear).

The transfer diagram of the SISV model with exponential input and vac-
cination is

eV
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The model corresponding to the diagram is

§'=r(l =N = 5 ~[p+ f(N)]S +7I + eV,
I/:ﬁ%_(fy—l—a‘ﬁ‘f(N))I’ (16)
V/:qu+pS—[€+f(N)]V’

where V' represents the vaccinated compartment. We assume that the vacci-
nated individuals have temporary immunity, the mean period of immunity is
%, and that the natural death rate f(IN) depends on the total population N,
which satisfies the following conditions:

FIN)>0, f/(N)>0 for N >0 and f(0)=0<r < f(c0),

where ¢ represents the fraction of the vaccinated newborns, and p is the
fraction of the vaccinated susceptibles. The other parameters have the same
definitions as in the previous sections.

For system (16), by initially making the normalizing transformation to
S, I and V' | and then using the extensive Bendixson-Dulac Theorem of Ma
et al. (2004), we can obtain the following results.
Theorem 7. (Li and Ma 2002) Let Ry = (p—_ﬂ%?. The disease-free
equilibrium is globally asymptotically stable if Ry < 1 and unstable if Ry > 1;
the unique endemic equilibrium is globally asymptotically stable if Ry > 1.

For the model without vaccination (i.e., p = ¢ = 0), the basic reproduction
number of (16) is Ry = ;72 By comparing Ry and Ry, Li and Ma (2002)
came to the following conclusion: To control and prevent the spread of the
disease, increasing the fraction ¢ of the vaccinated newborns is more efficient
when Ry > 1; increasing the fraction p of the vaccinated susceptibles is more
efficient when rRy < 1.

Model (16) assumed that the vaccine is completely efficient, but, in fact,
the efficiency of a vaccine is usually not 100%. Hence, incorporating the
efficiency of the vaccine into epidemic models with vaccination is necessary. If
we consider an SIS model with the efficiency of vaccine, then the system (16)
will be changed into the following:

S'=r(1—q)N =5 —[p+ f(N)S+7I+ €V,
I'=B(S+oV)& - (v+a+ f(N)I, (17)
V’:qu—i-pS—aﬂ%—[e—i-f(N)]V,

where the fraction o(0 < o < 1) reflects the inefficiency of the vaccination.
The more effective the vaccine is, the less the value of o is. Moreover, o = 0
implies that the vaccine is completely effective in preventing infection, while
o = 1 implies that the vaccine is absolutely of no effect.

For model (17), we found the modified reproduction number

Ble+op+1r(l—(1—0)q)]
(a+r+)p+et+r)

Ry =
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Theorem 8. (Li, Ma and Zhou to appear) For system (17), the following
results are true.

(1) When Ry > 1, there exists a unique endemic equilibrium which is
globally asymptotically stable.

(2) When Ry = 1,a < o3, B > 0, there exists a unique endemic equilib-
rium which is globally asymptotically stable.

(3) When Ry < 1,a < 03,8 > r+a+7,B > 2/AC, there exist two
endemic equilibria: one is an asymptotically stable node, another is a saddle
point.

(4) When Ry < l,a < 08,8 > r+a+ v, B = 2J/AC, there exists
a unique endemic equilibrium, which is a saddle-node.

(5) For all other cases of parameters, the disease-free equilibrium is glob-
ally asymptotically stable.

Where

A=(a—oB)(B-a), C=@+r+o+a+tn(Fo—1),
B=a(p+etyta+2)-flatrto-o@-r-—a-y-p).

According to Theorem 8, the change of endemic equilibrium of the system (17)
can be shown in Fig. 2.5, while the common case is shown in Fig. 2.6. Fig-
ure 2.5 shows that, when Ry is less than but close to 1, the system (17) has
two endemic equilibria, and has no endemic equilibrium until Ry < R. < 1.
One of these two equilibria is an asymptotically stable node, and the other
is a saddle point. It implies that, for this case, whether the disease does die
out or not depends on the initial condition. This phenomenon is called back-
ward bifurcation. Therefore, incorporating the efficiency of vaccine into the
epidemic models is important and necessary.

Within this context, the bifurcations with respect to epidemic models were
also investigated by many researchers. Liu et al. (1986, 1987) discussed codi-
mension one bifurcation in SEIRS and SIRS models with incidence FI1PS9.
Lizana and Rivero (1996) considered codimension two bifurcation in the
SIRS model. Wu and Feng (2000) analyzed the homoclinic bifurcation in the
SIQR model. Watmaough and van den Driessche (2000), Hadeler and van den

I'“

-
>

0 R 1 Ry Fig. 2.5. Backward bifurcation
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T4 Fig. 2.6. Forward bifurcation

[
L

Driessche (1997), and Dushoff et al. (1998) discussed the backward bifurcation

in some epidemic models. Ruan and Wang (2003) found the Bogdanov-Takens

kI'S

bifurcation in the SIRS model with incidence 1+2—ZI,

2.3.2 Epidemic models with time delay

The models with time delay reflect the fact: the dynamic behavior of trans-
mission of the disease at time ¢ depends not only on the state at time ¢ but
also on the state in some period before time t.

Idea of modelling To formulate the idea of modelling the spread of
disease, we show two SIS models with fixed delay (also called discrete delay)
and distributed delay (also called continuous delay), respectively.

(1) Models with discrete delay

Assuming that the infective period of all the infectives is constant 7, then the
rate at which the infectives recover and return to the susceptible compartment
is BS(t — 7)I(t — 7) if the rate of new infections at time ¢ is BS(t)I(t).
Corresponding to the system (3), we have the SIS model with delay as follows

{ S'(t)y=—-pSH)I(t)+ pSt—71)I(t—1),
I'(t)=pS)I(t)— St —71)I(t—7).

If the natural death rate constant d and the disease-related death rate con-
stant « of the infectives are incorporated in the model, then the rate of
recovery at time ¢ should be 3S(t — 7)I(t — 7)e~ ()7 where the factor
e~ (4497 denotes the fraction of those individuals who were infected at time
t — 7 and survive until time ¢t. Thus, we have the model

{ S'(t) = —BS()I(t) — dS(t) + BS(t — 7)I(t — 7)e~(d+e)T
I'(t) = BSH)I(t) — (d+ a)I(t) — BS(t — 7)I(t — 7)e @+

(2) Models with distributed delay

The case that all the infectives have the same period of infection is an extreme
one. In fact, the infective period usually depends on the difference of infected
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individuals. Assume that P(7) is the probability that the individuals, who
were infected at time 0, remain in the infected compartment at time 7. It is
obvious that P(0) = 1. Thus, the number of the infectives at time ¢ is

+oo
I(t) = BS({t—7)I(t—7)P d’T_/ BS(u)I(w)P(t —u)du .

0

Assuming that P(r) is differentiable, then from the last equation we have
I'(t) = / BS(u)I(u)P'(t —u)du .

Let f(7) := —P'(7), then
() = BSI(t) — /0 T BS(— It — 1) f(r)dt

It is easy to see that ["° f(r)dr = [F*[-P'(r)]dr = 1, and that
fo 7)dr is the infective period. Therefore, the corresponding SIS model

S'(t) = —p5(t) +f pS(t —m)I(t —7)f(r)dT,
I'(t) = BS()I (t) T BS(t—)I(t—T1)f(r)dr.
Similarly to the case with the discrete delay, if the natural death rate con-

stant d and the disease-related death rate constant « of the infectives are
incorporated in the model, then the corresponding SIS model becomes

{ (t) _ _65( ) ( . + f ﬁS t - T) (t - T)f(T)e_(d+a)T dr )
I'(t) = BS(6)I(t) — ( ) (t) = ;7 BS(t —7)I(t —7)f(r)e @+ dr .

In the following, we give some models established according to the idea above.

Example 3

Supposing that the birth and natural death of the population are of exponen-
tial type, the disease-related death rate constant is «, the infective period is
a constant 7, and that there is no vertical transmission, then the SIS model
with standard incidence is

{S’(t) = BN () — dS(t) - Z5OL0 | BSUnIUor) o—(dte)r

N(t—r
I'(t) BS(t)I(t) —(d+ a)I(t) — BS(t— T)IT(§ T —(d+a)7"

TN@O N(i—

where N (t) = S(t) + I(t) satisfies the equation

N'(t) = (b— d)N(t) — o I(t).
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Ezxample 4

Let A be the birth rate of the population, d the natural death rate constant,
« the disease-related death rate constant, w the latent period, 7 the infective
period, then the SEIR model with bilinear incidence is

§'(1) = A—dS(t) — BSI(H),
E'(t) = BSt)I(t) — BS(t —w)I(t —w)e ™ —dE(t),
I'(t) = BS(t —w)I(t —w)e W

—BS({t —w—T)(t —w—T)e” Ut e _(d+a)I(t),
R({t)=8St—w—1)I(t—w—r1)e” e _dR(t).

