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Abstract

Background: Surface raw water used as a source for drinking water production is a

critical resource, sensitive to contamination. We conducted a study on Swedish raw

water sources, aiming to identify mutually co‐occurring metacommunities of

bacteria, and environmental factors driving such patterns.

Methods: The water sources were different regarding nutrient composition, water

quality, and climate characteristics, and displayed various degrees of anthropogenic

impact. Water inlet samples were collected at six drinking water treatment plants

over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced

samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint

model for taxa abundance.

Results: Two major groups of well‐defined metacommunities of microorganisms

were identified, in addition to a third, less distinct, and taxonomically more diverse

group. These three metacommunities showed various associations to the measured

environmental data. Predictions for the well‐defined metacommunities revealed

differing sets of favored metabolic pathways and life strategies. In one community,

taxa with methanogenic metabolism were common, while a second community was

dominated by taxa with carbohydrate and lipid‐focused metabolism.

Conclusion: The identification of ubiquitous persistent co‐occurring bacterial

metacommunities in freshwater habitats could potentially facilitate microbial source

tracking analysis of contamination issues in freshwater sources.
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1 | INTRODUCTION

Access to clean water is of global importance to public health and a

key factor in maintaining a well‐functioning society. Future

challenges—arising due to increased urbanization and climate

change—are expected to reduce freshwater quality, resulting in

increased particle and nutrient load, but also fecal pollution (Arnell

et al., 2015; Howard et al., 2016; Vörösmarty et al., 2000). Due to

better, more readily available sequencing capabilities at a lower

cost, several recent studies have been able to assess the

anthropogenic impact on bacterial composition in watersheds

(Hägglund et al., 2018; Llirós et al., 2014; Newton & McLellan, 2015;

Shen et al., 2019). These studies indicate that anthropogenic actions

have a clear impact on bacterial diversity along eutrophic‐

oligotrophic gradients. Eutrophication can disturb the microbial

community composition, altering the carbon and nutrient cycling

and, as a result, the entire aquatic ecosystem (Kiersztyn et al., 2019;

Newton & McLellan, 2015; Nyirabuhoro et al., 2020; Zeng

et al., 2019). Regarding the impact of anthropogenic activity on

microbial diversity and function, few long‐term longitudinal studies

have been conducted, emphasizing the need for increased knowl-

edge of seasonal and interannual changes in biodiversity at the

community level. Due to the high turnover rate of most prokaryotes,

as compared to larger organisms, long‐term trends in microbial

communities are of particular interest, as these communities have

the potential to change more over time, thus resulting in a faster

response to anthropogenically induced perturbations.

Most studies of bacterial community composition in boreal

lakes, which are of specific importance as sources of drinking water

in temperate regions, have focused on inferring factors shaping

bacterial community structure and possible correlations within the

communities. These studies have described waters in the Nordic

countries (Eiler & Bertilsson, 2007; Eiler et al., 2012, 2013; Peura

et al., 2012) and in other similar environments, such as freshwater

bog lakes in the northern United States (Linz et al., 2017) and boreal

lakes in Québec, Canada (Cheaib et al., 2018; Niño‐García

et al., 2017) as well as lakes and ponds across Europe (Bock

et al., 2020). Eiler et al. (2012) examined the temporal dynamics of

bacterioplankton communities in Lake Erken situated in eastern

Sweden and found temporal trajectories over annual cycles and

complex inter‐dependencies within communities which point

toward the importance of biotic interactions (such as direct

competition/mutualism as well as less direct interaction) for shaping

community structure.

However, as pointed out by Langenheder and Lindström (2019),

a limitation of the aforementioned studies is that they have either

focused on a long time series for a single lake or single/few time

points across many lakes. Therefore, further studies of longitudinal

data collected in multiple lakes are warranted to understand the

complex associations of diversity, interactions within and between

communities, and the influence of environmental and anthropogenic

factors, to understand the general governing principles of microbial

composition and ecology. From a water safety management point of

view, large‐scale longitudinal studies are required to better define the

variability in the community as true perturbations due to external

factors will be more easily identifiable and discernible from natural

fluctuations by employing the results of such studies. Discriminating

natural fluctuations from external anthropogenic changes in the

composition will also greatly improve microbial source tracking

performances (Hägglund et al., 2018; Read et al., 2015).

