
1. Introduction
Wildfires are one of the largest sources of fine particulate matter (PM2.5) emissions in the U.S. (U.S. EPA, 2016), 
which is the primary pollutant of concern for human health (Cohen et al., 2017). As emissions from major anthro-
pogenic sources continue to decrease and wildfire frequency and magnitude intensify under climate change, their 
influence on U.S. air quality is expected to grow (Kaulfus et al., 2017; Liu et al., 2016; McClure & Jaffe, 2018; 
U.S. EPA, 2019b). Exposure to wildfire smoke has been strongly associated with negative health impacts includ-
ing premature mortality and respiratory morbidities, such as asthma and chronic obstructive pulmonary disease 
(COPD) (Cascio, 2018; Liu et al., 2015; Reid et al., 2016). Assessing the health risks posed by wildfire smoke 
is important to aid in the protection of the public as a whole and at-risk populations. Health impact assessments 
are used in cost-benefit analyses to provide economic context and, when assessing wildfire smoke exposure, can 
justify land management practices that mitigate wildfire risk. However, these health impacts have been quan-
tified using various approaches that may lead to differing results. Identifying and weighing major sources of 
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uncertainty is thus a key step to improve estimates of public health impacts associated with wildfire-related PM2.5 
and develop effective mitigation strategies.

Health impact analyses focused on wildfire smoke have been carried out across a range of temporal and spatial 
scales. Globally, exposure to wildfire PM2.5 has been estimated to cause 260,000–600,000 annual deaths (John-
ston et al., 2012). In the continental U.S., central estimates of annual premature mortalities due to long-term expo-
sure to wildland fire smoke range from 8,700 to 32,000 (Fann et al., 2018). Smoke impact analyses have previous-
ly used health response information from epidemiological studies of both ambient and wildfire-attributable PM2.5 
(e.g., Fann et al., 2018, 2013; Ford et al., 2018; Hänninen et al., 2009; Johnston et al., 2012). Epidemiological 
studies of smoke exposure often observe increases in health outcomes in areas affected by smoke from specific 
wildfire events within the state or region (Liu et al., 2015) and by considering short-term (i.e., daily) exposure 
to smoke. An analysis of smoke exposure and emergency department visits during a peat bog wildfire in rural 
Eastern North Carolina found an increased risk for asthma, COPD, pneumonia, acute bronchitis, and heart failure 
during the event (Rappold et al., 2011). Higher respiratory and cardiovascular hospital admissions were similarly 
observed during a Southern California wildfire (Delfino et al., 2009), though evidence for the association be-
tween smoke exposure and increased cardiovascular outcomes is variable (Cascio, 2018; Reid et al., 2016). An 
examination of premature mortality during a 14-day smoke episode in Finland showed an increase in line with the 
risks reported by epidemiological studies based on general ambient PM2.5 (Hänninen et al., 2009). During a sum-
mer wildfire season in British Columbia, respiratory health visits to physicians and hospitals were observed to 
increase with smoke exposure, although the risk ratio varied depending on the exposure metric used (Henderson 
et al., 2011). An analysis of COPD hospital admissions and wildfire smoke exposure in the state of Washington 
likewise found that different smoke estimation methods impact health outcome risk ratios to varying degrees 
(Gan et al., 2017). While health impacts have been observed in areas affected by smoke from wildfire events, the 
reported associations vary due to differences in several aspects of study design, including the exposure metric 
considered.

Various approaches have been used to quantify fire-attributable PM2.5, including monitor observations and spatial-
ly interpolated monitor data (Delfino et al., 2009; Gan et al., 2017; Henderson et al., 2011; Johnston et al., 2021; 
Lassman et al., 2017; Liu et al., 2021), chemical transport models (Fann et al., 2018; Gan et al., 2017; Jiang & 
Yoo, 2019; Lassman et al., 2017; Rappold et al., 2017), dispersion modeling (Henderson et al., 2011), satellite 
imagery and retrievals of aerosol optical depth (AOD) (Geng et  al.,  2018; Henderson et  al.,  2011; Rappold 
et al., 2011; van Donkelaar et al., 2011), machine learning methods (Reid et al., 2015, 2019; Yao et al., 2018), and 
hybrid or blended data fields (Gan et al., 2017; Johnston et al., 2012; Lassman et al., 2017; O’Dell et al., 2021). 
While each method has particular strengths, each also has limitations that add uncertainty to health impact assess-
ments and epidemiological studies of smoke exposure. Monitor data is spatially and temporally limited, and may 
not differentiate wildfire-related PM2.5 from that emitted by other sources. Satellite data provide better spatial 
coverage but can be hindered by clouds, may be unable to reflect ground-level smoke concentrations, and is often 
temporally constrained, important drawbacks when analyzing health-relevant pollution from rapidly evolving 
wildfire events. Air quality models can address some of the limitations of monitors and satellites, but are depend-
ent on accurate input data and subject to errors and biases, which can cause them to significantly over- or under-
estimate smoke concentrations (Baker et al., 2016; Goodrick et al., 2013). Modeled smoke is subject to additional 
uncertainties due to the variety of representations of fire-related processes such as heat release and fire spread, 
atmospheric chemical mechanisms, spatial and temporal resolution of emissions, and representations of plume 
rise and structure (Garcia-Menendez et al., 2014; Goodrick et al., 2013; Liu et al., 2019; Mallia et al., 2020).