Ezxample 5

If we incorporate the vaccination into the SIR model, and assume that the
efficient rate constant of the vaccination is p, and that the efficient period
of vaccine in the vaccinated body is a constant 7, then the SIR model with
vaccination and bilinear incidence is the following;:

S'(t) = A BI)S(t) = (d+p)S(t) +~yI(t) +pS(t —)e 7,
I'(t) = BI(t)S(t) — (d+ v+ a)I(t), (18)
R'(t) =~I(t) +pS(t) —pS(t — 7)e 9" —dR(t) .

Note that the term pS(t—7)e~9" in (18) represents the number of individuals
who are vaccinated at time ¢t —7 and still survive at time ¢, and the occurrence
of delay form is due to the fact that the efficient period of vaccine is a fixed
constant 7. If the probability of losing immunity is an exponential distribution
e Kt (;% is the mean efficient period of vaccine), then the corresponding model
is a system of ordinary differential equations (Ma et al. 2004).

For delay differential systems, the local stability of equilibrium is often
obtained by discussing the corresponding characteristic equation, which is
similar to an ordinary differential equation. Also, the method to obtain the
global stability is mainly to construct Liapunov functionals. For example,
since the first two equations in (18) do not include the variable R obviously,
we can only consider the subsystem consisting of the first two equations to
obtain the following results:

Theorem 9. (Li and Ma to appear) Let

BA B3So

Ry = = .
Vo ld+a+d+pd—e )] dta-+y

The disease-free equilibrium is globally asymptotically stable on the positively
variant set D = {(S,I) :S>0,1>0,5+1< %} if Ry <1 and unstable
if Ry > 1. The unique endemic equilibrium is globally asymptotically stable
in the positively invariant set D if Ry > 1.
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The global stability of the disease-free equilibrium can be proved by con-
structing the Liapunov functional

_ 2 —dT t
V= M-FSOI-FPGQ / (S(u) — So)*du;
¢

(07

—T

and the global stability of endemic equilibrium can be proved by constructing
the Liapunov functional

V =

RY:

I*
—dr  pt
+ 55 /(S(u)—s*)2du,
t

—T

where S* and I* are the coordinates of the endemic equilibrium of the sys-
tem (18).

For epidemic dynamical models with delay, many results have been ob-
tained (Hethcote and van den Driessche 1995; Ma et al. 2002; Wang 2002;
Wang and Ma 2002; Xiao and Chen 2001a; Yuan and Ma 2001, 2002; Yuan
et al. 2003a, 2003b) , but few results were achieved with respect to the global
stability of the endemic equilibrium. Especially the results about necessary
and sufficient conditions like Theorem 9 are rare.

2.3.3 Epidemic models with age structure

Age has been recognized as an important factor in the dynamics of population
growth and epidemic transmission, because individuals have usually different
dynamic factors (such as birth and death) in different periods of age, and
age structure also affects the transmission of disease and the recovery from
disease, etc. In general, there are three kinds of epidemic models with age
structure: discrete models, continuous models, and stage structure models.

In order to understand epidemic models more easily, we first introduce
the age-structured population model.

Population growth model with discrete age structure

We partition the maximum interval in which individuals survive into n equal
subintervals, and partition the duration started at time ¢y by the same length
as that of the age subinterval as well. Let N;;(i =1,2,3,...,n,j =1,2,3,...)
denote the number of individuals whose age is in ith age subinterval at jth
time subinterval; let p; denote the probability that the individual at ith age
subinterval still survives at (i+1)th age subinterval, that is, N;41 j41 = piNij;
and let B; denote the number of newborn by an individual at ith age subin-
terval, then the population growth model with discrete age structure is the
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following:

Nij+1 = BiNyj + BaNaj + B3N3j + -+ -+ By Ny
Ny jr1=p1Nij,

Npjt1 =Pn-1Nn-1; -

The discrete system above can be re-written as the following vector difference
equation

Ny = AN;, (19)
where
N By B B3 -+ B,1 By
N, P 000 0 0
Nj: ] , A = 0 D2 0 0 0 0
Nnj 0 0 0 - po O

Thus, equation (19) is a population growth model with discrete age structure,
which is called the Leslie matrix model.

Population growth model with continuously distributed age structure

When the number of individuals is very large and two generations can coexist,
this population may be thought to be continuously distributed in age.

Let f(a,t)0da denote the number of individuals whose age is between a
and a + dda at time ¢, y(a — dda) the death probability of individuals whose
age is between a — dda and a in unit time, then we have

fla—=dda,t) — f(a,t 4+ 6dt) =~v(a — dda)f(a — dda,t)ddt,
where dda = ddt. Taylor expansion of both sides above yields

of  of

E—F%-i-’y(a)f—o.
Let B(a)dda denote the mean number of offsprings born by an individual
with age between a and a+ 0 da. Note that f(0,¢)dda is the number of all the

newborn of the population at time ¢, then we have the boundary condition:

+oo
£(0,t)dda = /0 B(a)f(a,t)dda,

where f(a,t) is called the distributed function of age density (or age distri-
bution function). From the inference above, we have the equations

Y +tyaf=0,
F(0,t)0da = [, B(a)f(a,t)dda,
f(a,0) = fola),

where the last equation is the initial condition.
In the following, we introduce epidemic models with age structure.
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Epidemic models with continuous age structure

Many results about epidemic models with continuous age structure have been
obtained (Busenberg et al. 1988, 1991; Capasso, V. 1993; Castillo-Chavez et
al. 2002; Dietz and Schenzle 1985 Hoppensteadt 1974; Iannelli et al. 1992;
Tannelli et al. 1999; Langlais 1995; Li et al. 2001, 2003; Liu et al. 2002; Miiller
1998; Pazy 1983; Zhou 1999; Zhou et al. 2002; Zhu and Zhou 2003). The
idea of modelling is the same as that in Sect. 2.2, but all individuals in
every compartment are of continuous age distribution. For example, in an
SIS model with continuous age structure, the total population is divided into
the susceptible compartment and the infected compartment. Let s(a,t) and
i(a,t) denote their age distributions at time ¢, respectively, and assume that
the disease transmits only between the same age group. According to the
ideas of constructing age-structured population growth models and epidemic
compartment models, an SIS model with continuous age structure is given as
follows:

asf()a oty 05l — i(a)s(a,t) — koila, t)s(a,t) +(a)i(a,t) ,
oifa) | &(a 0 _ k;oi(a t)s(a,t) — (v(a) + p(a))i(a,t),
(o t §da = fo )s(a,t) + (1 = q)i(a,t)]dda , (20)

fo qB(a)i(a,t)dda,
S(CL 0)—30( ) (a 0) =1io(a),

where p(a) and B(a) are the natural death rate and the birth rate of indi-
viduals of age a, y(a) is the rate of recovery from infection at age a, A is the
length of maximum survival period of individuals, kg(a) is the transmission
coefficient of the infective of age a, and g is the fraction in which the infectives
transmit disease vertically. Using the characteristic method and comparison
theorem, Busenberg et al. (1988) proved the following results under some
common hypotheses.

Theorem 10. (Busenberg et al. 1988) Let Rg = qfo efo a(@)ddos g,
The disease-free equilibrium solution (s°(a,t),i%(a,t)) = (poo( ),0) is globally
asymptotically stable if Ry < 1 and unstable if Ry > 1; The unique endemic
equilibrium solution (s*(a),i*(a)) is globally asymptotically stable if Ry > 1,
where poo(a) is the age distribution of total population in the steady state, i. e.,
P (@) = 5(a,1) +ila,) for any t > 0; a(0) = —p(a) — 3(0) + Ro(0)poo o).

In general, disease can also be transmitted between different age groups.
Thus, the term ko(a)i(a,t) in (20), which reflects the force of the infectivity,

should be replaced by term ki (a) fOA ka(a')i(a’,t)dda’, which is the sum of
infective force of all the infections to the susceptibles of age a.

For some diseases, if the course of disease is longer and the infectivity
may have different courses, then besides the age structure we should also
consider the structure with the course of disease. Let ¢ denote the course of
disease, then the distributed function with age and course of disease should
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be denoted by f(t,a,c), and the dimension of the corresponding model will
increase and the structure will become more complicated. A few results can
be found in references (Hoppensteadt 1974; Zhou et al. 2002; Zhou 1999).

