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A B S T R A C T   

Investigation of human neurodegeneration-related aggregates of beta-amyloid 1–42 (Aβ42) on bdelloid rotifers is 
a novel interdisciplinary approach in life sciences. We reapplied an organ size-based in vivo monitoring system, 
exploring the autocatabolism-related alterations evoked by Aβ42, in a glucose-supplemented starvation model. 
The experientially easy-to-follow size reduction of the bilateral reproductive organ (germovitellaria) in fasted 
rotifers was rescued by Aβ42, serving as a nutrient source- and peptide sequence-specific attenuator of the organ 
shrinkage phase and enhancer of the regenerative one including egg reproduction. Recovery of the germovi
tellaria was significant in comparison with the greatly shrunken form. In contrast to the well-known neurotoxic 
Aβ42 (except the bdelloids) with specific regulatory roles, the artificially designed scrambled version (random 
order of amino acids) was inefficient in autocatabolism attenuation, behaving as negative control. This native 
Aβ42-related modulation of the ‘functionally reversible organ shrinkage’ can be a potential experiential and 
supramolecular marker of autocatabolism in vivo.   

1. Introduction 

Rotifers are widely accepted animal models of aging-, metabolism-, 
starvation-, pharmacology- and micro-in vivo OMICS research and 
methodologies (Macsai et al., 2019; Snell, 2014). Bdelloids, such as 
Philodina or Adineta species, have high tolerance to normal environ
mental changes due to their capability of adaptive phenotypic plasticity 
(van Cleave, 1932; Azevedo and Leroi, 2001). Marotta et al. (2012) 
found that the organs of these animals appeared to be compressed 
during starvation. The germovitellaria (the combined site of the ger
minarium and vitellarium glands) showed significant reduction in size 
and in fine structure under caloric restriction. These organ tissues could 
also function as nutrient storage; therefore, their content is used by ro
tifers via autophagy (Mizushima and Komatsu, 2011). In acidic vesicular 
organelles (AVOs) detection, acidotropic dyes are applied such as 

acridine orange (AO) or neutral red (NR). These indicators show good 
correlation with each other (Morishita et al., 2017) and in some cases 
these fluorescent probes, without cross-linking, are more promising 
quantitative approaches than immunofluorescence to evaluate the late 
phase of autocatabolism. The vacuolar-type H+-ATPase inhibitors (e.g. 
Concanamycin A) can hinder the catabolic processes of metabolic 
autophagy (Goto-Yamada et al., 2019). The direct connection between 
anatomical changes (e.g. organ shrinkage) and autophagy has been 
proved in rotifers (Marotta et al., 2012; Cervellione et al., 2017). 
Treatments with various exogenous Aβ isoforms are well-known models 
of Alzheimer’s disease and numerous studies applying in vitro and in vivo 
systems to discover their exact impacts. Studies are available using 
human neuroblastoma cells (Datki et al., 2003; Poeggeler et al., 2005), 
invertebrates, rodents, and primates (Harkany et al., 2000; Kong et al., 
2016; Sharma et al., 2017). Despite these facts, only one publication 
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deals with the effects of Aβ on bdelloid rotifers, e.g. Philodina species by 
Poeggeler et al. (2005). This research group administered beta-amyloid 
to test the potential protective effects of novel drug candidates (e.g.: 
antioxidant LPBNAH). These phylogenetically ‘simple’ animals are 
inappropriate to model higher, species-specific (e.g. human) physiolog
ical processes (e.g. neurodegeneration); nevertheless, they are suitable 
for demonstrating various interdisciplinary concepts (metabolic 
connection between non-pathogenic invertebrates and natural aggre
gates; Ricci and Boschetti, 2003; Ramulu et al., 2012). An adequate 
example for this is the phenomenon that bdelloids are able to exceed
ingly catabolize the highly resistant peptide- or protein aggregates 
(well-known neurotoxins), such as beta-amyloid (Aβ), alpha-synuclein 
and scrapie prions under extreme conditions (e.g. starvation). Investi
gation of neurodegeneration-related Aβ42 on rotifers is the central 
research topic of our team. In an exceptional way, the human-type ag
gregates are potential nutrient sources to bdelloid rotifers (Datki et al., 
2018); however, the general foods of these animals are aggregated 
organic masses in their natural habitat (Fontaneto et al., 2011). Bdel
loids are able to use conglomerates and aggregates as an energy source, 
by their phylogenetically selected ability. The 
rotifer-aggregates-connected research is rather a new topic, there is no 
relevant data about the Aβ-induced signalizations and regulations in 
these micro-in vivo entities. In this present study, our aims were to reveal 
the potential regulatory effects of aggregated Aβ42 in relation to the 
autocatabolism in rotifers. 