Estimates of wildfire-driven concentration changes are used either in epidemiological studies (i.e., to examine as-
sociations of exposures and health outcomes) (e.g., Delfino et al., 2009; Gan et al., 2017; Henderson et al., 2011; 
Rappold et al., 2011), or in health impact assessments which use previously found exposure relationships (e.g., 
Fann et al., 2018; Hänninen et al., 2009; Johnston et al., 2012, 2021; van Donkelaar et al., 2011). Uncertainty 
is introduced at each stage of the modeling approach typically used for health impacts assessment of wildfire 
smoke. Estimates of wildfire smoke exposures carry uncertainties associated with measurement error, model 
parameters, and spatial interpolation or aggregation (Nethery & Dominici, 2019). Exposure-response relation-
ships are subject to uncertainty arising from measurement error in pollution and cofounder data, sampling error, 
uncertainty in the functional form of the relationship, and heterogeneity among epidemiological studies (Nethery 
& Dominici, 2019). When wildfire smoke exposure estimates are used with exposure response relationships to 
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assess regional health impacts, these uncertainties in wildfire PM2.5 fields and the relationships between exposure 
and health outcomes propagate to estimates of smoke-attributable outcomes. Additional uncertainty is added to 
such estimates due to errors in population data and the generalization of exposure-response relationships to pop-
ulations that may differ from those used to determine the relationships (Nethery & Dominici, 2019).

While some studies have contrasted methods of wildfire PM2.5 exposure and others have examined variability in 
estimates resulting from the use of parameters from different epidemiological studies, no analysis has systemati-
cally assessed and compared these major drivers of uncertainty along the pathway to estimate the consequences 
of wildfire smoke in a health impact assessment. This study bridges the gap by evaluating multiple approaches to 
represent spatially resolved smoke fields, health response relationships from various epidemiological studies, and 
the resulting uncertainties that arise from these sources in the health impacts estimated for a wildfire event. Here, 
we investigate a large-scale wildfire complex in the Southeastern U.S. and calculate fire-attributable changes 
in PM2.5 and associated mortality and morbidity in the state of North Carolina due to smoke exposure. We then 
examine and compare air-quality- and health-related uncertainties in these estimates. The analysis highlights the 
effects of two key sources of uncertainty in air pollution health impact assessments focused on wildfire smoke, 
and suggests areas for continued research toward better informed land and air quality management.

2. Methods
2.1. 2016 Southern Appalachian Wildfires

In late 2016, a series of over 20 wildfires occurred in the Southeastern U.S. These fires, present across Georgia, 
South Carolina, North Carolina, Virginia, and Tennessee, burned in excess of 150,000 acres between October 
2016 and January 2017, largely fueled by extreme drought conditions (James et al., 2020). Because this event 
had a substantial effect on air quality across the region, it offers a unique opportunity to explore the impacts of 
wildfire smoke on human health. Figure 1 shows the locations of wildfires reported to the U.S. Forest Service's 
interagency all-risk incident information management system (InciWeb; https://inciweb.nwcg.gov). During the 

Figure 1. 2016 Southern Appalachian wildfires and air pollution. (a) Moderate Resolution Imaging Spectroradiometer (MODIS) visible imagery of the Southeastern 
U.S. on 14 November 2016 (https://modis.gsfc.nasa.gov/). Red markers denote locations of all fires active during the month of November, as reported by InciWeb. (b) 
24-hr average PM2.5 concentrations observed by air quality monitor in three North Carolina cities in 2016. The 24-hr PM2.5 National Ambient Air Quality Standard 
(NAAQS) is indicated by the dashed red lines. Observations during November are highlighted by yellow shading.

https://inciweb.nwcg.gov
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wildfires, the largest increases in PM2.5 concentrations in North Carolina were observed in the month of Novem-
ber, as highlighted in Figure 1b. Concentrations exceeding the 24-hr PM2.5 National Ambient Air Quality Stand-
ard (NAAQS) were recorded on 14 days in November at 12 regulatory North Carolina PM2.5 monitors (Table S1). 
Using the 2016 Southern Appalachian wildfires event as a case study, we estimated fire-attributable changes in 
24-hr average PM2.5 concentrations and associated health impacts on the population of North Carolina for the 
30-day period of November 2016. By applying multiple methods to estimate fire-related PM2.5 and corresponding 
health impacts, we evaluated and compared the uncertainties that can arise due to differences in spatially resolved 
PM2.5 fields, response parameters from different epidemiological studies, and response parameters grouped by 
health outcome.

2.2. Spatial Fields of Wildfire PM2.5

Based on monitor observations and model-based products, we created six different spatial PM2.5 fields to estimate 
wildfire-attributable air quality impacts in North Carolina. The fields represent wildfire-attributable daily PM2.5 
concentration during November 2016, the month with the largest observed air quality impacts in the state. All are 
based on publicly available data sources of daily ground-level air pollution. The data types used are available at 
a range of spatial resolutions; however, we normalized the horizontal resolution of the continuous spatial fields 
generated to a 12-km grid. On days in which data is missing, wildfire PM2.5 was assumed to be zero.

