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ABSTRACT

Objective: Deep sequencing offers unparalleled access to rare variants in human populations. Understanding their role in disease is a priority, yet
prohibitive sequencing costs mean that many cohorts lack the sample size to discover these effects on their own. Meta-analysis of individual
variant scores allows the combination of rare variants across cohorts and study of their aggregated effect at the gene level, boosting discovery
power. However, the methods involved have largely not been field-tested. In this study, we aim to perform the first meta-analysis of gene-based
rare variant aggregation optimal tests, applied to the human cardiometabolic proteome.

Methods: Here, we carry out this analysis across MANOLIS, Pomak and ORCADES, three isolated European cohorts with whole-genome
sequencing (total N = 4,422). We examine the genetic architecture of 250 proteomic traits of cardiometabolic relevance. We use a con-
tainerised pipeline to harmonise variant lists across cohorts and define four sets of qualifying variants. For every gene, we interrogate protein-
damaging variants, exonic variants, exonic and regulatory variants, and regulatory only variants, using the CADD and Eigen scores to weigh
variants according to their predicted functional consequence. We perform single-cohort rare variant analysis and meta-analyse variant scores
using the SMMAT package.

Results: We describe 5 rare variant pQTLs (RV-pQTL) which pass our stringent significance threshold (7.45 x 10’”) and quality control
procedure. These were split between four cis signals for MARCO, TEK, MMP2 and MPO, and one frans association for GDF2 in the SERPINA11
gene. We show that the cis-MPO association, which was not detectable using the single-point data alone, is driven by 5 missense and frameshift
variants. These include rs140636390 and rs119468010, which are specific to MANOLIS and ORCADES, respectively. We show how this kind of
signal could improve the predictive accuracy of genetic factors in common complex disease such as stroke and cardiovascular disease.
Conclusions: Our proof-of-concept study demonstrates the power of gene-based meta-analyses for discovering disease-relevant associations

complementing common-variant signals by incorporating population-specific rare variation.
© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION pinpoint biologically-relevant disease pathways. Population-scale as-

sociation studies of the proteome have discovered a growing number

Cardiovascular disease is the leading cause of death globally, with an
estimated 17.9 million fatalities each year. A large number of genetic
susceptibility factors have been identified through population-scale
genome-wide association studies (GWAS) [1]. However, the exact
pathways involved remain elusive, given that most associations arise
in noncoding regions of the genome [2].

Proteins are one of the key mediating molecules in complex disease,
and measuring their levels in peripheral blood can inform diagnosis,
prognosis and treatment [3]. Examining the overlap between genetic
variants affecting complex disease and protein levels can therefore

of such protein quantitative trait loci (pQTLs) either within or close to
the protein-coding gene (cis), or distal to it (frans), with a particular
focus on cardiovascular outcomes [4—10]. Similar to what is observed
in complex trait association studies, cross-population meta-analyses
have conferred unprecedented discovery power to such analyses [8,9].
Although they increase sample sizes markedly, these studies typically
use imputed GWAS data. They are therefore limited to common and
low-frequency variants. We have previously shown that both coding
and noncoding rare variants affect the peripheral proteome indepen-
dently of common variant signals [11]. Meta-analysis of such rare
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variant association signals has historically been challenging without
sharing individual-level genetic data, since rare variants in or around a
gene can differ markedly between populations. Meta-analysis of p-
values from gene-based tests is possible, but remains of limited in-
terest in the presence of different signal architectures and allelic
heterogeneity.

Recently, methods have been introduced that summarise rare variant
information into meta-analysable single-variant scores and correlation
matrices [12]. Unlike aggregation tests, which assume an equidirec-
tional effect across all variants and studies, these tests are agnostic to
the underlying genetic architecture. However, these methods have not
been extensively field tested, and no such large meta-analysis of
score-based gene-centric tests currently exists.

Here, we perform genome-wide rare variant meta-analysis across
three isolated European cohorts with whole-genome sequencing (total
N = 4,422). We examine the genetic architecture of 250 proteomic
traits of cardiometabolic relevance from the OLINK Cardiovascular I,
Cardiovascular lll and Metabolism panels, and describe 5 rare variant
pQTLs (RV-pQTLs). We investigate in detail a burden of coding variants
in the MPO gene, and demonstrate a distinct contribution of the rare,
isolate-specific rs119468010 and rs140636390.

2. MATERIALS AND METHODS

2.1. Cohort information

The HELIC (www.helic.org) study comprises the MANOLIS (Minoan
Isolates) cohort, focusing on Anogia and the surrounding Mylopotamos
villages on the Greek island of Crete, and the Pomak cohort, which
focuses on a set of isolated mountainous villages in the North of
Greece. All individuals were required to have at least one parent from
the respective area to enter the study. Recruitment was primarily
carried out at the village medical centers. The study includes biological
sample collection for DNA extraction and lab-based blood measure-
ments, and interview-based questionnaire filling. The phenotypes
collected include anthropometric and biometric measurements, clinical
evaluation data, biochemical and hematological profiles, self-reported
medical history, demographic, socioeconomic and lifestyle information
[11,13—18] [19,20]. The study was approved by the Harokopio Uni-
versity Bioethics Committee and informed consent was obtained from
every participant.