In the present study, six Swedish raw water sources were

sampled for 3 years. The water sources represent diverse environ-

ments including both anthropogenically affected and more

undisturbed waters. The study aimed to describe the composition

and inferred metabolic capabilities of the microbial communities

across a timescale of several years to assess if factors linked to

anthropogenic perturbation may shape the diversity, interactions,

and capabilities of the present microbes and if a difference in these

patterns between affected and pristine waters could be observed.

The longitudinal design of the study gave us a unique opportunity to

infer fine‐scale biotic interactions while simultaneously accounting

for other sources of variation induced by anthropogenic disturbance

and meteorological and location factors.

2 | EXPERIMENTAL PROCEDURES

2.1 | Selection of sampling locations—chemical and
physical properties

The sampling locations were selected from a set of 200 surface raw

drinking water sources monitored from 2000 to 2011. During the

monitoring period COD‐Mn (Method Fd. SS 02 81 18), color value,

turbidity, and the number of cultivable microorganisms at 22°C

(ISO6222) were measured. Of the parameters selected for inclusion

in the modeling, wind, temperature, and amount of rain represent

meteorological factors, while turbidity and color values refer to the

physical properties of the water. “Cultivable colony forming units

(CFU)” was included as a direct biological factor. Additionally, average

air temperature and precipitation were calculated for the week

before each sampling. From the initial 200 sampling locations, a

subset of six water sources was selected for more in‐depth study,

representing both lakes and flowing waters from the south and

middle of Sweden and ranging in size from smaller lakes to the largest

river by average flow rate in Sweden. The selected freshwater

sources were situated in the areas of Stockholm, Östersund, Motala,

Borås, Härnösand (lakes), and Trollhättan (river). The watersheds

providing the source of inflow for the six sampling locations

represent a diverse complement of land use, including almost pristine

wood‐land boreal lakes and heavily anthropogenically affected

sources influenced by extensive farming, urban areas, and industrial

development (Figure 1a,b and Table 1). To characterize the sites, an

additional set of more extensive water quality indicators were

measured during a longer period, including coliforms, Escherichia coli,

enterococci, Clostridium perfringens, and somatic coliphages (Häg-

glund et al., 2018).
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2.2 | Sample collection, DNA extraction, library
construction, and sequencing

Raw water samples were collected from inlets at six drinking water

treatment plants (DWTP). Between September 2013 and August

2015, a total of 230 raw water samples were collected of which 175

were selected for DNA sequencing. DNA was amplified with

bacteria/archaeal primers 515 F/806 R specific for the hyper‐

variable V4 region of the 16S rRNA gene (Caporaso et al., 2012).

The obtained polymerase chain reaction (PCR) amplicons were

sequenced on an Illumina MiSeq platform using a combination of

300‐ and 500‐bp paired‐end kits. Sampling procedures, DNA

extraction, and sequencing are described and performed in Hägglund

et al. (2018).

(a) (b)

(c)

F IGURE 1 (a) Watersheds in Sweden with locations of the selected drinking water treatment plants (DWTPs). Black outlines show the extent
of the catchment area of watersheds for each of the six DWTPs. (b) Land use fraction of the watersheds for the six DWTPs with dark
green = forest, yellow = farmland, light green = open land, red = swamps and wetlands, black = urban terrain, blue = water, and grey = other
(mainly mountains). (c) Environmental parameters for the six selected DWTPs for the study period. Brackets show a significant difference
between locations as determined by the analysis of variance test (*p = 0.05; **p = 0.01; ***p = 0.001).