Observed 24-hr PM2.5 concentrations were obtained from the U.S. Environmental Protection Agency's (U.S. 
EPA) Air Quality System (https://www.epa.gov/aqs) for 172 monitors in North Carolina, South Carolina, Virgin-
ia, Tennessee, Kentucky, Georgia, and Alabama. For the November period, daily PM2.5 attributable to the 2016 
Southern Appalachian wildfires was approximated at each monitor by subtracting a baseline value from the daily 
concentrations observed. The baseline value was calculated for each monitor as the November-average concen-
tration recorded at the site from 2012 to 2015, years with minor wildfire impacts relative to 2016. To reflect the 
variety of approaches in which station data is used, we created different fields of wildfire-related 24-hr average 
PM2.5 concentrations in North Carolina. The “Closest Monitor” field uses the value from the nearest monitor to 
represent the concentration of each county. The “Central Monitor” field applies observed PM2.5 values to the 
12-km grid cell in which the monitor is located and grid cells within a 20 km radius. For grid cells within 20 km 
of more than one monitor, PM2.5 concentration was calculated using inverse distance weighting (IDW). For grid 
cells with no monitors within 20 km, a fire-related concentration of zero was assigned. In addition, two fields 
were created by applying commonly used spatial interpolation methods across the entire state, inverse distance 
weighting (IDW) interpolation and spherical Kriging. Both interpolation fields are based on the 12 nearest mon-
itors at each location.

Two wildfire PM2.5 fields were created using model-based smoke products. The first was generated using the 
National Oceanic and Atmospheric Administration's (NOAA) Smoke Forecasting System (Rolph et al., 2009). 
This system uses the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to simulate 
48-hr smoke transport and concentrations over the continental U.S., based on satellite-derived wildfire locations, 
meteorological fields from the North American Mesoscale Forecast System, and U.S. Forest Service estimates 
of vegetation and emissions (Rolph et al., 2009). Daily-average smoke concentrations at 12-km resolution were 
calculated from the hourly forecast outputs. A second model-based field of wildfire impacts was created using 
concentrations predicted by NOAA's experimental High-Resolution Rapid Refresh Smoke (HRRR-Smoke) fore-
casting model (https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke). The HRRR-Smoke model relies on the state-of-
the-science Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), data from National 
Weather Service models and observations, and satellite-derived fire radiative power measurements to predict 
hourly near-surface smoke PM2.5 concentrations over North America at 3-km resolution. The forecast outputs 
were also processed into 12-km fields of wildfire-attributable changes in 24-hr PM2.5 concentration.

2.3. Concentration Response Functions and Health Outcomes

An extensive body of epidemiologic research provides evidence of associations between various health effects 
and exposure to ambient PM2.5 (U.S. EPA, 2019a). These relationships can be formulated as health-response 
functions and follow the general form 𝐴𝐴 Δ𝑌𝑌 = 𝑦𝑦0(1 − 𝑒𝑒−𝛽𝛽Δ𝑃𝑃𝑃𝑃2.5 ) ∗ 𝑃𝑃  , where 𝐴𝐴 Δ𝑌𝑌  is the predicted change in a health 
outcome incidence, 𝐴𝐴 𝐴𝐴0 is the baseline incidence rate of the health outcome, 𝐴𝐴 Δ𝑃𝑃𝑃𝑃2.5 is the change in concentration, 

https://www.epa.gov/aqs
https://rapidrefresh.noaa.gov/hrrr/HRRRsmoke
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𝐴𝐴 𝐴𝐴  is the exposed population, and β is the study risk coefficient. We used U.S. EPA's Benefits Mapping and Anal-
ysis Program (BenMAP-CE version 1.5) (Sacks et al., 2018) to predict changes in health outcomes associated 
with wildfire PM2.5 pollution. BenMAP-CE compiles census data, baseline health incidence rates, and concentra-
tion-response functions (CRFs) reported by the epidemiological research. We used 2010 U.S. Census population 
at the county level and reported county or state incidence rates, to estimate smoke-related health impacts (Sacks 
et al., 2018; U.S. EPA, 2021).