Epidemic models with discrete age structure

Since the unit time of the collection of data about epidemic transmission is
usually in days or months, the parameters of the models with discrete age
structure can be handled and computed more easily and more conveniently
than those with continuous age structure, and these models can sometimes
show richer dynamic behaviors. Still, some common methods used for contin-
uous system (such as derivation and integral operation) can not be applied
to the discrete system, and so the theoretical analysis of the discrete system
will be more difficult. Hence, the results about epidemic models with discrete
age structure are few. In order to show the method of constructing models
with discrete age structure, we give an SIS model with vertical transmission
and death due to disease as follows.

Partition equally the maximum age interval [0, A] into (m + 1) subinter-
vals, and let Br\; denote the adequate contact rate in which an infected in-

dividual whose age belongs to the interval [ﬁ UCH)A} (k=0,1,2,...,m)

m—+1’ m-+1
contacts adequately the individuals with age in the interval [% M}

+1° m+1
(j=0,1,2,...,m), v; the recovery rate of the infective with age in the in-
terval [%, (jrjz—&l-)l ] d; and b; the natural death rate constant and birth

rate constant respectively, and p; = 1 — d;. Thus, according to the ideas of
constructing population models with discrete age structure and the epidemic
compartment model, we form an SIS model with discrete age structure as
follows:

m
Solt+1) = 3 b18;() + L(®)

J=
I(t+1)=0,
Sir1 = p;S;(t) = A Zﬂkme(})wI(), j=0,12...,m-1,
Lt = pyli(8) + X szk();i‘(ii L), j=0,1,2,...,m~1,
Sj(O)ZSj()ZO, Ij(O)—Ij()ZO,Sjo-‘rIjO:Nj, j:O,l,Z,...,m

Allen et al. (1991, 1998) obtained some results for epidemic models with
discrete age structure.

Epidemic models with stage structure

In the realistic world, the birth, death, and the infective rate of individuals
usually depend on their physiological stage. Thus, investigating the model
with stage structure (such as infant, childhood, youth, old age) is significant.
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The results (Xiao et al. 2002; Xiao and Chen 2002; Xiao and Chen 2003; Lu
et al. 2003; Zhou et al. 2003) in this fileld are few. In the following, we again
introduce an SIS model to show the modelling idea.

We now consider only two stages: larva and adult, and assume that the
disease transmits only between larvae. Let z1(¢) denote the number of the
susceptibles of the larvae at time ¢, x5(¢) the number of adults at time ¢, y(t)
the number of the infected larvae of infants at time ¢, 7 the mature period,
ay the birth rate constant, r the natural death rate constant, b the rate
constantfor recovery from disease, and ¢ the coefficient of density dependence
of the adults.

Since the mature period of the larvae is 7, the number of transfers out of
the larva class at time ¢ is the number of the newborn ajzo(t — 7) at time
t — 7 multiplied by the probability e™"" of these newborn who survive until
time t. Thus, an SIS model with stage structure and bilinear incidence can
be given as follows (Xiao and Chen 2003):

21 (t) = arwo(t) —are™"Taa(t — 1) — ray(t) — Bri(t)y(t) + by(t) ,

y'(t) = Baa(t)y(t) — by(t) — (r+ )y(t) , (21)

xh(t) = are "Taa(t — 1) — ca3(t),
where the term cx2(t) in the last equation of (21) is the density dependence
of the adults.

Xiao and Chen (2003) investigated the model (21), obtained the condi-

tions which determine whether the disease dies out or persists, and compared
their results with those obtained by the model without stage structure.

2.3.4 Epidemic model with impulses

Impulses can describe a sudden phenomenon which happens in the process of
continuous change, such as the reproduction of some algae being seasonal, and
vaccinations being done at fixed times of the year. Thus, it is more realistic
to describe the epidemic models with these factors by impulsive differential
equations.

Concepts of impulsive differential equations

In general, differential equations with impulses happening at fixed times take
the following forms:

()= f(t,x), t#m,k=1,2,...
A(Ek = Ik(x(Tk)) y t= Tk » (22)

where f € C'[R x R", R"] satisfies the Lipschitz condition, top < 71 < 12 < -+ -,
Iy € C[R",R"], Azy, = z(r;7) — 2(m), 20 € R, 2(1)) = }liI?(()l+ (7 + h).
11—
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x(t) is called a solution of (22), if it satisfies

L. xl(t) = f(t,l‘(t)),t € [Tk77-k+1);
2. Az, = .13(7']:_) — a(7) for t = 7, that is, (7, ) = x(7) and m(T,j') =
(1) + Axg.

Since impulsive differential equations are non-automatic, they have no
equilibrium. When A7, = 7, — 7,1 is a constant, the existence and stability
of the periodic solution with period A7y are often of interest. For further
comprehension with respect to impulsive differential equations, see the related
references (Lakshmikantham et al. 2003; Bainov and Simeonov 1995; Guo et
al. 1995).

Epidemic models with impulsive birth

The study of epidemic models with impulses has started only recently, and
related results are scarce (D’Onofri 2002; Jin 2001; Roberts and Kao 1998;
Shulgin et al. 1998; Stone et al. 2000; Tang to appear). In the following, we
introduce an SIR model with impulsive birth.

Let b denote the birth rate constant , d the natural death rate constant
r = b—d, and K the carrying capacity of the environment. Assume that there
is no vertical transmission and disease-related death, and A7, = 1. Note that
impulsive birth and the density-dependent term affecting the birth should
appear in the impulsive conditions, so the SIS model with impulsive birth is
the following:

N'(t) = —dN(1) , t;«ék k=1,2,3,...
S'(t) = —dS(t) — BS()I(t) +~I(t), t#k‘,
I'(t) =pSIE) — (v +d)I(t), t#k,
N(t+) = 1+b—’"N(t)}N(t), t=k,

S(tt) = S(t)+[b ”V“}N(t) t=k,
It =1(t), t=k.

=—dN(t), t#k, k=12,3,...
t)= BN () — IW)I(t) — (v +d)I(t), t#k,

)
)

Nt*):{1+b—%(t>}N(t), t=k, (23)
)=1

Theorem 11. (Han 2002) For model (23), there is always the disease-free
periodic solution (N*( ) 0); there exists also the endemic periodic solution

(N5 (t),15(t)) when fo t)dt > 0, where A(t) = BNy (t) — (v + d).
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Epidemic models with impulsive vaccination

Assume the fraction p of the susceptibles is vaccinated at time t = k(k =
0,1,2,...) and enters into the removed compartment. Then, we have the SIR
epidemic model with impulsive vaccination as follows

(24)

B

RI(8) = ~I(t) — bR(t), 4k,
( —p)S(t), t=k,
I

1
), t=k,
= R(t)+pS(t), t=k.

For the model (24), Jin and Ma (to appear) obtained the following results by
means of Liapunov function and impulsive differential inequalities.

Theorem 12. (Jin and Ma to appear) Model (24) has always the disease-free
periodic solution (S*(t),0, R*(t)) with period 1, and it is globally asymptoti-
cally stable when o < 1, where

S5(t) = K — Jee ™

T—(-p)e?
« . Kpe—bt
R'(t) = =5 »
_ _BK (e"—1)
0= y+b+o |:1 B b(pebfler):| ’

2.3.5 Epidemic models with multiple groups

Some diseases may be transmitted between multiple interactive populations,
or multiple sub-populations of a population. In models constructed for these
cases, the number of variables is increased, such that the structure of the
corresponding model is complex, and that analysis becomes difficult, so that
some new dynamic behaviors can be found. We introduce some modelling
ideas as follows.

DI STA model with different infectivity

In this section, we introduce an epidemic model with different infectivity (DI).
Since the differently infected individuals may have different infectivity and
different rate of recovery (removed) from a disease, we may partition the in-
fected compartment into n sub-compartments, denoted by I;(i = 1,2,...,n),
and we let A be the removed compartment in which all the individuals have
terminal illness and have no infectivity due to quarantine (for example, the
HIV infectives enter into the AIDS period). Assume that all the infectives in
compartment I; can come into contact with the susceptibles, that the infec-
tives in the different sub-compartment I; have different adequate contact and
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recovery rates, and that they do not die out due to disease. Thus, we have
a DI STA model with bilinear incidence (Ma, Liu and Li 2003)

S" = uS® — uS - BiSil;

i=1
; —(p+y)I, i=1,2,...,n, (25)
é ~(u+a),

where 11.5° denotes a constant input flow, x the natural death rate constant,
« the disease-related death rate constant, -; the rate constant of transfer
from I; to A, and 3; the adequate contact number of the infective I;. p; is
the probability in which the infected individuals enter the compartment I;,

sz—l

Ma et al. (2003) wrote the first (n 4 1) equations of (25) as the following
equations of vector form:
S = pu(S° - 8)-BTIS,
I'=SBTIP - DI,
where I = (I, Is,....1,)Y,B = (B1,B2,...,0,)T, D = diag(p + v, +

Y2y -y i+ V), P = (p1,D2, - - -, pn) T, and T denotes the transposition. Then,
it was obtained that

Theorem 13. (Ma, Liu and Li 2003) Let Ry = S°BTD~'P. The disease-
free equilibrium is globally asymptotically stable if Ry < 1 and unstable
if Ro > 1; the unique endemic equilibrium is globally asymptotically stable
if Rp > 1.