The Orkney Complex Disease Study (ORCADES) is a family-based study
that seeks to identify genetic factors influencing cardiovascular and
other disease risk in the isolated archipelago of the Orkney Isles in
northern Scotland [21]. Genetic diversity in this population is decreased
compared to Mainland Scotland, consistent with the high levels of
endogamy historically. 2078 participants aged 16—100 years were
recruited between 2005 and 2011, most having three or four grand-
parents from Orkney, the remainder with two Orcadian grandparents.
Fasting blood samples were collected and many health-related phe-
notypes and environmental exposures were measured in each indi-
vidual. All participants gave written informed consent and the study
was approved by Research Ethics Committees in Orkney, Aberdeen
(North of Scotland REC), and South East Scotland REC, NHS Lothian
(reference: 12/SS/0151).

2.2. Sequencing and variant calling

The three cohorts were sequenced in an identical way. Genomic DNA
(500 ng) from 1482, 1642, and 1352 samples for MANOLIS, Pomak
and ORCADES, respectively, was subjected to standard lllumina
paired-end DNA library construction. Adapter-ligated libraries were
amplified by 6 cycles of PCR and subjected to DNA sequencing

using the HiSegX platform (lllumina) according to manufacturer’s
instructions.

Basecall files for each lane were transformed into unmapped BAMs
using lllumina2BAM  (https://github.com/wisi-npg/illumina2bam),
marking adaptor contamination and decoding barcodes for removal
into BAM tags. PhiX control reads were mapped using BWA Backtrack
[22] and were used to remove spatial artefacts. Reads were converted
to FASTQ and aligned using BWA MEM 0.7.8 [23] to the hg38 reference
(GRCh38) with decoys (HS38DH). The alignment was then merged into
the master sample BAM file using Illumina2BAM MergeAlign. PCR and
optical duplicates are marked using biobambam markduplicates
(https://github.com/gt1/biobambam) and the files were archived in
CRAM format.

Per-lane CRAMs were retrieved and reads pooled on a per-sample
basis across all lanes to produce library CRAMs; these were each
divided in 200 chunks for parallelism. GVCFs were generated using
HaplotypeCaller v.3.5 from the Genome Analysis Toolkit (GATK) for
each chunk [24]. All chunks were then merged at sample level,
samples were then further combined in batches of 150 samples using
GATK CombineGVCFs v.3.5. Variant calling was then performed on
each batch using GATK GenotypeGVCFs v.3.5. The resulting variant
callsets were then merged across all batches into a cohort-wide VCF
file using bcftools concat.

2.3. Variant and sample quality control

Variant-level QC of genotype calls was performed using the Variant
Quality Score Recalibration tool (VQSR) from the Genome Analysis
Toolkit (GATK) v. 3.5-0-g36282e431, using a tranche threshold of
99.4% for SNPs, which provided an estimate false positive rate of 6%,
and a true positive rate of 95%. For indels, we used the recommended
threshold of 99%. For sample-level QC, we made extensive use of
genotyping array datasets in overlapping samples, which provided
sample matching information for 1,386 and 1,511 samples in MAN-
OLIS and Pomak, respectively. In MANOLIS, a total of 25 individuals
were excluded (n = 1457) based on sex checks, low concordance (pi-
hat <0.8) with chip data, duplicate checks, average depth (<10x),
missingness (>0.5%), and contamination (Freemix or CHIPMIX score
from the verifyBamID suite [25] >5%). This number was 27 for the
Pomak cohort. In case of sample duplicates, the sample with highest
quality metrics (depth, freemix and chipmix score) was kept. No
samples were excluded in ORCADES.

2.4. Proteomics

The serum levels of all proteins from three Olink panels - CVDII, CVDIII
and Metabolism - were measured in MANOLIS and Pomak using
Olink’s proximity extension assay (PEA) technology [26]. In ORCADES,
the same panels were measured in plasma. Briefly, for each assay, the
binding of a unique pair of oligonucleotide-labelled antibody probes to
the protein of interest results in the hybridisation of the complementary
oligonucleotides, which triggers extension by DNA polymerase. DNA
barcodes unique to each protein are then amplified and quantified
using microfluidic real-time gPCR. Measurements are given in a nat-
ural logarithmic scale in Normalised Protein eXpression (NPX) levels, a
relative quantification unit. NPX is derived by first adjusting the gPCR Ct
values by an extension control, followed by an inter-plate control and a
correction factor predetermined by a negative control signal. This is
followed by intensity normalisation, where values for each assay are
centered around its median across plates to adjust for inter-plate
technical variation. Further details on the internal and external con-
trols used can be found at http://www.olink.com. Additionally, a lower
limit of detection (LOD) value is determined for each protein based on
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the negative control signal plus three standard deviations. In this study,
NPX values that fall below the LOD were set to missing.