TABLE 1 Area in square kilometers
and percentage of land area classification
for each watershed

Location Size (km2) Water Urban Forest Wetland Open Mountain

Borås 455 5.42 2.30 56.47 0.00 35.81 0.00

Härnösand 283 3.74 0.20 84.62 0.00 11.44 0.00

Motala 6561 34.16 1.16 39.68 1.13 23.88 0.00

Östersund 11,401 12.81 0.26 56.67 5.85 3.77 20.64

Stockholm 22,550 10.40 1.98 53.87 0.45 33.31 0.00

Trollhättan 40,055 21.03 0.49 55.01 2.13 20.97 0.38
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2.3 | Bioinformatic analysis of sequencing data

The sequences were demultiplexed using the deML software (Renaud

et al., 2015). The reads were quality filtered and denoised using

DADA2 (Callahan et al., 2016, 2017). The “filterAndTrim,” “learnEr-

rors,” and “dada” functions were run on each of the eight amplicon

sequencing data sets to train the error model specifically for each set

so that heterogeneity in sequencing runs was accounted for. Read

length truncation parameters were decided based on the Phred

quality scores plot for each sequencing run and varied between 140

and 180 for forward reads and between 120 and 135 for reverse

reads. The maxEE parameter was set to default (i.e., equal to 2.0).

Reads were truncated at the first instance of a quality score less than

or equal to 11 (i.e., truncQ). Chimeras were removed based on the

consensus method in the function removeBimeraDenovo. After the

quality filtering, 68.7% of the reads were retained. As two different

Illumina MiSeq reagent kits were used through the sequencing of the

samples, the reads had to be truncated to match the kit with the

shortest read‐length, although the final sequence lengths were

sufficiently long to overlap the paired‐end reads successfully (i.e.,

ranging between 15 and 60 bp overlap). Then the data were filtered

as follows: reads shorter or longer than 2 × SD (242, 263 bp) were

removed, and amplicon sequence variants (ASVs) unclassified at the

Kingdom level were also removed. This pruning reduced the number

of ASVs from 40,175 to 40,012. Subsequent removal of eukaryotic

(mitochondria and chloroplast) sequences decreased the number of

ASVs to 39,081 (and the total number of reads to 20,269,784). The

maximum and minimum number of read counts were 433,918 and

27,958, respectively, with a mean read count of 124,865 (Table A3).

2.4 | Statistical analysis and visualization

The clustering of water samples and sites into two partitions,

corresponding to anthropogenically disturbed and pristine environ-

ments, was performed on the extended set of 230 samples using nine

water quality indicators: CODMn (Chemical Oxygen Demand), color

value, turbidity, coliforms, E. coli, enterococci, cultivable bacteria at

22°C, C. perfringens, and somatic coliphages. The samples were

assigned to either environment using both k‐means unsupervised

clustering and principal component analysis (PCA) in R on scaled

variables (i.e., all indicator data were transformed so that the mean

was zero and the variation was one) with default parameter values in

both analyses. At the site level, a 50% cutoff (of a proportion of

samples) determined membership in the respective environment. The

taxonomic composition of the bacterial communities was analyzed

and visualized using the phyloseq R package (McMurdie &

Holmes, 2013). Visualization and statistical computation of environ-

mental data and alpha diversity were performed using the R package

(microbiomeseq v. 0.1 https://github.com/umerijaz/microbiomeSeq/)

and the Phylosmith R package (phylosmith v. 1.0.6 https://schuyler-

smith.github.io/phylosmith/). To infer differences in mean values

between distributions of both environmental data and alpha diversity

per site, analysis of variance was performed with comparisons where

p values lower than 0.05 were indicated. PCA was performed using

center‐log transformed values to visualize differences between

communities using the MicroViz R‐package (Barnett et al., 2021).

To infer a phylogenetic tree for the top 200 (i.e., the 200 most

numerous) ASVs, RaxML version 8.2.X (Stamatakis, 2014) with

standard settings and the GTRCAT approximation of nucleotide

substitution rate heterogeneity was used. Phylogenetic trees were

visualized using the ggtree package (Yu et al., 2017) in R. Heatmaps

were visualized using the ggheatmap function in the R package

heatmaply (Galili et al., 2018). Detection of a phylogenetic signal for

metacommunity distribution was performed with the delta‐statistic

method presented by Borges et al. (2019), using default settings of

the delta function in R and 1000 permutations to create the

distribution of delta under the null hypothesis of no signal between

the trait and the phylogeny.