2. Materials and methods 

2.1. The invertebrate models 

The experiments were performed on Philodina acuticornis and Adineta 
vaga species; therefore, no specific ethical permission was needed ac
cording to the current international regulations. They were obtained 
from a Hungarian aquavaristique, originating from an agricultural farm 
in Szarvas, Hungary. The species have been maintained in standard 
laboratory conditions for 6 years. The rotifers were cultured based on 
the following methods of our previous publications. The standard me
dium content (mg/L) were: Ca2+ 31.05; Mg2+ 17.6; Na+ 0.9; K+ 0.25; 
Fe2+ 0.001; HCO3− 153.097; SO4- 3; Cl- 0.8; F− 0.02; H2SiO3 3.3 
(pH = 7.5) (Olah et al., 2017). For standard food of cultures, we used 
homogenized baker’s yeast (EU-standard granulated instant form, 2-0 
1-42 0674/001-Z12180/HU) which was heat-inactivated and filtered 
(Whatman filter with 10 μm pore; 6728-5100). 

2.2. Treatment and monitoring 

The Aβ42 and its scrambled isoform (S-Aβ42: LKAFDIGVEYNKV
GEGFAISHGVAHLDVSMFGEIGRVDVHQA) were prepared at the 
Department of Medical Chemistry, University of Szeged, Hungary. The 
concentrations of the stock solutions were 1 mg/mL in distilled water; 
the aggregation time was 3 h (25 ◦C, pH 3.5); the neutralization (to pH 
7.5) was performed with NaOH (1 N) (Bozso et al., 2010; Kalweit et al., 
2015). The final concentrations of Aβ were 100 μg/mL. For in vivo in
vestigations we applied Concanamycin A (ConA; 27689, 50 nM), 4, 
4′-dianilino-1,1′-binaphthyl-5,5′-disulfonic acid dipotassium salt 
(BisANS, D4162; 50 μM), propidiume-iodide (PI, 81845; 5 μM;), AO 
(13000; 15 μM) and NR (N-4638; 50 mM) dyes obtained from 
Sigma-Aldrich, USA. 

Monitoring the size of the germovitellaria, in the presence of glucose 
(1 mM), started on Day 0 (D0) providing a reference control. Following 
twenty days (D20) of starvation and five days (D25) later, the organ 
regeneration was presented. On D20, one-time feeding (600 μg/mL 
yeast homogenate) was applied and followed-by five days of recovery. 
The treatment protocol was performed on a ‘one-housed rotifer’ (one 
animal/well) setup in a 96-well plate (Costar Corning Inc., CLS3595). 
There were 150 ± 30 rotifer/well in all fluorescence-related 

experiments. Investigated rotifer populations have adequate number of 
individuals to provide similar and equable size distribution. 

The entities were photographed (Nikon D5100 camera, Japan) under 
inverted microscope (Leitz Labovert FS). The two separated germovi
tellarium were digitally colored in blue. The process of shrinkage with 
functional (egg production) regeneration capability was named ‘func
tionally reversible organ shrinkage’ (FROS). 

To investigate (n = 5, well) the amount of protein in the animals, 
BisANS was applied (Datki et al., 2019) parallelly with detecting the 
total amount of nucleic acid, where PI was used (Mozes et al., 2011) 
after 10 min incubation and washing. There was no extraction, the 
labelling and measurements were directly performed on the animals. 
The extinction/emission were 405/520 nm for BisANS and 530/620 nm 
for PI, measured by a microplate reader (NOVOstar, BMG, Germany). 

In AVOs-detection methods, we used a slightly modified version of 
Kang et al. (2018). The AO and the NR labellings were performed under 
the same conditions as the BisANS and PI applications. These two dyes 
were used in different wells, but the conditions and the number of ani
mals were the same. The extinction/emission of AO was 480/620 nm in 
red and 480/520 nm in green. The wavelengths of NR were 540/630 nm 
in red and 450/590 nm in yellow. In order to inhibit the 
autolysis-related processes, ConA was added to the wells on D0. The 
percentage of normalized fluorescence intensity (NFI%) was calculated 
from the ratio of fluorescence data divided by the number of rotifers in 
each well. 