In prior analyses quantifying the health burden of PM2.5 from different sources, CRFs derived from studies of 
general ambient PM2.5 have been used for regional-scale estimates of health impacts from wildfire smoke (e.g., 
Fann et  al.,  2018, 2013; Ford et  al.,  2018; Hänninen et  al.,  2009; Johnston et  al.,  2012). A growing number 
of epidemiologic studies have reported relationships specifically between wildfire smoke exposure and health 
outcomes, which could plausibly be used in health impact analyses of other wildfire events. However, a limited 
number of health endpoints have been evaluated by these wildfire studies, many were conducted outside of the 
U.S., and the associations commonly use smoke exposure metrics different to PM2.5 concentration (Henderson 
et al., 2011; Johnston et al., 2007; Liu et al., 2015; Morgan et al., 2010), which can complicate the identification 
of studies to be used in a health impact analysis of wildfire smoke exposure. To estimate wildfire-attributable 
impacts on mortality and morbidity, we used CRFs relating both general ambient and wildfire-related PM2.5 con-
centrations to several health outcomes. We focused on health outcomes that have strong or very strong association 
with exposure to smoke (Cascio, 2018; Liu et al., 2015; Reid et al., 2016; Youssouf et al., 2014) and epidemi-
ological studies conducted in the U.S., with the exception of Hänninen et al., (2009). We used parameters from 
at least one wildfire-specific CRF for each health outcome group, as well as general ambient PM2.5 CRFs that 
have been used in other wildfire smoke health assessments. Estimates for the same outcome and PM2.5 exposure 
source were pooled using the fixed- or random-effects weighting models in BenMAP (U.S. EPA, 2021). This 
method creates a weighted average impact by weighting individual study estimates according to their level of un-
certainty and the variability between studies. Information about the epidemiological studies considered (Aguilera 
et al., 2021; Babin et al., 2007; Delfino et al., 2009; Gan et al., 2017; Glad et al., 2012; Hänninen et al., 2009; 
Kloog et  al.,  2012; Krewski et  al.,  2009; Laden et  al.,  2006; Lepeule et  al.,  2012; Mar et  al.,  2010; Norris 
et al., 1999; Ostro, 1987; Pope et al., 2002; Rappold et al., 2012; Reid et al., 2019; Sheppard, 2003; Slaughter 
et al., 2005; Zanobetti & Schwartz, 2009; Zanobetti et al., 2009) is included in Table S2.

2.4. Uncertainty Evaluation

We evaluated uncertainty in estimates of health impacts associated with wildfire smoke due to two driving fac-
tors, representation of fire-related air pollution and health responses to air quality. Uncertainty is weighed as 95% 
confidence intervals (CIs) on mean estimates of health impacts (point estimates), consistent with U.S. EPA bene-
fits analyses (Fraas, 2011), and examined based on different air quality fields, epidemiological studies, and health 
endpoint groups. To compare uncertainty consistently across sources and health endpoints, CIs were represented 
as a fraction of the point estimate. Uncertainty due to fire-attributable PM2.5 concentrations was calculated using 
a bootstrap simulation in AuvTool 1.0 (Zheng & Frey, 2002), which assumes that the health impact estimates 
resulting from each of the six air pollution fields and each CRF are a random sample from the population distribu-
tion. Bootstrap samples were generated with Monte Carlo simulations and used to calculate a 95% CI on the mean 
health impact estimate for each CRF. The uncertainty associated with individual health response relationships 
was calculated in BenMAP using a 20-point Latin Hypercube method to represent the underlying distribution of 
β in the CRFs associated with each epidemiological study considered. This sampling method enhances process-
ing efficiency by dividing a probability distribution into intervals of equal probability, and is more precise than 
conventional Monte Carlo sampling (U.S. EPA, 2021). This uncertainty reflects a range of study-specific factors, 
including study duration, exposure estimates, and confounder adjustment, among others. When pooled impact 
estimates were made for a health outcome, a pooled distribution of the incidence changes was derived and was 
used to characterize the uncertainty in the pooled estimate. Outcome group uncertainty was also examined by cal-
culating an unweighted average of the study uncertainties (as a percent of the mean point estimate) for each group.
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3. Results and Discussion
3.1. Air Quality and Public Health Impacts of the 2016 Appalachian Wildfires

The 2016 Southern U.S. wildfires had a substantial impact on North Carolina air quality, as reflected in monitor 
observations and air quality forecasts. During the month of November, heavy smoke was observed most frequent-
ly over the western region of the state where the wildfires were concentrated. The highest daily PM2.5 concen-
trations were recorded at monitors in western North Carolina, with the maximum, 99 µg/m3, recorded in Bryson 
City on 23 November. During November, Bryson City experienced 12 days of air pollution exceeding the 24-hr 
PM2.5 NAAQS, the largest number among state monitors. The maximum observed 24-hr concentrations in the 
cities of Asheville, Charlotte, and Raleigh were 87 µg/m3, 61 µg/m3, and 49 µg/m3, respectively. Asheville expe-
rienced multiple days of elevated PM2.5 during the month of November, while Charlotte and Raleigh, the largest 
metropolitan areas in North Carolina, recorded one and two exceedances of the NAAQS, respectively. The large 
number of fires burning throughout the study period makes it difficult to pinpoint which might be directly respon-
sible for specific impacts. However, on the days with the highest PM2.5 concentrations observed in Raleigh and 
Charlotte, smoke transport to these areas was likely from the Party Rock and Chestnut Knob fires in North Car-
olina, the Pinnacle Mountain fire in South Carolina, and the Rock Mountain fire in Georgia (shown in Figure 1).