For Theorem 13, the global stability of the disease-free equilibrium is proved
by using the Liapunov function V = (D~'B)TI. To prove the global sta-
bility of the endemic equilibrium, the variable translations S = S*(1 + x),
I; = I*(l —|— y;)(i = 1,2,...,n) are first made, then the Liapunov function

—|— Z 5—+;~[ —In(1 4+ y;)] is used. At the same time, it is easy to see

that Rg is the basic reproduction number of (25).
DS SIA model with different susceptibility

In this section, we assume that the infected compartment I is homogeneous
but the susceptible compartment S is divided into n sub-compartments .S; (i =
1,2,...,n) according to their susceptibilities, that the input rate of S; is uS?,
and then we have a DS STA model with different susceptibility and standard
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incidence

S/ _ M(So S) BkiSi I
—Z Bl — (n+ ), (26)
A = 'yI (n+a),

where k; reflects the susceptibility of susceptible individuals in sub-compart-
ment S;, and other parameters are the same as those in the previous section.
Since the individuals in A do not come into contact with the susceptible

n
individuals, N = > S; + 1.
i=1
Castillo-Chavez et al. (1996) found the basic reproduction number of (26)

83" ki
ROZ =1 n )
(1 +7) ;SO

and proved that the disease-free equilibrium is locally asymptotically stable
if Ry < 1 and unstable if Ry > 1, and that the disease persists if Ry > 1.

Li et al. (2003) investigated a more complex model, which includes dif-
ferent infectivity and different susceptibility and crossing infections, finding
the basic reproduction number, and obtaining some conditions assuring the
local and global stability of the disease-free equilibrium and the endemic
equilibrium.

Epidemic models with different populations

Though Anderson and May (1986) have incorporated the spread of infective
disease into predator-prey models in 1986, the study of disease transmission
within interactive populations has started only in recent years. For the inves-
tigation of combining epidemic dynamics with population biology, the results
obtained are still poor so far.

Anderson and May (1986) assume that the disease transmits only within
prey species, and that the incidence is bilinear, the model discussed being

H=rX-0b+a)Y —c/(1-)X+Y]P-bX,
=0XY - (b+a)Y —cYP, (27)
P = 6HP —dP,

where H is the sum of the number of individuals in the prey species, X the
number of the susceptible individuals in the prey species, Y the number of
the infective individuals in the prey species, H = X + Y, P the number
of individuals in the predator species, r the birth rate constant of the prey
species, b the natural death rate constant of the prey species, « the disease-
related death rate constant of the infectives in the prey species, 0 reflects the
ability of reproduction of the predator from the prey caught, d the natural
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death rate constant of the predator, ¢ the catching ability of the predator,
and f reflects the difference between catching the susceptible prey and the
infected prey. They found that a disease may result in the existence of stable
periodic oscillation of two species, which implies that the model (27) has
a stable limit cycle.

Some epidemic models of interactive species were discussed (Venturino
1995; Xiao and Chen 2001b; Bowers and Begon 1991; Begon et al. 1992;
Begon and Bowers 1995; Han et al. 2001). Han et al. (2001) investigated four
predator-prey models with infectious disease. Han et al. (2003) analyzed four
other SIS and SIRS epidemic models of two competitive species with bilinear
or standard incidence and crossing infection, obtaining some complete results
where the SIS model with standard incidence is the following
Si = (bl — %)Nl — [dl + (1 — al)’"}gl]Sl — mNy S,

—S-Buly + Brzla) + Iy,
I} = %(ﬁllll + Pials) — vl —[dn + (1 — Cll)T%\lh]Il —mNaly ,
Ny =[ri(1— %) — mN3] Ny,
Sh = (by — 2282 )Ny — [dy + (1 — ag) 222]S5 — N1 S
—}?;—2(52111 + Pa2lz) + v2lz
I = 1%—22(521[1 + Pagls) — yolo — [da + (1 — az)ri(l\f]fz —nNilsy,
Ny = [r2(1 — £2) = nNi]No,
’I“i:bi—di>0, 1=1,2
0<a; <1, i=1,2

(28)

The explanation of parameters in (28) is omitted. Since N; = S; + I;(i =
1,2), (28) can be simplified as follows:

I = Nﬁ\;—lh (Bl + Brole) —

—[dy + (1 — a1) %2 — mNo Iy

Ni = [r1(1— z7) —mNo N
Ié — Niv;b (62111 + 62212) - 72[2 (29)

—[da + (1 — a2) 222] 1, — nN, I,
Ny = [r2(1 = £2) = nNi] Ny,
Ni>L>0, i=1.2
0<a; <1, i=12

The model has six boundary equilibria and one positive equilibrium,and the
attractive region of all feasible equilibria has been determined. The results
obtained show that, under certain conditions, the disease can die out eventu-
ally by cutting off the inter-infections between two species or decreasing the
inter-transmission coefficients between two species to a fixed value.

2.3.6 Epidemic models with migration

The models in the previous sections do not include the diffusion or migration
of individuals in space, and suppose that the distribution of individuals is
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uniform. In fact, with the migration of individuals, the influence of individual
diffusion on the spread of disease should not be neglected. Here, we introduce
two types of diffusions into the epidemic models.

First, we consider the continuous diffusion of individuals in the corre-
sponding compartment. This needs to add the diffusion to the corresponding
ordinary differential equations. For example, the SIR model with diffusion
corresponding to model (4) is

%—f:ASerK—ﬁSI—bS,
g—é:AI+ﬁSI—(b+7)S, (30)
9= AR+~ - bR,

where S = S(t,z,y,2),I = I(t,x,y,z) and R = R(t,z,y, z) denote the num-
bers of the susceptibles, the infectives, and the removed individuals at time ¢
and point (z,y, z), respectively; AS = ‘3275 + 227‘5 + ?;7‘3, Al = % + g’% + %
and AR = % + %}; + %ﬂi are the diffusion terms of the susceptibles, the
infectives, and the removed individuals at time ¢ and point (z,y, z), respec-
tively. This model is a quasi-linear partial differential system. Model (30),
with some boundary conditions, constitutes an SIR epidemic model with dif-
fusion in space.

Second, we consider the migration of individuals among the different
patches (or regions). Though Hethcote (1976) established an epidemic model
with migration between two patches in 1976, studies dealing with this aspect
are rare. Brauer et al. (2001) discussed an epidemic model with migration of
the infectives. Recently, Wang (2002) considered an SIS model with migration
among n patches. If there is no population migration among patches, that is,
the patches are isolated, according to the structure of population dynamics
proposed by Cooke et al. (1999), the epidemic model in ith (i = 1,2,...,n)
patch is given by

{ S,Z = Bl(Nl)Nl - MiSi - 615111 + PYiIi )
Il = BiSil; — (i + i) s

where the birth rate in ith patch B;(N;) for N; > 0 satisfies the following
common hypothesis:

Bi(N;) >0, B;i(N;) € C0,4+00), BI(N;) <0, and p; > Bi(+00).