2.5 | Multivariate generalized linear modeling of
interactions between taxa

To investigate the effect of environmental predictors on the

communities and biotic interactions within, a multivariate general-

ized linear latent variable model (GLLVM) was fitted to the

community data through the gllvm R package (Niku et al., 2019).

By modeling the response of abundance to predictors jointly with

the correlation across taxa, we have the possibility of teasing the

two apart by explicitly modeling the correlation structure via latent

variables. In doing so, we can both estimate the effects of the

environmental predictors and residual correlations jointly (Caradima

et al., 2019; Ovaskainen et al., 2017; Warton et al., 2015). The ASV

abundance matrix was set as a response variable and rescaled and

centered average air temperature, turbidity, COD‐Mn, and Color

values were set as continuous predictors and water plant location

and season of sampling were used as group‐level predictors

according to:

g m β x β x β x β x β x β β

z λ

( ) = + + + + + +

+ ,

ijkl ij i ij i ij i ij i ij i ijk ijl

jk k

0 0 1 1 2 2 3 3 4 4 5 6

(1)

g() is the log link function defining the mean of the linear function

of predictors, mij is the jth ASV abundance in sample i (i = 1…163), β0i
is the effect of the total sample sequence abundance for sample i on

ASV j (j = 1…200, as only the top ASVs in terms of abundance were

included), β1i is the effect of the average air temperature (1 week

before the sampling) for sample i on ASV j, β2i is the effect of turbidity

for sample i on ASV j, β3i is the effect of COD‐Mn for sample i on asv

j, β4i is the effect of color values for sample i on ASV j, β5jk is the

effect of the sampling site k (k = 1…6) on ASV j, and β6jl is the effect of

season l (l = 1…4) on the jth ASV. The latent (unobserved) variables zjk

were included to explain the residual covariance structure. Further

information on the GLLVM analysis is supplied in Appendix A (see

Materials and Methods section). To check for co‐linearity,
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correlations between predictors were estimated using the base cor

function in R: results are provided in Appendix A and Figure A13.

2.6 | Reconstruction of community metabolic
pathways

To reconstruct the metabolic capability from ASV data of the three

defined metacommunities obtained in the GLLVM analysis, PI-

CRUSt2 v.2.3.0‐b (Douglas et al., 2020) was run using a standard

setting on un‐rarified ASV‐table data of the top 200 most abundant

taxa and representative sequences corresponding to each ASV. The

DESeq. 2 (Love et al., 2014) R package was used to detect

differentially abundant KEGG (Kyoto Encyclopedia of Genes and

Genomes) orthologues and BioCyc pathways. To deal with zeroes in

the data set a pseudocount of +1 was added to each data point,

and the results were subjected to variance stabilizing transforma-

tion to reduce skew (Anders & Huber, 2010; Huber et al., 2003;

Tibshirani, 1988).

2.7 | Analysis of land usage in catchment areas

The catchment areas for each sample point were based on data

obtained from the Swedish Meteorological and Hydrological Insti-

tute. Land cover or land use for each catchment area was estimated

using CORINE Land Cover data from Copernicus (https://land.

copernicus.eu/pan-european/corine-land-cover). The land cover

types were pooled into six categories, that is, water surface, open

ground, swamp, mountain, forest, and urbanized area.

3 | RESULTS

To perform an in‐depth study of the difference in water properties at

the selected sites, representing a wide diversity in the catchment area

and land use (Table 1 and Figure 1a,b), a total of 230 samples were

collected between 2013 and 2015. All samples were analyzed for

water quality (i.e., CODMn, color value, turbidity, cultivable micro-

organisms at 22°C, E. coli, C. perfringens, enterococci, coliforms, and

somatic coliphages), and a subset of 175 samples was subjected to

16S amplicon sequencing (Hägglund et al., 2018) with a broader

representation of biological, meteorological, and physical properties

included (Figure 1c). The various factors showed a differing degree of

variability, both between and within sample sites, with color value

displaying the highest between site variability and temperature

showing the greatest within‐site differences. Both Stockholm and

Trollhättan had significantly higher mean turbidity than the other

sites, while Borås and Härnösand showed significantly higher mean

color values. Trollhättan samples also showed higher levels of

cultivable bacteria at 22°C than at the other sites.