For MANOLIS and Pomak, we regress covariates out of the inverse-
normal transformed NPX values, followed by standardisation. In
ORCADES, standardisation was replaced by an additional inverse
normal transformation to guard against heteroskedasticity. All cova-
riates were regressed out of all phenotypes, irrespective of their sig-
nificance in the model. Covariates included were sex, age, age
squared, plate number, and mean NPX level across all proteins, per
sample. We also adjusted for season, given the observed annual
variability of some circulating protein levels. Given the dry Mediterra-
nean climate of Crete, we define season of collection as hot summer or
mild winter. Plate effects are partially offset by the median-centering
implemented by Olink. MANOLIS and Pomak samples were plated in
the order of sample collection, which results in plate and season in-
formation to be largely correlated. For ORCADES, we included age, age
squared, sex, sampling month, plate number, x-y coordinate of sample
on the plate, and mean NPX level across all proteins per sample [27].
In MANOLIS, we excluded 13 protein measurements across all panels
with missingness or below-LOD proportion greater than 40%. BNP(B-
type natriuretic peptide) was measured across all three panels, and
was excluded due to high missingness in all three. 26, 2 and 14
samples failed vendor QC and were excluded from CVDII, Il and META,
respectively. 42 samples were excluded due to missing age.

In Pomak we excluded 15 proteins and 49, 6 and 13 samples in CVDII,
Il and META, respectively, due to vendor QC failure. Missing ages were
imputed by regressing all proteins that were non-missing in the 24
samples without age on sex and age, and identifying those for which
the coefficient P-value was lower than a Bonferroni-corrected
threshold of 2 x 10*. We then regress age on all these proteins
and sex in all non-missing samples.

ORCADES, like MANOLIS, was assayed on a previous version of the
CVDIII panel, which means CCL22 was present instead of GP6. CCL22
was excluded upon vendor recommendation due to generally unreli-
able results. 23 samples from the CVDII panel and 15 from META were
excluded in ORCADES due to vendor QC. In ORCADES, age, age-
squared, sex, month of the year, plate number, row and column on
the plate, as well as average NPX value were used as covariates during
normalisation. 15 samples were removed due to absence of
covariates.

In total, 277 proteins were measured across the 3 cohorts. 22 proteins
were excluded for failing QC in at least one cohort (Supplementary
Table 1).

2.5. Single-point association and meta-analysis

Single-point association is not used as discovery in this study, and only
serves to elucidate the structure of rare variant signals.

Association was performed using a linear mixed model for all three
cohorts. For MANOLIS and Pomak, we carry out single-point asso-
ciation using GEMMA v.0.94 33 We use an empirical relatedness
matrix calculated on a LD-pruned (using parameters 50-5-2 from
plink [28]) variants filtered for MAF<5% and HWE p < 1 x 1075 with
mid-p adjustment. We further filter out variants with missingness
higher than 1%, as was performed for rare variant tests. 5 proteins
were excluded due to having a genomic control Agc < 0.95 or Agc >
1.05 after association, bringing the total number of analysed proteins
to 250.

GEMMA v. 0.94 truncates alleles to a single character. In order to
enable unambiguous meta-analysis of indels, we updated alleles in
summary statistics by matching it to the VCF. More precisely, we join
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both files by chromosome and position, and match the alleles by
frequency for biallelic SNVs. For multiallelics, we compute the differ-
ence in allele frequency between the GEMMA output MAF, which is
based on samples with non-missing phenotypes, and the AF fields of
each allele in the VCF, and use the alleles with the lowest difference.
In ORCADES, association was performed using GCTA v.1.93.0 beta
using the MLMA algorithm [29] Using common LD-pruned variants for
calculating the relatedness matrix was not sufficient, as persistent
inflation was present. We assumed this was due to a different relat-
edness structure being expressed in rare variants, and we therefore
included all sequence variants in the relatedness calculation, using 5
partitions of the autosomal genome. Following this, inflation was
controlled. We use the 2011-03-25 release of METAL [30] for meta-
analysis using inverse-variance based weighting. The genomic infla-
tion factors across proteins had a mean of A = 1.04 (c = 0.079) post
meta-analysis (Supplementary Figure 1).

2.6. Rare variant association

We use commit ¢5504b6 of the MUMMY wrapper (https://github.com/
hmgu-itg/burden_testing) for rare-variant analyses, which is based on
the GMMAT R package [12]. This version used GMMAT v. 1.2.0. Variant
files documenting all polymorphic positions and alleles in each cohort
are first produced, then merged across all cohorts to produce an input
variant set. Multiallelic variants are exploded into multiple records for
analysis, but are ignored by this version of GMMAT. VCFs are converted
to GDS using the seqVCF2GDS function from the segArray package.
We use protein coding genes from Gencode v.32 to define testing units
[31]. Following our previously-reported analysis strategy [11,32], for
each gene, we create 4 sets of qualifying variants (QV) with an upper
MAF threshold of 5%, an upper missingness threshold of 1%, and their
associated weights. The first set comprises all unweighted variants
with an Ensembl VEP [33] predicted consequence more severe than
missense. The second includes all exonic variants weighted by their
CADD score, including a 50 base pair window either side of each exon.
The third extracts the regulatory build from Ensembl release 98 [34],
and overlaps each regulatory region with GTEXx release 7 [35]. For each
gene, the set of regulatory regions that overlaps with a significant eQTL
variant in any tissue for that gene is defined as linked to the gene. All
variants overlapping with linked regions, as well as exons, are then
weighted using the Eigen score [36], which incorporates information
about regulatory consequences. Finally, the fourth set of QVs includes
the variants in the third set that are not exonic. CADD integrates
multiple annotations into one metric by contrasting variants that sur-
vived natural selection with simulated mutations, whereas Eigen is an
unsupervised method based on spectral decomposition of multiple
functional annotations in coding as well as noncoding regions. We
discard tests where the set of QVs does not include at least two
variants. After single-cohort analyses, we meta-analyse scores using
the meta-analysis function of MUMMY, which wraps the SMMAT.meta
function of the GMMAT package.