In the experiential monitoring of FROS, each data (n = 36; individual 
one-housed rotifer/well) sums the whole (bilateral) size of the germo
vitellaria in one individual. The organs were circled by using a freehand 
tool (allowing to create irregularly shaped selections) in ImageJ pro
gram (64-bit for Windows, (Collins, 2007). The scale bar was 20 μm. 

To demonstrate the functional recovery of the reproductive organs, 
the number of laid eggs was counted after the regeneration phase (from 
D20 to D25). As a reference control, the treatment-free species-specific 
laid egg production was determined after 5 days in normal culturing 
conditions. 

2.3. Statistics 

Statistical analysis was performed with SPSS 23.0 (SPSS Inc, USA) 
using one-way ANOVA with Bonferroni post hoc test. The FROS index 
(FROSi) was calculated by the following formula: FROSi = A/B*A/C*D/ 
E (germovitellaria size on: A, D0; B, D20; C, D25; D, species-specific 
number of laid eggs under standard feeding; E, number of laid eggs on 
D25). The error bars represent the standard error of the mean (SEM). 
The different levels of significance are indicated as follows: p*, # ≤ 0.05, 
p**, ¤¤ ≤ 0.01, p***, ###, ¤¤¤ ≤ 0.001 and p****≤0.0001 (*, significant 
difference from the untreated controls; #, significant difference from the 
same S-Aβ42-treated groups of the given rotifer species; ¤, significant 
difference from the D0 and D25 groups of the given rotifer species). 

3. Results and discussion 

The Aβ42 is a well-known neurotoxin, which is prone to form highly- 
resistant aggregates in an aquatic environment (Lin et al., 2019). The 
bdelloid rotifers are able to catabolize these aggregates, with no physi
ological damage (Datki et al., 2018). Our aims were to reveal the special 
role of Aβ42 in autocatabolism-related processes during a 25-day period 
(Fig. 1). To explore the possible sequence specificity of this molecule, we 
applied its scrambled version as control. The molecular content and 
weight of S-Aβ42 were the same as that in wild-type human form, with 
different order of amino acids (Datki et al., 2018; Bartus et al., 2018). 

On D0, the reference germovitellaria of P. acuticornis (Fig. 2A) or 
A. vaga (Fig. 2D) can be seen. Their size and fine structure reduced after 
a 20-day long glucose-supplemented (ATP-source for autolytic pro
cesses) starvation (Fig. 2B and E). On D20, the animals were fed once, 
providing standard nutrient for the regeneration phase. The organs were 
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then rebuilt, and showed similar characteristics (Fig. 2C and F) to the 
reference ones. These results suggest that the organic shrinkage is 
reversible depending on the availability of food. To connect the 
autocatabolism-related processes with starvation-induced organ 
shrinkage (Puente et al., 2016), we applied ConA (Johnson et al., 2010) 
during the experiments. The amounts of protein and nucleic acid were 
measured parallelly with AVOs. Consequently, we found that the total 
protein decreased on D20, indicating that the animals catabolized it for 
survival. The ConA-administration inhibited these processes. The 
amounts of nucleic acid did not show any changes in either species 
(Fig. 2G). In line with the above mentioned investigations, we detected 
significant increase in autocatabolism-related vesicular acidification 
(Tan et al., 2018) in both species on D20 compared to the untreated 
reference values of D0. The ConA treatment hindered the observed al
terations. On D25, there were no significant changes either in AO or in 
NR. The decrease of protein amount (associated with stable nucleic acid 
content) and the occurrence of AVOs under starvation show good con
ceptual correlation with organ shrinkage. These phenomena are 
adequate physiologic and experiential markers of autolytic metabolism 
in the aforementioned bdelloid rotifers. 