Different approaches to represent the air pollution caused by the wildfires led to a wide range of predicted air 
quality impacts. Figure 2 shows average wildfire-attributable PM2.5 concentrations over North Carolina for each 
data source and spatial method considered. In general, monitor-based approaches resulted in a large spread of 
PM2.5 impacts across the state, while the model-based approaches yielded both the highest and the lowest es-
timates. November-average wildfire PM2.5 concentration for the state ranged from 0.6 µg/m3 using the Central 
Monitor method to 4.6 µg/m3 using the HYSPLIT Smoke Forecast. The model-based approaches did not capture 
the full magnitude of concentration spikes observed at monitors in Charlotte and Raleigh, although the HYSPLIT 
Smoke Forecast reflected the high concentrations observed in the western region of the state.

Across spatial fields, the largest air quality impacts were estimated over western North Carolina, with smaller, 
varying effects throughout the rest of the state. While the magnitude and distribution of fire-attributable PM2.5 
varies among methods, the highest impacts were consistently assigned to western counties. The largest Novem-
ber-average estimate of wildfire PM2.5, 29.4 µg/m3, was estimated in Polk County by the HYSPLIT Smoke Fore-
cast. Considering the ratio of county population to state population, this corresponds to a population-weighted 
impact of 0.06 µg/m3. In contrast, the wildfire PM2.5 impact estimated by the same method in Wake County, the 

Figure 2. Average wildfire-attributable PM2.5 concentration during November 2016 for each spatial method considered. The 
statewide average concentration for each method is listed above each map with the population-weighted average value in 
parentheses. On observation-based fields, dots show North Carolina monitor locations.



GeoHealth

JOHNSON AND GARCIA-MENENDEZ

10.1029/2021GH000526

7 of 15

state's most populous, was 2.62 µg/m3 but equivalent to a population-weighted impact of 0.25 µg/m3, showing 
how although smoke pollution may have been lower in large urban areas outside of western North Carolina, the 
exposed population at these locations was substantially larger. State-wide population-weighted concentrations of 
wildfire PM2.5 in November range from 0.8 to 5.1 µg/m3, depending on the spatial method used. The uncertainty 
in these fire-related pollution fields propagates to the estimates of associated health impacts, where the uncertain-
ty due to health response modeling may be larger still.

The air quality impacts from this event potentially translate to tens of premature mortalities, tens to hundreds 
of asthma-related emergency room visits, and thousands of work loss days. Depending on the spatial PM2.5 
pollution fields and health-response functions selected, point estimates of smoke-related premature mortalities 
range from 5 to 34, work loss days from 3,700 to 24,900, asthma-related emergency room visits from 12 to 
70, and respiratory-related hospital admissions (ages 65+) from 9 to 58 in North Carolina during the month of 
November (Table 1). The largest number of health impacts were estimated to occur in both western North Caro-
lina and large urban areas (Figure S1). While estimates vary by exposure estimation, the highest smoke-related 
health incidences were estimated in Buncombe, Mecklenburg, and Wake Counties—containing the metro areas 
of Asheville, Charlotte, and Raleigh. For example, work loss days (WLD) estimates for Buncombe county range 
from 212 (179, 243; 95% CI) to 1,831 (1575, 2079), depending on the exposure estimation. Further, estimated 
impacts based on wildfire-specific CRFs vary from those based on CRFs derived from general PM2.5 (Table S3). 
Respiratory and asthma hospital admissions estimates from wildfire-specific CRFs tend to be larger than those 
from general ambient PM2.5 CRF estimates. This is likely due to the magnitude of PM2.5 concentrations during 
wildfire events relative to typical ambient concentrations. Mortality estimates produced by CRFs based on short-
term exposure to general and wildfire-specific PM2.5 are comparable, but an order of magnitude smaller than 
those that would be predicted by long-term ambient PM2.5 mortality CRFs. While these types of estimates shed 

Air quality field

Health outcome a

Mortalities b WLDs ER Visits (asthma) c HA Resp. 65+ d

Closest Monitor 19 14,300 46 30

(14, 23) (12,284, 16,324) (23, 67) (10, 60)

Central Monitor 9 7,800 25 17

(7, 11) (6652, 8896) (12, 36) (5, 33)

IDW 30 20,400 67 52

(22, 37) (17,328, 23,280) (32, 98) (16, 108)

Kriging 27 18,200 60 47

(20, 33) (15,455, 20,786) (29, 88) (15, 98)

HYSPLIT Smoke Forecast 34 24,900 70 58

(26, 42) (21,111, 28,749) (35, 100) (19, 120)

HRRR Smoke Forecast 5 3,700 12 9

(4, 7) (3111, 4234) (6, 18) (3, 21)
a95% confidence intervals shown in parentheses. bMortality estimates based on Zanobetti and Schwartz (2009) (short-term 
ambient PM2.5 exposure). cER visits estimated by Rappold et al. (2017) (wildfire smoke exposure study). dHA (Resp., 65+) 
indicates all respiratory hospital admissions for population aged 65 and over, estimated by pooling Delfino et al., (2009), and 
Gan et al., (2017) (wildfire smoke exposure studies).

Table 1 
Health Impacts of Wildfire Smoke in North Carolina During November 2016 Estimated With Each Air Pollution Field 
Considered
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light on the potential gravity of wildfire impacts, they are also susceptible to large uncertainties that arise from 
the air quality and health response methods used.