All p-values reported in this article correspond to the SKAT-0 optimal
test [37] (0.pval as reported by SMMAT). An important parameter of
this test is the p parameter, which is used to define the unified test
statistic:

+ (1= p)Qsar

According to the above, p = 1 corresponds to a pure burden
(collapsing) test, while p = 0 corresponds to a pure SKAT test. SMMAT
allows to optimise this mixture parameter across a grid of values,
which we define as all increments of p from 0 to 1.

Qp = pQBurden
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2.7. Significant signals and quality control

We use a significance threshold of 7.45 x 10~ "', which we derived by
computing the effective number of traits and variants analysed [11,38].
Thresholds obtained by permutation testing for rare variant tests in the
UK Biobank, on a higher number of both variants and traits, are
markedly greater (2 x 10~°) [39], suggesting that the threshold used
in this study is conservative.

779 signals passed our stringent threshold, which involved to 358
unique gene-pairs across multiple QV sets. For cases where several
such sets passed the threshold, we selected the one with the lowest p-
value, producing 357 signals taken forward for QC.

Since cis-pQTL signals tend to be much more strongly associated than
complex traits, association peaks often extend over large multi-
megabase genomic regions. We therefore exclude rare variant sig-
nals for genes that are less than 1Mbp away from the cis gene. 120
signals remain at this stage.

For each rare variant signal, we identify the qualifying variant with the
lowest single-point meta-analysis association p-value, and add its
genotypes as a covariate in the rare variant test. We exclude signals
where the conditioned p-value is greater than 1 x 10‘3, since a large
p-value would indicate that the signal is driven by a single variant. We
also exclude rare-variant signals where the meta-analysis rare-variant
p-value is higher than at least one of the single-cohort analyses, which
indicates attenuation/non-replication of a single-cohort signal. 55
signals pass this filtering step.

We further exclude cases where the rare-variant signal overlaps with a
stronger single-point signal. We have previously shown that such
signals can contribute independent signal at a common-variant, sin-
gle-point locus, so this scenario is not indicative of a false positive.
Rather, this filtering criterion was adopted to focus on signals purely
arising from rare-variant meta-analysis. We exclude the cis-ACP6
exonic and regulatory signal, since it is known [11], and the trans-
ILBRA signal in UBQLN4, since it is located 1.5 Mb away from a
particularly strong cis-IL6RA single-point peak. Five signals pass this
filtering step and are discussed in detail in the Results section.

Only one of these signals, the ¢is-MPO burden, is not also discoverable
at the same threshold using the single-point meta-analysis, i.e., no
single-point p-value passes the threshold of 7.45 x 10~ within 1 Mb
of the gene where the signal arises.

2.8. Association with stroke and CVD in UK biobank

2.8.1. Phenotype definition

We sought to quantify the predictive accuracy of MPO-altering variants
for cardiovascular diseases where this gene was previously implicated.
For this, we leverage the clinical information reported in the UK Bio-
bank [40]. We construct stroke and cardiovascular disease phenotypes
based on multiple disease-relevant variables in the UK Biobank
phenotype database. Since these diseases are strongly influenced by
clinical and lifestyle factors, we first construct a covariate list con-
taining sex, age, hyperlipidemia, hypertension, obesity, poor glycaemic
control and smoking habits. We extract sex (field 31) and ten genetic
principal components (fields 22009.0.1—10). For age, we take the
maximum over all visits of the age when visited assessment centre
(field 21003), since we also aggregate disease codes across all visits.
For body mass index, systolic and diastolic blood pressure, glycated
haemoglobin, low-density lipoprotein and triglycerides, we extract the
corresponding fields (21001, 93 and 4080, 94 and 4079, 30750,
30780, 30870, respectively), and average them per individual across
all visits where they were measured. We extract self-reported lipid- or
blood-pressure lowering medication information (field 6177) and

define hypertension as having SBP>140 or DBP>90 or taking blood
pressure medication. We further define hyperlipidemia as having
LDL>4.115 (third quartile) or TG > 5.6 or taking lipid-lowering
medication, poor glycaemic control as having HbA1c > 64, obesity
as having BMI>30. These thresholds are established in the literature
[41], except for LDL where the suggested threshold of 1.8 would have
assigned hyperlipidemia to most cases. Since there is no established
LDL threshold for hyperlipidemia (the Institute for Quality and Efficiency
in Health Care recommends 3.4), we used the third quartile to capture
the top 25% of LDL measurements. For smoking, there is some
confusion in the UK Biobank as to whether “ever smoked” (field
20160) was understood as “ever smoked one cigarette” or “ever were
a regular smoker”. When compared to field 20116 (“smoking status”,
defined as never/previous/current smoker), 27% of those who
answered “never” also answered “yes” to “ever smoked”. We
therefore use field 20116 as a better indicator of smoking habit and
use it as a categorical variable with three levels.