The Aβs are stigmatized as negative multifunctional agents (e.g. in 
the human brain) in academic literature. Based on this concept, the core 
question is how Aβ42 may influence the autocatabolism-related pro
cesses in our microinvertebrate species? In FROS-related investigations 
the Aβ42, S-Aβ42 or ConA were added to the treatment medium on D0 
(Fig. 3A); therefore, these data served as references to the upcoming 

ones. In both rotifer species the organ shrinkage was less pronounced on 
D20 compared to the given untreated controls. Significantly higher 
regeneration was detected on D25 in Aβ42-treated groups compared to 
the other ones on D25. These results indicated that the native aggregate 
has a potential specific modulatory effect. Decrease of organ-size was 
lower in Aβ42-treated groups compared to the ones influenced by S- 
Aβ42. The same phenomenon was observed at the end of regeneration, 
where the animals showed significantly higher rate of recovery in the 
presence of Aβ42. These data showed that the attenuation of shrinkage 
via modulation is likely sequence-specific, since the order of amino acid 
is the only difference between the two types of Aβs (Vadukul et al., 
2017). On D20, ConA significantly inhibited the FROS in both species in 
a glucose-containing, but food-free environment. We have no knowledge 
about the treated animals eating the ConA itself, but the individuals 
remained alive in a good shape. On D25, the ConA had no effects on the 
monitored phenomenon. 

In the FROS acronym, besides reversibility (‘R’) of organ shrinkage, 
‘F’ stands for functionality, which refers to the remaining reproduction 
ability of rotifers. The measured parameter on D25 was the number of 
laid eggs, which was compared to the reference values (Fig. 3B). In all 
groups, the amount of eggs was low on D20 due to the minimal calorie 
intake. In the presence of Aβs, the number of eggs significantly elevated 
in both species compared to the control and ConA peers; moreover, the 
Aβ42-modulated animals laid significantly higher number of eggs than 
the S-Aβ42-treated ones. Integration of egg-number-data into the time- 
dependent organ size alterations resulted a special formula, named 

Fig. 1. Schematic protocol of the functionally reversible organ shrinkage in a micro-invertebrate system (D0 = Day 0, starting day; D20 = Day 20, organ 
shrinkage period with one-time drug treatment in glucose supplemented environment; D25 = Day 25, organ regeneration period with one-time standard feeding). 

Fig. 2. Functionally reversible organ shrinkage (FROS) in 
P. acuticornis and A. vaga rotifers. The germovitellaria (digitally 
pseudo-colored in blue; scale bar: 20 μm) of P. acuticornis (PA; 
A–C) and A. vaga (AV; D-F) was monitored on D0 (A and D), D20 (B 
and E) and D25 (C and F). The FROS-related alterations are pre
sented (G) with the protein- (green), nucleic acid- (red) and AVOs 
amount in PA (full columns) and AV (striped columns) rotifers. The 
D0 means 100 %. ConA was applied parallelly with all in
vestigations. The error bars represent SEM. One-way ANOVA with 
Bonferroni post hoc test was used for statistical analysis, the levels 
of significance are p*** ≤ 0.001 and p**** ≤ 0.0001 (*, significant 
difference from all the groups) (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web 
version of this article).   
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FROS index, which is a representative unit for the current treatment 
agents. This index shows a linear correlation with the level of autoca
tabolism. The FROSi was positively lower in all agent-influenced ex
periments compared to the controls in both species (Fig. 3C). The FROSi 
of native aggregates, in contrast to their scrambled version, demon
strated that the Aβ42 is not only a food source for rotifers, but it is also a 
potential regulator of their systemic metabolism. Both Philodina and 
Adineta species showed alterations with the same tendencies; therefore, 
these effects of Aβ42 are not limited to only one species. 

Rotifers are extremely resistant to environmental alterations and 

they successfully adapt to different types and amounts of nutrients 
present in their natural habitat. The natural decomposition of organic 
materials is a process that results in the formation of precipitates and 
aggregates, which represent potential nutrients for rotifers (Wallace and 
Snell, 2010). The metabolic utilization of all these available organic 
material resources is their special property (Castro et al., 2005). Nobody 
has investigated before the in vivo catabolism of the Aβ as food sources or 
as potential autocatabolism-regulator for multicellular entities. The 
starvation-induced shrinkage of germovitellaria, with their regeneration 
and reproduction capability in these animals, is an adequate physiologic 
and experiential marker of autocatabolism, summarized by FROSi. By 
applying these microinvertebrates, the hitherto unknown roles of Aβ42 
were demonstrated, providing additional tools for exploring relations 
between neurotoxic aggregates and metabolism. 
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