3.2. Uncertainty in Estimates of Smoke-Related Health Impacts

Uncertainty in wildfire-related PM2.5 strongly propagates to estimates of public health impacts. Statewide health 
impacts for four outcomes are shown in Table 1. Across spatial methods, impact estimates can span an order of 
magnitude, with premature mortalities ranging from 5 to 34 for the 30-day period in November 2016. Project-
ed impacts on WLDs, asthma-related emergency room (ER) visits, and respiratory-related hospital admissions 
(HAs) also vary significantly across methods. The HYSPLIT Smoke Forecast field and the Closest Monitor field 
yielded the largest health impact estimates for this wildfire event. The HRRR Smoke Forecast and the Central 
Monitor fields yielded the smallest impacts. The range in health impact estimates across spatial fields based on a 
single CRF relating premature mortality to short-term PM2.5 exposure is shown in Figure 3.

To evaluate the uncertainty in health impact estimates due to the differences in the smoke pollution fields, we 
used a bootstrapping method to calculate 95% CIs for the mean estimate of each health response function, as 
described in Methods. Uncertainty in the health impact estimates due to the variation in smoke pollution fields 
ranges from ±36 to ±55% of the spatial mean impact estimate, as listed in Table 2. The uncertainty due to spatial 
fields varies slightly between CRFs due to differences in the spatial resolution of baseline incidence and prev-
alence reporting (e.g., county- or state-level), as well as the magnitude of the impact. When averaged across all 
CRFs, the uncertainty due to the smoke fields is ±47%.

Uncertainty in the impact estimates from the CRF parameters varies among studies and outcomes. Expressed as a 
percentage of the point estimate, the uncertainty is smallest (±14%) for WLDs and largest (±548%) for mortality 
due to short-term exposure to wildfire PM2.5 based on Hänninen et al. (2009). The magnitudes of uncertainty, ex-
pressed as the 95% CIs relative to the point estimate, among all epidemiological studies considered are compared 
in Figure 4 based on the Kriging smoke pollution field. Uncertainty stemming from individual epidemiological 
studies differs significantly (due to a variety of factors of the study design) and can be considerably larger than the 
uncertainty introduced by the smoke fields. Figure 4 also includes 95% CIs for some pooled estimates to compare 
uncertainty magnitude by health outcome. Within outcome groups, health response uncertainty can vary widely, 
but the largest uncertainties in this analysis are associated with hospital admissions estimates. Table 2 lists the 
uncertainty associated with each epidemiological study and average uncertainty for each health outcome, along 

Figure 3. Wildfire smoke-related mortality in North Carolina during November 2016 based on Zanobetti and Schwartz (2009), estimated with each spatial air quality 
field considered. Center lines of boxes indicate point estimates. Whiskers and box edges indicate 95% and 50% confidence intervals, respectively, based on the 
epidemiological study uncertainty.
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with the uncertainty due to air pollution fields. Average health outcome uncertainties are estimated separately for 
those based on general or wildfire-specific PM2.5 studies. Among the epidemiological studies used in this work, 
the largest average outcome uncertainty accompanies asthma hospital admissions estimates, ranging from ±59% 
to ±426% for general ambient PM2.5 studies and ±35% to ±68% for wildfire smoke studies. The smallest aver-
age outcome uncertainty (for outcomes with more than one study considered) is ±52% for long-term exposure 
mortality estimates (Table S3). Fewer wildfire-specific epidemiological studies were analyzed—however, these 
generally carry smaller uncertainty than the ambient PM2.5 studies considered here.

Large uncertainty may exist in wildfire impact estimates due to both representation of fire-related air pollution 
and the health responses to smoke. The magnitude of uncertainty due to spatial air pollution fields (±47% on 
average) is comparable to the health response uncertainty for some outcomes, such as asthma hospital admis-
sions specifically associated with wildfire smoke (±35–68%). However, the uncertainty due to the smoke fields 
is smaller than the health response uncertainty for many of the epidemiological studies considered. This indi-
cates that estimates of health impacts attributable to wildfire smoke would benefit from improvements to either 
spatial representations of smoke concentrations or epidemiological associations, as the uncertainties stemming 