For stroke, we base our definition on the Definitions of Stroke for UK
Biobank Phase 1 Outcomes Adjudication v1.1. We define self-reported
subarachnoid, intracerebral, ischaemic haemorrhage as having a self-
reported non-cancer disease code (field 20002) equal to 1086, 1491,
and 1583 respectively. We also define a general self-reported stroke
that include all the above plus 1081 (unspecified stroke). We define
hospital-diagnosed subarachnoid haemorrhage as having an 1CD9
code of 430 or ICD10 code of 160 in any hospital episode data (HES
table) or cause of death report (field 40001). Intracerebral haemor-
rhage is similarly defined using an ICD9 codes of 431 or ICD10 code of
161, and ischaemic stroke is defined using an ICD9 code of 434 or 436
and an ICD10 code of 163 or 164. We then define four stroke pheno-
types (subarachnoid, intracerebral, ischaemic, and all) with two sub-
phenotypes (self-reported or hospital diagnosis, and hospital diag-
nosis only).

For cardiovascular disease (CVD), we base our definition on previous
literature [41,42]. For self-reported coronary heart disease (CHD), we
extract field 6150 (“heart attack diagnosed by doctor”), value 1075
(heart attack) from field 20002, or self-reported operation (field 20004)
including percutaneous transluminal coronary angioplasty (value
1095), coronary artery bypass graft surgery (value 1070), or triple
heart bypass (value 1523). For hospital-diagnosed, we use ICD9 codes
of 410—412, ICD10 codes of 121—I124 or 125.2 from HES data, as well
as OPCS4 operation codes of K40—K46, K49, K50 or K75. We similarly
create a CHD phenotype restricted to hospital-diagnosed CHD and one
that includes self-reported data. We further define a “chronic” category
for CHD by including ICD10 codes of 125.1, 125.8 and 125.9 in hospital
diagnoses, resulting in four distinct CHD subphenotypes.

2.8.2. Genetic scores

Genetic prediction is most effective when the effect of multiple variants
is linearly combined in a polygenic score (PGS). For MPO, we first seek
to replicate the score created by Phuah et al. [43], containing 15
variants which were suggestively associated at p < 1 x 10 %ina
previous study by Reiner et al. [44] (rs2814778, rs800292,
rs12049351, rs2144300, rs9332739, rs3134931, rs1390943,
rs12940923, rs2680701, rs9911753, rs8081967, rs6503905,
rs28730837, rs35897051, rs6042507). We extracted these variants
from the UK Biobank imputed genotype data, imputed missing geno-
types using the allelic mean and created a normalised score based on
the effect sizes reported in the original study. Since this work meta-
analysed both serum and plasma studies, we stratified this score
based on whether these variants had arisen in a plasma or serum
analysis. We further sought to augment this score with recent results
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from large genome-wide, proteome-wide association studies. We
added 14 additional SNVs reported in three large proteome-wide as-
sociation efforts [7—9]. When a SNP was present in more than one
study, we selected the score reported in the largest in terms of total
(discovery and replication) sample size, as such a study will have more
power to detect the true effect size. We also incorporated all inde-
pendent variants at all MPO-associated locus if those were reported.
We performed LD-based analysis and removed among SNVs which
were tagging others in the combined score (> > 0.7) the one arising
from the study with the smallest total sample size. This produced a
score with 19 variants. Since the three studies contributing to this new
score are all plasma-based, we also performed peak calling and in-
dependent signal discovery using the peakplotter pipeline [45] which
uses conditional stepwise regression as implemented in COJO [46], on
the serum-only HELIC meta-analysis using a threshold of 1 x 1078,
the same as used in the historical score [44]. This added 16 variants,
one of which was removed because it was novel an could therefore not
be found in an imputed dataset, and another because it was in strong
LD with others in the score. Four further variants were monomorphic in
the UK Biobank, and 10 variants therefore remained. We created
versions of each of these three scores that excluded any SNV with
frequency lower than 0.05, including all variants included in our gene-
based test.

2.8.3. Score-disease association

We then performed logistic regression of 12 stroke and CAD pheno-
types, first using covariates only (PC1-10, age, sex, hypertension,
hyperlipidemia, poor glycaemic control, obesity, and smoking) for our
null model. Sex, age and smoking were significant predictors of all
disease phenotypes, and hyperlipidemia, glycaemic control and
obesity also significantly improved the model for most traits. We then
included the historical score of Rainer et al. as a predictor. This MPO
genetic score was a significant predictor in all CAD phenotypes, as well
as for ischaemic and all stroke.

3. RESULTS

3.1. Four cis signals and 1 trans pass QC, driven in part by isolate-
specific variants

After stringent quality control (see Methods), we identify 55 study-wide
significant (p < 7.45 x 10~"'") trait—gene pairs where at least two QV
contribute to the association. We focus on 5 signals that do not overlap
with a more strongly associated single-point association. We describe
4 cis signals for MARCO, TEK, MMP2 and MPO, and one trans asso-
ciation for GDF2 in the SERPINA11 gene (Figure 1). All detected as-
sociations are combinations of coding variants (exons +50 base pair
margin) weighted by the CADD functional annotation score [47]. All
except the MPO locus are detectable using a single-point meta-anal-
ysis, as one or more low-frequency QV pass the study-wide threshold
on their own.