(2

If n patches are connected with each other, i. e., the individuals between any
two patches can migrate, then the SIS epidemic model with migration among
n patches is the following:

n
Si = Bi(Ni)N; — i Si — BiSili +vili + >~ aijSj ,
N =t (31)
Il = B3:iSil; — (i + )L + Y byl

Jj=1
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where a;; and b;; (a;; < 0,b;; < 0) denote the migration rates of the suscepti-
bles and the infectives from the ith patch to other patches, respectively; a;;
and b;; (a;; > 0,b;; > 0) denote the immigration rates of the susceptibles
and the infectives from the jth patch to ith patch, respectively. Model (31)
assumes that the disease is not fatal, and the death and birth of individuals in
the process of migration are neglected. Since the individuals migrating from
the ith patch will move dispersedly to the other (n — 1) patches, we have

n n
—ai =Y aji, —bii =Y _bji.
=1 =1
J#i J#i
Under the assumptions that the matrices (a;5) and (b;;) are all in-reducible,
by means of related theory of matrix, Wang (2002) obtained the conditions of
local and global stability of the disease-free equilibrium, and the conditions
under which the disease persists in all patches. Particularly, for the case of
two patches, the conditions about the disease-free equilibrium obtained by
Wang (2002) show the following: when the basic reproduction number Ris,
which is found when regarding two patches as one patch, is greater than
one, the disease persists in two patches; when R < 1 and Rio — @150 > 1
(where @15 denotes one number minus the other number, the first number is
the product of the number of new patients infected by an infected individual
within the average infective course in one patch and that in another patch,
the second number is the product of the number of migrated patients within
the average infective course in one patch and that in another patch), the
disease still persists; when Ris < 1 and Ris — @12 < 1, the disease dies out
in two patches. The formulation above indicates: Rj2 < 1 can not ensure the
extinction of the disease, and the condition Ris — @15 < 1 is also added. This
result shows that migration among patches can affect the spread of disease.
Besides those research directions mentioned above, there are some other
research directions of epidemic dynamics, such as: using non-autonomous
models, where the coefficients of the epidemic model are time dependent, in-
cluding periodic coefficients and more general time-dependent coefficients (Lu
and Chen 1998;Ma 2002); combining epidemic dynamics with eco-toxicology
to investigate the effect of pollution on the spread of disease in a polluted
environment (Wang and Ma 2004); combining epidemic dynamics with molec-
ular biology to investigate the interaction among viruses, cells and medicines
inside the body (De Boer et al. 1998; Lou et al. 2004a, 2004b; Perelson
et al. 1993; Wang et al. to appear; Wang et al. 2004); combining epidemic dy-
namics with optimal control to investigate the control strategy of epidemics
(He 2000); considering stochastic factors to investigate the stochastic dynam-
ics of epidemics (Jing 1990); and using some special disease to construct and
investigate a specific model (Feng and Castillo-Chavez 2000; Hethcote and
Yorke 1984). Because of limited space, we can not discuss these one by one.
In the following, we only introduce the modelling and investigation of SARS
according to the real situation existing on mainland China in 2003.
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2.3.7 Epidemic models for SARS in China

SARS (Severe Acute Respiratory Syndrome) is a newly acute infective disease
with high fatality. This infection first appeared and was transmitted within
China in November 2002, and spread rapidly to 31 countries within 6 months.
In June 2003, the cumulative number of diagnosed SARS cases had reached
8454, of which 793 died in the whole world (WHO; MHC). In China, 5327
cases were diagnosed, and 343 cases died (MHC).

Since SARS had never been recorded before, it was not diagnosed correctly
and promptly, and there have been no effective drugs or vaccines for it so
far. Therefore, investigating its spread patterns and development tendency,
and analyzing the influence of the quarantine and control measures on its
spread are significant. In the initial period of onset of SARS, some researchers
(Chowell et al. 2003; Donnelly et al. 2003; Lipsitch et al. 2003; Riley et al.
2003) studied its spread rule and predicted its development according to
the data published at that time. Based on the data available for China,
Zhang et al. (2004) and Zhou et al. (2004) established some continuous and
discrete dynamic models, and discovered some transmission features of SARS
in China, which matched the real situation quite well.

Continuous model for SARS in China

The difficulties we met in the modelling of SARS are the following: (1) be-
cause SARS is a new disease, the infectious probability is unknown, and
whether the individuals in the exposed compartment have infectivity is not
sure; (2) how to construct the model such that it fits the situation in China?
Especially, how to account for those effective control measures carried out
by the government, such as various kinds of quarantine, and how to obtain
data for those parameters which are difficult to quantify, for example, the
intensity of the quarantine?

Based on the general principles of modelling of epidemics, and the special
case of the prevention and control measures in China, Zhang et al. (2004)
divided the whole population into two related blocks: the free block in which
the individuals may move freely, and the isolated block in which the indi-
viduals were isolated and could not contact the individuals in the free block.
Further, the free block was divided into four compartments: the susceptible
compartment (S), the exposed compartment (E), the infectious compart-
ment (I), and the removed compartment (R); the isolated block was divided
into three compartments: the quarantined compartment (@), the diagnosed
compartment (D), and the health-care worker compartment (H).

The susceptible compartment (S) consisted of individuals susceptible to
the SARS virus; the individuals in the exposed compartment (E) were ex-
posed to the SARS virus, but in the latent period (these were asymptomatic
but possibly infective); the individuals in the infectious compartment (I)
showed definitive symptoms, and had strong infectivity, but had not yet been
isolated; the individuals in the removed compartment (R) were those who had
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recovered from SARS, with full immunity against re-infection. The individu-
als in the quarantined compartment (@) were either individuals carrying the
SARS virus (but not yet diagnosed) or individuals without the SARS virus
but misdiagnosed as possible SARS patients; the individuals in the diagnosed
compartment (D) were carriers of SARS virus and had been diagnosed; the
health-care worker compartment (H) consisted of those who were health-care
workers with high susceptibility (since SARS is not known well), and were
quarantined due to working with the individuals in the isolated block.

To control and prevent the spread of SARS, the Ministry of Health of
China (MHC) decreed the Clinic Diagnostic Standard of SARS, and imposed
strict measures of quarantine at that time. According to these measures,
any individual who came into contact with a diagnosed patient with SARS
directly or indirectly, or had clinical symptoms similar to those of SARS, such
as fever, chills, muscular pain, and shortness of breath, would be quarantined
as a possible SARS patient. These measures played a very important role
in controlling the spread of SARS in China. Inevitably, many individuals
were misdiagnosed as SARS suspected, and hence were mistakenly put in the
Q-compartment due the to lack of a fast and effective SARS diagnostic test.
According to the relations among all compartments, the transfer diagram of
SARS should be Fig. 2.7.

Let S(t), E(t),I(t), R(t),Q(t), D(t), and H(t) denote the number of indi-
viduals in the compartments S, E, I, R, Q, D, and H at time ¢, respectively.

A2 A3
S, E,I,R E
A1 g f( ) E £ 7 ol
deqD
deg B/
bea@Q ! dial
Q
dqu
Ap, H,Q,D D
- g(H,Q, D) D Y R
aD

Fig. 2.7. Transfer diagram for the SARS model in China
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Thus, corresponding to the transfer diagram in Fig. 2.7, we have the com-
partment model of SARS as follows:

S§' = Ay — f(S,E,I,R) — dsyD + b, Q,

E' = Ay + f(S,E,I,R) — ¢E — do E
I'=A3 +eE —digl — ol ,

Q' =degE + dsgD — bsqQ — dgqQ , (32)
D' =g(H,Q,D)+ dgaQ + dial —aD — D,

H' = A, —g(H,Q,D),

R =4D,

where F(S, E,I, R) and g(H,Q, D) are the incidences in the free block and
the isolated block, respectively. The general form of the incidences is C %I ,
where (3 is the probability of transmitting the virus per unit time of effective
contact (this measures the toxicity of the virus), and C is the adequate contact
number of a patient with other individuals (this reflects the strength of control
and prevention against SARS). Let C'r and C; denote the contact rates, and
let Bg and B; denote the probabilities of transmission of exposed individuals
and infective individuals in the free block, respectively. Then, the incidence
in the free block is given by

S
S+E+I+R’
Here, to be on the safe side, we suppose that the individuals in the exposed

compartment have a small infectivity, that is, 0 < Bp < (7. Similarly, we
can get

J(S,E,I,R) = (BeCpE + B:C11)

H

9(H,Q, D) = (foCoQ + pCp D) 5= -

For the sake of simplicity, let ky = %Elgf denote the ratio of the infectiv-

ity between an individual in the E-compartment and an individual in the
I-compartment, then we rewrite the incidence terms f(S, E, I, R) as

f(Svaij) = 6(t)(k1E+I)

where §(t) = % represents the infectious rate.

We took one day as unit time, and assumed that the average latent period
is 5 days (WHO; MHC). From the statistical data published by MHC (Rao
and Xu 2003), each day 80% of the diagnosed SARS cases come from the

Q-compartment, and 20% come from the I-compartment. So, we let

1 20 1 80
€=— X — g = =

) X —
5 100 5 100
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Since the average number of days from entering the I-compartment to mov-
ing to the D-compartment is 3 days, diq = % On the other hand, if we
assumed that the average transition times from the Q-compartment to the
D-compartment, and from the Q-compartment to the S-compartment (those
are misdiagnosed) are 3 days and 10 days, respectively, then by denoting
the number of removed from quarantines to susceptibles and that of diag-
nosed from quarantines by ¢s and g4 respectively, based on the daily re-
ported data from MHC, we get the ratio of non-infected individuals in the

s —
Q-compartment, Tt = 0.6341. Thus,

1 1
dga = (1 —0.6341) x 3 bsq = 0.6341 x o

Since the period of recovery for an SARS patient is about 30 days and the
statistical analysis from the MHC shows that the ratio of the daily number
of new SARS suspected cases to the daily number of new SARS diagnosed
cases is 1.3:1, then

fy:%, dsd:1.3><0.6341><%.
Finally, since the probability of SARS-related death is 14%, a = % x 0.14.