Health outcome & study
Smoke field 

uncertainty (±)
Average smoke field uncertainty 

(±)a
Health response 
uncertainty (±) b

Average outcome response 
uncertainty (±)a,c

ER Visits: Asthma

 Mar et al. (2010) 37% 69%

 Norris et al. (1999) 47%
42%

40%
105%

 Glad et al. (2012) 43% 136%

 Slaughter et al. (2005) 41% 175%

 Rappold et al. (2012) d 40% -- 49% --

Hospital Admissions

All Respiratory

 Zanobetti et al. (2009) 53%
52%

41%
154%

 Kloog et al. (2012) 51% 268%

 Gan et al. (2017) (WRF-Chem) d,e 49% 88%

 Gan et al. (2017) (GWR) d,e 48%
47%

49%
62%

 Delfino et al. (2009) d 40% 48%

 Aguilera et al. (2021) (Imputation) d,f 47% 55%

 Aguilera et al. (2021) (Interaction) d,f 49% 70%

Asthma

 Babin et al. (2007) 40%
40%

426%
243%

 Sheppard (2003) 40% 59%

 Gan et al. (2017) (WRF-Chem) d,f 42%
47%

35%
52% Gan et al. (2017) (GWR) d,e 48% 68%

 Delfino et al. (2009) d 52% 53%

Mortality

 Zanobetti and Schwartz (2009) g 53% -- 24% --

 Hänninen et al. (2009) d,g 49% -- 548% --

Work Loss Days

 Ostro (1987) 36% -- 14% --
aAverage uncertainties estimated for groups of multiple wildfire-specific or general PM2.5 morbidity studies. bUncertainty values are averages (+/−) of all smoke 
fields considered. Some CIs are not equal in positive and negative directions. cAverage outcome uncertainty calculated from uncertainties in the positive and negative 
directions for each study in the group. dWildfire-specific study. eWRF-Chem and GWR refer to chemical transport modeling and geographically weighted regression 
approaches in study, respectively. fImputation and Interaction refer to two regression methods used to isolate wildfire PM2.5 in study. gShort-term PM2.5 exposure study.

Table 2 
Uncertainty in Smoke Impact Estimates due to PM2.5 Concentration Fields and Health Response Relationships
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from each of these can be large. The lower uncertainties accompanying many of the wildfire-specific studies 
suggest that source-specific epidemiological studies may reduce uncertainty. However, because this large-scale 
wildfire event occurred in a densely populated region of the country, the impacts and health-related uncertainties 
discussed here may be larger than for other wildfires in the U.S. This region also has a denser network of PM2.5 
monitors compared to other wildfire-prone areas, which may have reduced uncertainty in the smoke fields esti-
mates derived from monitor observations.

3.3. Implications for Smoke Impact Assessments and Fire Management

Wildfires are a complex problem that require unique management strategies. Mitigating smoke pollution is an 
important component of this challenge. To arrive at effective solutions, decisions must be informed by complete 
wildfire impacts analyses, including the consequences of air pollution on public health. However, current esti-
mates of smoke-related health effects remain largely uncertain. Reducing these uncertainties is a critical step to 
improve fire- and air quality-related decision-making.

Here, a unique approach is used to compare major sources of uncertainty in wildfire smoke health impact analyses. 
With the exception of one study examining bias in modeled smoke and a single epidemiological function (Jiang & 
Yoo, 2019), prior research has not compared and evaluated the possible uncertainties that arise in health impact 
analyses due to the variety of smoke estimation methods and available epidemiological risk-ratios. Our analysis 
of a large wildfire complex shows the important influence of uncertainties due to representation of fire-related air 
pollution and the relations between smoke exposure and health risks. Estimates of regional wildfire smoke health 

Figure 4. Health response uncertainty in North Carolina smoke-related incidences during November 2016 expressed as a percentage of the point estimate for pooled 
and individual study health impacts. Darker boxes show pooled estimate uncertainty while lighter boxes indicate individual study uncertainty. Box edges and whiskers 
indicate 50% and 95% confidence intervals, respectively. Values here reflect uncertainty in impact estimates based on the smoke pollution field generated with the 
Kriging method. Studies and pooled estimates marked with + are based on ambient exposure parameters and those marked with ‡ are based on wildfire smoke exposure 
parameters.
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impacts resulting from different air pollution fields can span an order of magnitude. Still, for several outcomes 
expected to be associated with smoke pollution, the health-related uncertainty is substantially larger.

While there is no established methodology to evaluate wildfire smoke-related health impacts, the air quality data 
types and methods considered here are regularly used for this purpose. Despite these inherent uncertainties, it is 
apparent that the 2016 Southern Appalachian wildfires led to elevated PM2.5 concentrations across the Southeast-
ern U.S. and very likely had consequences on public health. In North Carolina alone, this event potentially was 
associated with tens of premature mortalities, several thousand lost days of work, and dozens of respiratory- and 
asthma-related hospital admissions. No estimates of public health impacts associated with smoke from the histor-
ic 2016 Southern Appalachian wildfires have been previously reported.

Large uncertainties in estimates of wildfire smoke impacts highlight several research needs. Analyses of air 
pollution and health effects methods used to quantify the impacts of additional wildfires in different locations 
would show whether major drivers of uncertainty identified in this study carry similar weights in estimates 
for other events. Data fusion or blended smoke products (Diao et al., 2019; O'Dell et al., 2019b, 2020, 2021; 
Yuchi et al., 2016) can combine the strengths and minimize the limitations of multiple data sources to improve 
representations of wildfire air pollution. Increased air quality monitoring, in particular further from large urban 
centers and near fire-prone lands, can improve spatial coverage provided by observational networks. Tempo-
rary and low-cost sensors have been proposed for this application (AirNow, 2020; Gupta et al., 2018; Kelleher 
et al., 2018; Morawska et al., 2018). New satellite retrievals may be better able to capture ground-level smoke 
concentrations with improved temporal resolution and algorithms (Griffin et al., 2020; Lyapustin et al., 2020; 
Veefkind et al., 2012). Regional-scale air quality modeling of smoke can be improved in several ways, including 
emissions data, smoke-relevant chemical mechanisms, and resolution of concentrated smoke plumes (Goodrick 
et al., 2013; Jaffe et al., 2020). The spatial resolution of simulated smoke should be evaluated for use in health 
impact assessments (Jiang & Yoo, 2018).