The MARCO, TEK and MMP2 cis signals have similar architectures
and are discussed in detail in the Supplementary Text. The frans
GDF2-SERPINA11 signal may indicate novel SERPINA11-mediated
inhibition of a GDF2-targeting protease, a mechanism previously
documented for other members of these gene families (e.9. GDF2 and
SERPINAT1, see Supplementary Text). We note that this signal is driven
by two isolate-specific variants, the novel missense Pomak-exclusive
chr14:94446552 G/C (p = 9.52 x 107" B = —1.17, 6 = 0.152,
MAF = 0.014) and the missense variant rs376367509 (p = 2.43 x
10*5, B = —1.31, o = 0.311), which is monomorphic in all recorded
populations according to Ensembl but observed at a MAF of 0.0059 in
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ORCADES. The MMP2-cis signal is similarly driven by associations
exclusive to the Pomak cohort: the novel stop gained variant
(chr14:55489814 C/A, p = 4.48 x 10730, B = —2.59, 6 = 0.21,
MAF = 6.99 x 10’3), and the missense rs144755357 (p = 4.26 x
10738, B = 2.18, ¢ = 0.15, MAF = 0.013), which has increased in
frequency more than a thousand-fold compared to gnomAD exomes in
non-Finnish Europeans. The signals in MARCO and TEK are similarly
driven by variants that are either novel, or that exhibit strongly
increased frequencies in one of the isolates analysed in this study.
We describe the cis-MPO signal in more detail below.

3.2. Description of the cis-MPO signal

Across all cohorts, this test includes 41 variants (25 in MANOLIS, 17 in
Pomak, and 18 in ORCADES, Supplementary Table 2). Five variants
contribute the bulk of the signal (single-point p < 0.05/41 = 0.001, in
at least one cohort), however the magnitude of their contribution and
the overall architecture of the burden varies across cohorts (Table 1).
Only two QVs (rs28730837 and rs56378716) are present across all
three cohorts, with the former nominally associated with MPO levels in
Pomak and ORCADES only, and the latter in MANOLIS and Pomak only.
Three out of two QVs display strong, significant changes in frequency
in different isolates compared to cosmopolitan European populations
(Supplementary Table 3). Interestingly, while rs119468010 and
rs140636390 are enriched in ORCADES (3.8 fold) and MANOLIS (162-
fold) respectively, rs28730837 exhibits significant depletion in all three
isolates, up to 52-fold in MANOLIS. The QV with the strongest single-
point association P-value across all cohorts is rs119468010, a
missense variant present in ORCADES only (MAF = 0.014, B =
—1.31, 0 =0.204, p = 1.34 x 10~ '9). Using this variant’'s genotypes
as a covariate across the meta-analysis increases the meta-analysis
burden P-value from 3.6 x 10~ '8 to 1.46 x 102, showing that it
contributes only about a third of the rare variant signal at this locus.
Similarly, no single variant, when conditioned upon, attenuates the P-
value more than a third on the negative log scale for the meta-analysis,
or by half in the single-cohort rare variant analysis. This underscores
the genuine contribution of at least two variants per cohort to the meta-
analysis burden signal, as well as a combined contribution by variants
from all three cohorts.

3.3. Signal architecture

The p parameter of the SKAT-0 optimal test [37] performed in this
study can inform about the genetic architecture of the signal (see
Methods). While p = 1 corresponds to a pure burden (collapsing) test
where all variants have concordant directions of effect, p = 0 corre-
sponds to a pure SKAT (kernel-based) test. For the MPO signal, the
optimal p values vary depending on the cohort and analysis, but are
closer to a SKAT test for individual cohorts (0.3, 0.4 and 0.1 for
MANOLIS, Pomak and ORCADES, respectively). In the meta-analysis p
= 1, which indicates that the collapsing test is optimal. This is ex-
pected if the true signal is a burden, but the variants composing it are
not all found in the same cohort. Accordingly, the five variants driving
the signal, when nominally associated in any study, have their minor
allele associated with a negative direction of effect on MPO levels,
which confirms this signal as an MPO-decreasing burden of rare
variants.