The determination of the incidences in the free block and the isolated
block is the key to analyzing the SARS model (32). This is difficult because
of the poor understanding of the SARS virus toxicities and the difficulty
in quantifying these quarantines. Nevertheless, significant amounts of data
have been collected during the course of SARS outbreak in China after the
middle of April 2003. Here, we use the back-tracking method to estimate the
adequate contact rate.

Let f (t) denote the number of new diagnosed SARS cases (reported by
MHC) minus the number of new diagnosed SARS cases in the H-compartment
at time t. F'(t) := f(S(t), E(t),I(t), R(t)), the new infectives at time ¢ (tth
day) in the free block should be f (t + 8) because the average number of days
from exposure to the SARS virus to the definite diagnosis is 8 days, with the
first 5 days in the E-compartment (with low infectivity) and the last 3 days
in the I-compartment (with high infectivity). Therefore,

_ BGSs P F(t+8)
— - :
S+E+I+R I(t)+kE{) Zof(t+j)+k1.i3f(t+j)
Jj= 7=

B(t)

Analogously, we can obtain the incidence in the isolated block.
By regression analysis of the data published by WHC, we obtain

B(t) = 0.002 4 0.249 01303t
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3500 ‘ : : : Fig. 2.8. The simulated
curve (continuous) and the
reported (by MHC, marked in
stars) daily number of SARS
patients in hospitals

3000 -

2500

2000 -

1500

1000

500

! L L
0 50 100 150 200 250

Based on the above approach, Zhang et al. (2004) carried out some nu-
merical simulations to validate the model (32), and discussed the effectiveness
of control measures, and to assess the influence of certain measures on the
spread of SARS, by varying some parameters to gauge the effectiveness of
different control measures. All numerical simulations started on April 21 of
2003, that is, the origin of the time axis (horizontal) corresponds to April 21

x10°

0 I I I
0 500 1000 1500 2000 2500

Fig. 2.9. The prediction for the transmission pattern in China without control
measures after April of 2003. The outbreak peaks at the end of October of 2004,
with over 4.5 million individuals infected, though the SARS toxicity declines expo-
nentially
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of 2003. Figure 2.8 shows the simulated curve of the daily number of SARS
patients in hospitals in reality. Figure 2.9 shows the case with no control
measures after April 21 of 2003. Figure 2.10 shows the case under which the
prevention and control measures were relaxed from May 19 of 2003 onwards.
Figure 2.11 shows the influence of the slow quarantine speed.

From the simulations above, we consider that the rapid decrease of the
SARS patients can be attributed to the high successful quarantine rate and
timely implementation of the quarantine measures, and indeed all of the

prevention and control measures implemented in China are very necessary
and effective.

Discrete model for SARS in China

Zhou et al. (2004) followed the same idea of modelling the transmission of
SARS in China as that presented above, and proposed a discrete model for
SARS in China. However, the susceptible compartment, which includes the
S-compartment and the H-compartment, was omitted in this case, because
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the number of susceptible individuals was extremely large compared with the
number of individuals in other compartments, and some SARS patient can
not contact all the population.

Zhou et al. (2004) made the following assumptions: the new infected ex-
posed is proportional to the sum kE(t) + I(t); individuals in the E-com-
partment move to the I-compartment and Q-compartment at the rate con-
stant € and A, respectively; individuals in the Q-compartment move to the
D-compartment at the rate constant o; individuals in the I-compartment
move to the D-compartment at the rate 8; individuals in the D-compartment
move to the R-compartment at rate constant ; d and « are the natural death
rate constant and the SARS-induced death rate constant, respectively. Then,
the model proposed is

Et+1)=E@W)+B@)FER) + 1) - (d+e+NE(),
I(t+1)=I(t)+eB(t) — (d+a+0)I(t),

Q(t+1) = Q) + AE(t) — (d +0)Q(t) , (33)
D(t+1) = D(t) + 0I(t )—i—oQ( )= (d+a+7)D(t),

R(t+1) = R(t) +vD(t) — dR(t) .

Similarly to the methods used by Zhang et al. (2004), Zhou et al. (2004)
determined the parameters in model (33).

Zhang et al. (2004) and Zhou et al. (2004) varied some parameters to
analyze the effectiveness of different control and quarantine measures. These
new parameters corresponded to the situation when the quarantine measures
in the free block were relaxed or when the quarantine time of SARS patients
was postponed. The purpose of the introduction of these new parameters was
to demonstrate the second outbreak with a maximum number of daily SARS
patients and a delayed peak time. They obtained the basic reproduction
number, and their results agree quite well with the developing situation of
SARS in China.

References

1. Allen L. J. S.,and D. B. Thrasher (1998), The effects of vaccination in an
age-dependent model for varicella and herpes zoster, IEEE Transactions on
Automatic Control, 43, 779.

2. Allen, L. J. S., M. A. Jones and C. E. Martin (1991), A Discrete-time model
with vaccination for a measles epidemic, Math. Biosci., 105, 111.

3. Anderson, R. and R. May (1982), Population Biology of infectious diseases,
Spring-Verlag, Berlin, Heidelberg, New York.

4. Anderson, R. M. and R. M. May (1986), The invasion, persistence, and spread
of infectious diseases within animal and plant communities, Phil. Trans. R.
Soc., B314, 533.

5. Baily, N. T. J. (1975), The Mathematical theory of infectious disease, 2nd edn,
Hafner, New York.



44

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Zhien Ma and Jianquan Li

Bainov,D. D. and P. S. Simeonov (1995), Impulsive Differential Equations:
Asymptotic Properties of the solutions, World Scientific, New Jersey London.
Begon, M. and R. G. Bowers (1995), Host-host-pathogen models and microbial
pest control: the effect of host self-regulation, J. Theor. Biol., 169, 275.
Begon, M., R. G. Bowers and N. Kadianakis, et al. (1992), Disease and com-
munity structure: the importance of host-regulation in a host-host-pathogen
model, Am. Nat., 139,1131.

Bowers, R. G. and M. Begon (1991), A host-pathogen model with free living
infective stage, applicable to microbial pest control, J. Theor. Biol., 148, 305.
Brauer, F and C. Castillo-Chavez (2001), Mathematical Models in Population
Biology and Epidemiology. In Marsden, J. E., L. Sirovich and M. Golubit-
sky, Texts in Applied Mathematics, vol 40, Springer-Verlag, New York Berlin
Heidelberg.

Brauer, F. and P. van den Driessche (2001), Models for transmission of disease
with immigration of infectives, Math. Biosci., 171, 143.

Busenberg, S. and P. van den Driessche (1990), Analysis of a disease trans-
mission model in a population with varying size, J. Math. Biol., 28, 257.
Busenberg, S., K. Cooke and M. Iannelli (1988), Endemic, thresholds and
stability in a case of age-structured epidemics, SIAM J. Appl. Math., 48,
1379.

Busenberg, S., M. Iannelli and H. R. Thieme (1991), Global behavior of an
age-structed epidemic model, SIAM J. Math. Anal., 22, 1065.

Capasso, V. (1993), Mathematical Structures of Epidemic systems, In C.
Castillo-Chavez, Lecture Notes in Biomathematics, vol 97, Springer-Verlag,
Heidelberg.

Castillo-Chavez, C., W. Z. Huang and J. Li (1996), Competitive exclusion
in gonorrhea models and other sexually transmitted diseases, STAM J. Appl.
Math., 56, 494.

Castillo-Chavez, C., S. Blower and P. van den Driessche (2002), Mathematical
Approaches for Emerging Infectious Diseases. In C. Castillo-Chavez, The IMA
volumes in mathematics and its applications, vol 125, Springer-Verlag, New
York Berlin Heidelberg.

Chowell, G., P. W. Fenimore, M. A. Castillo-Garsow and C. Castillo-Chavez
(2003), SARS outbreaks in Ontario, Hong Kong, and Singapore: the role of di-
agnosis and isolation as a control mechanism, Los Alamos Unclassified Report
LA-UR-03-2653.

Cooke, K., P. van den Driessche and X. Zou (1999), Interaction of maturation
delay and nonlinear birth in population and epidemic models, J. Math. Biol.,
39, 332.

De Boer, R. J. and A. S. Perelson (1998), Target cell limited and immune
control models of HIV infection: a comparison, J. Theor. Biol., 190, 201.
Dietz, K. (1982), Overall population patterns in the transmission cycle of in-
fectious disease agents, In C. Castillo-Chavez, Population Biology of infectious
disease, vol 56, Springer, New York.