Some of the largest uncertainties in this analysis correspond to the relationships between air pollution concentra-
tions and health responses reported by several epidemiological studies. The nature of these studies, particularly 
for certain morbidity outcomes and wildfire-specific pollution, can make it challenging to reduce this uncertainty. 
Specific elements of this health-related uncertainty, such as the linearity and shape of CRFs, thresholds, con-
founding, and effects modifications, should be further investigated in the context of wildfire smoke. Most epide-
miological studies of air pollution exposure, including those considered here, use a log-linear association, which 
is beneficial for studying large cohorts but may not provide a true representation of the shape of the CRF, espe-
cially when considering exposure thresholds or elevated pollution concentrations (Nasari et al., 2016). Other non-
linear models (e.g., Integrated Exposure-Response (IER) and Global Exposure Mortality Model (GEMM)) have 
been used to examine responses globally and at higher exposure concentrations. However, to represent more real-
istic responses at extreme concentrations, these models may use information on exposure to non-ambient sources 
of PM2.5, thus assuming that exposure to all sources of PM2.5 results in the same health risk, or the model shape 
is restricted such that exposures at higher concentrations result in declining risk (Burnett & Cohen, 2020). For 
wildfire events in particular, health impacts are likely driven by the acute effects of short-term smoke exposure. 
Studies of the relationships between short-term exposure events like wildfire and health responses can be more 
uncertain relative to those between long-term exposure to PM2.5 pollution or multi-year studies of short-term 
exposure responses which are often the main focus of air pollution impact assessments. Although prior estimates 
of the public health impacts of wildfire smoke have relied on CRFs derived from studies of general ambient PM2.5 
and some analyses have found the magnitude of impacts to be similar to those obtained with wildfire-specific 
health response relationships (Hänninen et al., 2009; Johnston et al., 2012), other recent studies have reported 
larger health effects associated with wildfire-specific PM2.5 (Aguilera et al., 2021; DeFlorio-Barker et al., 2019). 
While the health-related uncertainty discussed here is specific to the studies considered and is dependent on sev-
eral aspects of study design, the overall lower uncertainty associated with the wildfire-specific studies considered 
in our analysis further suggests that additional source-specific epidemiological research investigating the acute 
effects wildfire air pollution may reduce uncertainty in estimated smoke health impacts.

The findings of this study can provide a helpful assessment of the magnitude and major sources of uncertainty in 
health impact estimates due to wildfire smoke. However, the constraints of the analysis may limit its applicability 
to U.S. wildfire broadly. We apply a range of methods, from simple, conservative estimates of smoke (e.g., 20-
km radii from regulatory site measurements) to advanced, comprehensive tools (e.g., NOAA's HRRR model), 
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to reflect the variety of approaches previously used in quantifying the health impacts of wildfire air pollution. 
This is not an exhaustive compilation of the methods available. Rather, we evaluate methods and data types that 
can shed light on the uncertainty present in the existing collective body of research. Further, we do not quantify 
the uncertainties contributed to health impact assessments by population data, including population counts and 
demographics, incidence rates, and generalization of concentration-response functions to populations that may 
be non-representative of those used to determine the relationships (Nethery & Dominici, 2019). Here, we explore 
a specific wildfire event in the Southeastern U.S. Uncertainty in smoke impact estimates will vary for different 
wildfires, regions, and ecosystems. The uncertainties may also differ at higher or lower smoke levels, as well as 
for pollutants other than PM2.5. Still, we expect that for most events with significant public health impacts, smoke- 
and health-related uncertainties will similarly be large. Whether uncertainty in health responses to smoke averts 
the need to improve representations of pollutant concentrations, or the opposite, may depend on the wildfire event 
being considered.

Although air pollution has recently decreased over much of the U.S., smoke is limiting improvements in fire-
prone regions (McClure & Jaffe, 2018; O’Dell et al., 2019a). In contrast to other major pollution sources, how-
ever, eliminating natural fire processes, and their emissions, from ecosystems is not a viable strategy. As land 
managers work to reach sustainable fire regimes, decisions about fuel treatments and interventions, including 
prescribed burning, mechanical fuel reduction, and adaptation measures, must be informed by comprehensive 
analyses that consider fire damages, suppression and treatment costs, ecological services, climate benefits, smoke 
impacts, and other aspects of wildland fire (Altshuler et al., 2020). Given its potential effects on public health, 
smoke pollution can be a major component of wildfire cost-benefit assessments. Uncertainty in smoke impacts 
will propagate to valuations of wildfire costs (Fann et al., 2018; Kochi et al., 2012; Rappold et al., 2014; Ritt-
master et al., 2006), which carry additional uncertainties. Recognizing the uncertainty in estimates of the health 
impacts of smoke, and working to improve them, is needed to aid in developing effective policies addressing 
wildfire challenges in the U.S.
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