3.4. Independence from previous signals

The protein encoded by MPO is myeloperoxidase, a heme-containing
peroxidase expressed mainly in neutrophils, where it catalyses the
formation of reactive species instrumental in microbial killing. Because
of MPO’s role in processes thought to be crucial for CAD, including
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Figure 1: Regional plots of the five burdens discovered in this study. Circles denote the sequence variants identified in the region. Protein-coding genes are displayed in grey
below the regional association plots, bars represent exons across all transcripts. Horizontal red lines indicate the —log10 of the burden signal p-value. Circles represent variants,
with size and colour of circles proportional to the CADD score used for weighting. Grey circles indicate variants not included in the test. The plots have been generated using the
plotburden software (https://github.com/hmgu-itg/plotburden).
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_ dex oo |e inflammation and tissue damage, MPO variants have been studied
g “c_, 13 “c_, 13 “c_, 2 extensively both for their role in CAD and as part of GWAS of circulating
Eo X x x  xx|= MPO levels. Three of the 5 variants driving our burden are detectable at
@ 5 < § E § § = strong significance levels in the largest MPO single-point meta-anal-
% - o 2 ysis to date by Folkersen et al. [9] (rs28730837, MAF = 0.0255, B =
5|88 |a° 5 —0.5407, 6 = 0.0439, p = 7.98 x 10~ %; rs56378716, MAF =
g1 =8 5= 2 0.0209, f = —0.4947, ¢ = 0.0400, p = 4.15 x 10~3%; s35897051
Sl . 319 LLIE MAF = 0.0066, p = —1.3122, ¢ = 0.0832, p = 5.54 x 107°6). Two
§,_§ SRS = are also present in an earlier study of the plasma proteome by Sun et
58 |gge =v|Z al. [7] (rs28730837 p = 1.74 x 10", 1s56378716 p = 1.10 x
3 LT 1072, 135897051 p = 7.94 x 10~2%). These variants are present in
g % = the summary statistics but are not reported as main signals, having
5 g F L § been considered conditionally dependent on the reported rs34097845
= SRR § and rs11079341. The two variants not detected in either meta-
5 °2cco o |2 analysis, rs119468010 and rs140636390, are present only at low or
§ e jr XX *g very low frequencies in publicly available datasets (rs140636390
8 enrx 9 o gnomAD allele count (AC) = 10, rs119468010 gnomAD AC = 470 AF
o " g = 0.001). When conditioned on the three variants previously impli-
@ § °§ ,og%; ; cated in GWAS studies (rs28730837, r3563787176, rs35897051), the
2 = |8 S o p-value of the burden increases to 5.98 x 10~ ', showing a distinct
g oo T T § é additional contribution of rs119468010 and rs140636390, the two
°E % % = § 5 variants private to MANOLIS and ORCADES, respectively.
sa Izer- 8§ [S£%
c |T7° T |8¢ 3.5. Functional impact of burden variants
E% Lo §§ Four of the five variants driving the signal (rs56378716 (M251T),
@ % E ; rs28730837 (A332V), rs119468010 (R569W), rs35897051) are known
= b g s pathogenic variants implicated in recessive MPO deficiency with clear
é o E _ g § loss-of-function mechanisms likely to reduce functional protein levels.
= N = sg Biochemical characterisation of rs56378716 and rs28730837 showed
© < S 56 a complete loss of protein activity, whereas rs119468010 was shown
x %%l 57 E?g to block heme insertion, and rs35897051 causing a large frame-
£ U’i -2 ‘j; § shifting insertion resulting in a non-functional protein. rs140636390
& =& 5 uf‘? E E (L527R), the only variant without prior functional evidence, is likely to
58 2ce F = have a similar mechanism of action, as the affected leucine residue
4 =8 § § contacts the heme group crucial for protein function (Figure 2).
£ L. g2
i _® P == 3.6. Association of MPO scores with cardiovascular outcomes
% g co oo § E MPO has a long history as a candidate gene in cardiovascular disease
2 Eo x x  ox x|E % (Supplementary Text). Protein genetic scores associated with disease
s s 82 82154 outcomes can indicate either disease-induced or disease-causing
2 9 S % dysregulation, and hint at a role for the protein in the disease pro-
= 8 Z % cess. We therefore sought to quantify the disease-predicting ability of
*E Ble & - N T.:: g recently implicated MPO-altering variants, including those described in
= % S S 2 R this study, in the UK Biobank. We perform linear logistic regression of
ol = | T LL|g2 stroke and coronary artery disease (CAD) using MPO genetic scores
E %‘g Lx xx|85 (see Methods) and clinical predictors. We find clinical predictors such
g @ o § § § § éi; as sex, age, hypertension, hyperlipidemia, poor glycaemic control,
= = § é obesity and smoking to be associated with almost all disease phe-
2 E ~§ | 1| % notypes (Supplementary Table 4) at nominal significance (P < 0.05).
§ = + = Clinical predictors have the highest p-values for the phenotypes with
é s - 88s 88 S < smallest case number (Supplementary Table 5), likely indicative of
s ‘§ %% SE2 KR % s insufficient power for accurate disease risk prediction in these cases.
-% =3 BEB BB e 2 We extend previous results from a 2017 study [43] (see Methods)
i S £ |s8= which found that an MPO-increasing polygenic score based on a 2013
e =5 283 § 2 ig’v;§ MPO GWAS meta-analysis was correlated with elevated risk of both
£ S 222 38|laZ primary and recurrent intracerebral haemorrhage. We perform ten
SIE EEE BE|2 additional regression analyses using increasingly dense MPQO genetic
| Ene =8 % 2 scores (Supplementary Table 4, Supplementary Table 6). We confirm
® § § 5 § § = g that the historical score is predictive of ischaemic (hospital-diagnosed
=} 288 8BS 23 (HD) F-test p = 0.010, self-reported (SR) and HD p = 7.73 x 1079)
. L and all (HD p = 1.83 x 107, SR + HD p = 4.26 x 1079) stroke
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Figure 2: 3D Representation of the MPO protein with the four coding variants contributing to the signal represented in red (rs56378716 (M251T), rs28730837 (A332V),

119468010 (R569W), rs140636390 (L527R)).

events, as well as all subtypes of CAD. The stratified serum and
plasma versions of the score are weakly associated only in analyses
with the largest CAD case numbers, indicating likely loss of power (e.g.
all CAD SR + HD plasma p = 3.05 x 1073, serum p = 0.0387) but
hinting at a contribution of both the plasma and serum components.
The score remains significant for the same phenotypes when a
collapsed genotype for rare MPO variants is included as a predictor,
although the rare variant component itself is not associated with any
disease response. When we add variants significantly associated in
three large, recent studies of MPO levels [7—9] to the score, the ge-
netic MPO component only remained nominally predictive for chronic
and incident CAD (SR + HD p = 0.0212, HD p = 0.0467). Any as-
sociation of a genetic MPO predictor with stroke and CAD phenotypes
is fully attenuated when we further add in variants significantly
associated in the present meta-analysis.