Dietz, K. and D. Schenzle (1985), Proportionate mixing models for age-
dependent infection transmission, J. Math. Biol., 22, 117.

Donnelly, C. A., et al. (2003), Epidemiological determination of spread of
causal agent of severe acute respiratory syndrome in Hong Kong. The Lancent,
Publish online May 7, http://image.thelacent.com/extras/03 art 4453 web.psf.



24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

2 Basic Knowledge and Developing Tendencies in Epidemic Dynamics 45

D’Onofri, A.(2002), Stability properties of pulse vaccination strategy in SEIR
epidemic model, Math. Biosci., 179, 57.

Dushoff, J., W. Huang and C. Castillo-Chavez (1998), Backward bifurcation
and catastrophe in simple models of fatal disease, J. Math. Biol., 36, 227.
Fan, M. and M. Y. Li, K. Wang (2001), Global stability of an SEIS epidemic
model with recruitment and a varying total population size, Math. Biosci.,
170, 199.

Feng, Z. and C. Castillo-Chavez (2000), A model for tuberculosis with exoge-
nous reinfection, Theoret. Popul. Biol., 57, 235.

Feng, Z. and H. R. Thieme (2003a), Endemic models with arbitrarily dis-
tributed periods of infection, I: general theory, STAM J. Appl. Math.,
61, 803.

Feng, Z. and H. R. Thieme (2003b), Endemic models with arbitrarily dis-
tributed periods of infection, II: fast disease dynamics and permanent recov-
ery, STAM J. Appl. Math.,61, 983.

Guo, D. J., J. X. Sun and Z. L. Zhao (1995), Methods of Nonlinear Scientific
Functionals, Shandong Scientific Press, Jinan.

Hadeler, K. and P. van den Driessche (1997), Backward bifurcation in epidemic
control, Math. Biosci., 146, 15.

Hamer, W. H.(1906), Epidemic disease in England, Lancet, 1, 733.

Han, L. T.(2002), Study on epidemic models of two interaction species. DR
Thesis, Xi’an Jiaotong University, Xi’an, China.

Han, L. T., Z. E. Ma and T. Shi (2003), An SIRS epidemic model of two
competitive species, Mathl. Comput. Modelling, 37, 87.

Han, L. T., Z. E. Ma and H. M. Hethcote (2001), Four predator prey model
with infectious diseases, Mathl. Comput. Modelling, 34, 849.

He, Z. R. (2000), Optimal control of population dynamical systems with age-
structure. DR Thesis, Xi’an Jiaotong University, Xi’an, China

Heesterbeek, J. A. P. and J. A. J. Metz (1993), The saturating contact rate
in marrige and epidemic models, J. Math. Biol., 31, 529.

Hethcote, H. (1976), Qualitative analysis of communicable disease models,
Math. Biosci., 28, 335.

Hethcote, H. W. and P. van den Driessche (1995), An SIS epidemic model
with variable population size and a delay, J. Math. Biol.,34, 177.

Hethcote, H. W. and J. A. Yorke (1984), Gonorrhea transmission dynam-
ics and control. In H. W. Hethcote, Lecture Notes Biomathematics, vol 56,
Springer-Verlag, Berlin-Heidelberg-New York.

Hethcote, H., Z. E. Ma, and S. Liao (2002), Effects of quarantine in six endemic
models for infectious diseases, Math. Biosci., 180, 141.

Hoppensteadt, F. (1974), An age dependent epidemic model, J. Franklin Inst.,
197, 325.

Tannelli, M., F. A. Miller and A. Pugliese (1992), Analytic and numerical
results for the age-structured SIS epidemic model with mixed inter-intracohort
transmission, STAM J. Math. Anal., 23, 662.

Tannelli, M., M. Y. Kim and J. Park (1999), Asymptotic behavior for an SIS
epidemic model and its approximation, Nonlinear Analysis: ATM, 35, 797.
Jin, Z. (2001), The study for ecological and epidemic models influenced by
impulses. DR Thesis, Xi’an Jiaotong University, Xi’an, China.

Jin, Z. and Z. E. Ma, Epidemic models with continuous and impulse vaccina-
tion, to appear.



46

47

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Zhien Ma and Jianquan Li

Jing, Z. J. (1990), Mathematics and AIDS, Practice and Understanding of
Mathematics, 20, 47.

Kermack, W. O. and A. G. McKendrick (1932), Contributions to the mathe-
matical theory of epidemics, Proc. Roy. Soc., 138, 55.

Kermack, W. O. and A. G. McKendrick (1927), Contributions to the mathe-
matical theory of epidemics, Proc. Roy. Soc., 115, 700.

Lakshmikantham, V., D. D. Bainov and P. S. Simeonov (1989), Theory of
Impulsive Differential Equations, World Scientific Press, London.

Langlais, M. (1995), A mathematical analysis of the SIS intra-cohort model
with age-structure. In C. Castillo-Chavez, Mathematical Population Dynam-
ics, vol 1, Wuerz Publishing Ltd., Winning, Canada, pp 103-117.

Li, J. Q. and Z. E. Ma (2003), Qualitative analysis of an epidemic model with
vaccination, Annals of Differential Equations, 19, 34.

Li, J. Q. and Z. E. Ma (2004), Global analysis of SIS epidemic models with
variable total population size, Mathl. Comput. Modelling,39, 1231.

Li, J. Q. and Z. E. Ma (2004), Stability analysis for SIS epidemic models with
vaccination and constant population size, Discrete and Continuous Dynamical
Systems: Series B, 4, 637.

Li, J. Q. and Z. E. Ma(2002), Qualitative analyses of SIS epidemic model with
vaccination and varying total population size, Mathl. Comput. Modelling, 35,
1235.

Li, J. Q. and Z. E. Ma, Global stability of two epidemic models with vaccina-
tion, to appear

Li, J. Q., Z. E. Ma and Y. C. Zhou, Global analysis of SIS epidemic model
with a simple vaccination and multiple endemic equilibria, to appear.

Li, J., Z. E. Ma and S. P. Blythe and C. Castillo-Chavez (2003), On coexistence
of pathogens in a class of sexually transmitted diseases models, J. Math. Biol.,
47, 547.

Li, M. Y. and J. S. Muldowney (1995), Global stability for the SEIR in epi-
demiology, Math. Biosci., 125, 155.

Li, M. Y. and L. Wang, Global stability in some SEIR epidemic models, to
appear.

Li, M. Y. and J. R. Graef, L. Wang, et al. (1999), Global dynamics of a SEIR
model with varying total population size, Math. Biosci., 160, 191.

Li, M. Y. and J. S. Muldowney (1996), A geometric approach to the global
stability problems, STAM J. Math. Anal., 27, 1070.

Li, M. Y., H. L. Smith and L. Wang (2001), Global dynamics of an SEIR
epidemic model with vertical transmission, STAM J. Appl. Math., 62, 58.

Li, X. Z., G. Gupur and G. T. Zhu (2001), Threshold and stability results for
an age-structured SEIR epidemic model, Comp. Math. Appl., 42, 883.

Li, X. Z.. and G. Gupur and G. T. Zhu (2003), Mathematical Theory of Age-
Structured Epidemic Dynamics. Research Information Ltd., Hertfordshire
Lipsitch, M., et al. (2003), Transmission dynamics and control of severe
acute respiratory syndrome, Published online May 23, 2003; 10.1126/sci-
ence.1086616 (Science Express Reports).

Liu, Han-Wu, J. Xu and Q. M. Xu (2002), SIS epidemic models with contin-
uous vaccination and age structure, Chinese J. Engin. Math., 19, 25.

Liu, Wei-min., H. W. Hethcote and S. A. Levin (1987), Dynamical behav-
ior of epidemiological model with nonlinear incidence rates, J. Math. Biol.,
25, 359.



69.

70.

71.

2.

73.

4.

75.

76.

7.

78.

79.

80.

81.
82.

83.

84.

85.

86.

87.

88.

89.
90.

2 Basic Knowledge and Developing Tendencies in Epidemic Dynamics 47

Liu, Wei-min., S. A. Levin and Y. Iwasa (1986), Influence of nonlinear inci-
dence rates upon the behavior of SIRS epidemiological models, J. Math. Biol.,
23, 187.

Lizana, M. and J. Rivero (1996), Multiparametric bifurcation for a model in
epidemiology, J. Math. Biol., 35, 21.

Lou, J., Z. E. Ma and J. Q. Li, et al. (2004a), The impact of the CD8+ cell
non-cytotoxic antiviral response (CNAR) and cytotoxic T lymphocyte (CTL)
activity in a cell-to-cell spread model for HIV-1 that includes a time delay,
Journal of Biological Systems, 12, 73.

Lou, J., Z. E. Ma and Y. M. Shao, et al. (2004b), Modelling the interaction of
T cells, antigen presenting cells and HIV in vivo, to appear in Comput. Math.
Appl.

Lu, Z. H. and L. S. Chen (1998), Threshold theory of a nonautonomous SIS-
infectious diseases model with logistic species growth. In Advanced topics in
biomathematics, Proc. of ICMB’97’ Hangzhou, China, World Scientific Press,
Singapore.

Lu, Z. H., S. J. Gao and L. S. Chen (2003), Analysis of an SI epidemic model
with nonlinear transmission and stage structure, Acta Math. Scientia, 4, 440.
Ma, J. L.(2002), Study of threshold of nonautonomous infectious diseases mod-
els. MA Thesis, Xi’an Jiaotong University, Xi’an, China.

Ma, W. B., T. Hara, Y. Takeuchi (2002), et al., Permanence of an SIR epidemic
model with distributed time delays, Tohoku Math., 54, 365.

Ma, Z. E. and Y. C. Zhou (2001), Methods of Qualitativeness and Stability for
Ordinary Differential Equations, Science Press, Beijing.

Ma, Z. E., J. P. Liu and J. Li (2003), Stability analysis for differential infec-
tivity epidemic models, Nonlinear Analysis: RWA, 4, 841.

Ma, Z. E., Y. C. Zhou, W. D. Wang, Z. Jin (2004), Mathematical Modelling
and Study of Epidemic Dynamics, Science Press, Beijing.

Mena-Lorca, J. and H. W. Hethcote (1992), Dynamic models of infectious
diseases as regulators of population sizes, J. Math. Boil., 30, 693.

MHC, Available from http://168.160.244.167 /sarsmap.

MHC, Available from
http://www.moh.gov.cn/zhgl/xgxx /fzzsjs /1200304290124 htm.

MHC, Available from
http://www.moh.gov.cn/zhgl /xgxx /fzzsjs /1200306030008 htm.

Miiller, J. (1998), Optimal vaccination patterns in age-structured populations,
SIAM J. Appl. Math., 59, 222.

Muldowney, J. S. (1990), Compound matrices and ordinary differential equa-
tions, Rocky Mount. J. Math., 20, 857.

Pazy, A.(1983), Semigroups of Linear Operators and Applications to Partial
differential Equations, Springer-Verlag, Berlin Heidelberg.

Perelson, A. S., D. E. Kirschner and R. J. De Boer (1993), Dynamics of HIV
infection of CDT T cells, Math. Biosci., 114, 81.

R. V. Culshaw and S. Ruan (2003), A mathematical model of cell-to-cell
spread of HIV-1 that includes a time delay, J. Math. Biol., 46, 189.

Rao, K. and D. Xu 2003, The talk on CCTV on May 9.

Riley, S., et al. (2003), Transmission dynamics of the etiological agent of SARS
in Hong Kong: impact of public health interventions, Published online May
23, 2003; 10.1126/science.1086478 (Science Express Reports).



48

91.

92.
93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

Zhien Ma and Jianquan Li

Roberts, M. G. and R. R. Kao (1998), The dynamics of an infectious disease
in a population with birth pulses, Math. Biosci., 149, 23.

Ross, R. (1911), The prevention of Malaria, 2nd edn, Murray, London.
Ruan, S. G. and W. D. Wang (2003), Dynamic behavior of an epidemic model
with a nonlinear incidence rate, J. Diff. Eqns., 18, 135.

Shulgin, B., L. Stone and Z. Agur (1998), Pulse vaccination strategy in the
SIR epidemic model, Bull. Math. Biol., 60, 1123.

Stone, L., B. Shulgin and Z. Agur(2000), Theoretical examination of the pulse
vaccination policy in the SIR epidemic model, Mathl. Comput. Modeling,
31, 207.

Tang, S. Y., Y. N. Xijao and L. S. Chen, The dynamics of SIS epidemic models
with pulse vaccination, to appear.

Van den Driessche P. and J. Watmough (2000), A simple SIS epidemic model
with a backward bifurcation, J. Math. Biol., 40, 525.

Venturino, E. (1995), Epidemics in predator-prey models: Disease in the prey.
In C. Castillo-Chavez, Mathematical population dynamics : Analysis of het-
erogeneity, vol 1, Wuerz Publishing, Canada.

Wang, F. and Z. E. Ma (2004), Persistence and periodic orbits for SIS model
in a polluted environment, to appear in Comput. Math. Appl.

Wang, F., Z. Ma and Y. M. Shao (2004), A competition model of HIV with
recombination effect, to appear on Mathl. Comput. Modelling.

Wang, F., Z. Ma and Y. M. Shao, Recombination HIV model with time delay,
to appear.

Wang, W. D. (2002a), Global Behavior of an SEIRS epidemic model time
delays, Appl. Math. Lett., 15, 423.

Wang, W. D. (2002b), Stability and bifurcation of epidemic mathematical
models, DR Thesis, Xi’an Jiaotong University, Xi’an, China.

Wang, W. D. and Z. E. Ma(2002), Global dynamics of an epidemic model
with time delay. Nonlinear Analysis: Real Word Applications, 3, 365.

WHO and CDC, Available from http://www.moh.gov.cn/was40/detail?record
=14&channelid=8085 &searchword=%B7%C7%B5%E4%D2%DF%C3%ET.
WHO, Available from http://www.who.int/csr/sars/country /2003 06 13/en.
World Health Organization Report (1995).

Wu, L-I. and Z. Feng (2000), Homoclinic bifurcation in an SIQR model for
childhood diseases, J. Diff. Eqnt., 168, 150.

Xiao, Y. N. and L. S. Chen (2003), On an SIS epidemic model with stage
structure, J. Sys. Sci. and complexity, 16, 275.

Xiao, Y. N. and L.. S. Chen (2001a), Analysis of a SIS epidemic model with
stage structure and a delay, Communications in Nonlinear Sci. and Numer.
Simul., 1, 35.

Xiao, Y. N. and L..S. Chen (2001b), Modelling and analysis of a predator-prey
model with disease in the prey, Math. Biosci., 170, 59.

Xiao, Y. N., L. S. Chen and F. ven den Bosch (2002), Dynamical behavior
for a stage-structured SIR infectious disease model, Nonlinear Analysis: Real
Word Applications, 3, 175.

Xiao,Y. N. and L. S. Chen (2002), A SIS epidemic model with stage structure
and a delay, Acta Math. Appl. Sinica, English Series, 18, 607.

Yuan, S. and Z. Ma (2001), Global stability and Hopf bifurcation of an SIS
epidemic model with time delays, J. System Sci. Complexity, 14, 327.



115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

2 Basic Knowledge and Developing Tendencies in Epidemic Dynamics 49

Yuan, S. and Z. Ma (2002), Study on an epidemic model with time variant
delay, J. System Sci. Complexity, 14, 299.

Yuan, S., L.. Han and Z. Ma (2003a), Analysis of an SIS epidemiologic model
with variable population size and a delay, Appl. Math. J. Chinese Univ. Ser.B,
16, 9.

Yuan, S., Z. Ma and Z. Jin (2003b), Persistence and periodic solution on
nonautonomous SIS model with delays, Acta Appl. Math. Sinica, English Se-
ries, 19, 167.

Zhang, J. and Z. E. Ma (2003), Global dynamics of an SEIR epidemic model
with saturating contact rate, Math. Biosci., 185, 15.

Zhang, J. and Z. E. Ma, Global dynamics of an SEIR epidemic model with
population dependent incidence, to appear.

Zhang, J., J. Lou, Z. E. Ma and J. H. Wu (2004), A compartmental model for
the analysis of SARS transmission patterns and outbreak control measures in
China, to appear in Appl. Math. Computations.

Zhou, Y. C. (1999), Epidemic models with age-structure and the infective
courses and their asymptotical behavior. DR Thesis, Xi’an Jiaotong Univer-
sity, Xi’an, China.

Zhou, Y. C., B. J. Song and Z. E. Ma (2002), The global stability analysis for
emerging and reemerging infectious diseases, In: C. Castillo-Chavez The IMA
volumes in mathematics and its applications, vol 125, Springer-Verlag, New
York Berlin Heidelberg.

Zhou, Y. C., Z. E. Ma and F. Brauer (2004), A discrete epidemic model
for SARS transmission and control in China, to appear on Mathl. Comput.
Modelling.

Zhou, Y., M. Z. Lou and J. Lou (2003), Study of an type of epidemic model
with age stage, Chinese J. Engin. Math., 20, 135.

Zhu, L. Y. and Y. C. Zhou (2003), Global stability of the positive steady
solution of epidemic models with vaccination and age structure, J. BioMath.,
18, 27.