4. DISCUSSION

4.1. MPO associations in serum and plasma

In our study, protein levels were measured in serum for HELIC, and in
plasma for ORCADES. Given MPQ’s main function in leukocytes, levels
of the protein will be influenced by the leukocyte activation [48] and
degranulation observed in complement fixation, which happens during
the blood coagulation involved in serum generation from plasma.
Genetic association signals from plasma and serum MPO have
therefore been historically distinct [44], with plasma signals charac-
terised by hits in the MPO and GALNTZ regions, whereas the serum
analyses are dominated by a strong CFH signal, with absence of a cis-
MPQO signal, as well as multiple trans signals. CFH encodes comple-
ment factor H, a key actor in the alternative complement pathway. The
interplay and cross-talk between the complement and coagulation
pathways is well-documented [49].

We broadly replicate previous findings, with a HELIC serum meta-
analysis dominated by a CFH hit and the absence of a cis-MPO

signal, whereas the meta-analysis including ORCADES is typical of a
plasma analysis with a strong common-variant MPO signal
(Supplementary Figure 2, Supplementary Text). Low-frequency MPO
coding variants contribute markedly to the gene-based signal in the
serum-measured HELIC cohorts, without a common variant signal.
Together, these findings indicate that a cis-MPO signal arises from
both a common genetic component mainly observable in plasma, and
a rare variant component described in Table 1 and observable both in
serum and plasma.

In general, we find that meta-analysing serum and plasma protein
levels does not result in strong power loss for pQTL discovery. Out
of 873 and 979 common and low-frequency raw signals identified in
MANOLIS where tagging (LD > 0.8) variants could be found in
Pomak (serum) and ORCADES (plasma), respectively, 142 (13.7%)
and 109 (10.0%) replicate with the same direction of effect at a
Bonferroni-corrected threshold (two-sided chi-squared two-sample
test p = 0.0101). Given that high correlation is likely present at
neighbouring signals, this threshold is conservative, and the slight
observed increase in replication in Pomak subsides when nominal
significance is used for replication (17.4% and 15.7%, p = 0.299).
Combined with increased genetic proximity between the two Hel-
lenic isolates, these results support the hypothesis that replication
rates are similar between plasma and serum studies, except for a
small number of pQTL reflecting interactions activated in coagula-
tion pathways.

4.2. Are genetic scores of MPO predictive for stroke and CAD?

In our disease prediction model, we replicate a previous association
between an MPO genetic score and risk of both stroke and CAD.
However, both associations are attenuated when the score is updated
with SNVs from recent, large MPO GWAS [7—9], as well as those
associated in this study. We similarly find no significant predictive
effect when using a stratified score that separates effects from the
gene-based signal described in this work from common score variants.
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Our finding that early MPO genetic scores are predictive of CAD and
stroke risk must be tempered by the complex genetic architecture of
myeloperoxidase levels. In particular, 6 out of 15 variants originally
included in the 2013 score were located in the CFH and HLA-C2 re-
gions, both of which have been associated with cardiovascular disease
risk and are involved in multiple biological pathways. When these
variants are excluded, the association of any MPO score with either
CAD or stroke disappears, even though the number of cases in the UK
Biobank (maximum n = 17,148 for self-reported or hospital-diagnosed
stroke) is the same order of magnitude as the 2017 study (n = 12,577
for the NINDS-SIGN subcohort). This suggests previous associations
between MPO genetic scores and cardiovascular disease may have
been driven by variants in these highly pleiotropic regions. Our results
highlight that genetic scores require careful interpretation when
inferring the role of intermediate traits such as proteomics in complex
disease. More research will be required to unambiguously pinpoint
myeloperoxidase as a therapeutic target in stroke and coronary artery
disease.

5. CONCLUSIONS

In this work, we perform the first discovery meta-analysis of rare variant
associations across three cohorts with whole genome sequencing. This
proof-of-concept using deep proteomic data identifies associations of
rare variants not detectable by single-point analysis, exemplified by a
cis exonic MPO signal. We show an excess of association signal
compared to previous studies, ascribed to two MPO variants, each
exclusive to a specific study. This highlights the added value of this
approach, which allows the inclusion of variants that only occur in
certain populations. Our study details a reproducible pipeline for the
single-cohort and cross-cohort analysis of functionally-weighted coding
and regulatory variants. We describe robust quality control (QC) pro-
cedures based on conditional analysis that, unlike leave-one-out
methods, account for linkage disequilibrium between variants and
identify true rare variant signals. Finally, we note that the software used
in this study does not allow single-cohort analysis of more than 30,000
individuals. As large whole exome and whole genome sequencing
projects are gathering momentum [50,51], biobank-scale gene-based
testing methods require further development [39,52,53]. Urgent
methodological work is needed to scale up these methods to enable the
next step in rare variant and complex trait research.
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