The water quality data of all 230 samples were assigned

into two partitions (anthropogenic affected and unaffected/pristine

environments), for which 94%, 80%, and 60% of all samples from

Motala, Östersund, and Härnösand, respectively, were assigned to

the unaffected group, while 100%, 85% and 62% of Trollhättan,

Borås, and Stockholm samples were assigned to the anthropogenic

affected group (Figure A1a). The most important indicator in the

partition was E. coli with an average difference between the

partitions of 1.56, while CODMn and color value were the least

discriminative with an average difference of 0.90 and 0.86. All the

other indicators were intermediate discriminative with a difference of

1.23–1.29 (Figure A1b). This resulting partition was supported by the

PCA (Figure A1c), as the first PC with the highest proportion of

explained variation in indicator data (41%), showed a similar

partitioning of the sites, while the other components explained

considerably less (17%, 10%, and 10% for PC2, PC3, and PC4,

respectively). When comparing the overall bacterial diversity of the

raw water at the sites (Figure A1), as measured by a few standard

diversity indices, Motala and Härnösand displayed the lowest

diversity, although the difference was only significant for Motala.

The low diversity of Härnösand is likely because this water

represents a biologically divergent environment compared to the

other sampled locations, with a higher amount of humus typical of

boreal lakes. Motala on the other hand takes its water from lake

Vättern, the second largest lake in Sweden with generally good (i.e.,

oligotrophic, cold, nutrient‐poor, and oxygen‐rich) water quality

indices, reflecting an environment with fewer exploitable microbial

niches. Waters from other larger sources (Stockholm and Östersund,

lakes Mälaren and Storsjön, respectively), displayed lower variability

due to the effects of much larger surface area and volume leading to

slower response times indicative of more stable environments. As

expected, diversity peaked in summer and was the lowest in winter

(Figure A2).

Microbial communities at all sample sites were dominated by

three phyla (Figures 2 and A3), common for water sampled from

freshwater lakes and in line with previous investigations on Swedish

waters (Eiler et al., 2012; Peura et al., 2012). Phyla Actinobacteria,

Bacteroidetes, and Proteobacteria (to a large extent comprised of α‐

proteobacteria of the order Pelagibacterales belonging to the

common freshwater LD12 clade) constituted approximately

80%–90% of all taxa, with variations between sites due to

abundance of less common phyla. Actinobacteria were slightly

more common at the northern sampling sites of Härnösand and

Östersund, while Östersund also displayed an elevated abundance

of Chloroflexi compared to the other waters. Of note is that Motala

was the only site showing significant numbers of cyanobacteria in

some samples, possibly corresponding to annual bloom events

(Figure A3).

General trends were also observed for seasonal variation of the

top 200 taxa (Figure 2b) in microbial composition, with the

actinobacterial fraction showing a peak in fall, and the proteobacterial

fraction peaking in the winter/spring season. Furthermore, larger

fractions of Planctomycetes and Chloroflexi were present during the

fall/winter season, while Actinobacteria and Verrucomicrobia mainly

appear to be associated with the summer/fall period.
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Unclassified sequences were present in all waters, to a varying

degree both geographically and temporally, pointing to a still

unexplored diversity present in Swedish freshwaters.

A PCA (center‐log transformed data) analysis of the top 200 taxa

representing the highest relative abundance (Figure 3c) revealed

Härnösand (and to a lesser degree Motala) as the most divergent

locale in terms of which taxa are most relatively abundant, while

Stockholm represents the most median sampling site.

Overall, the relative abundance of taxa present in at least 90% of

all samples was comprised of a number of known generalist

freshwater clades showing a fairly even distribution in all samples,

the most numerous clades being various Actinomycetales and other

Actinobacteria, although no single taxon exceeded approx. 0.5% of

the total fraction in any individual sample (Figure A4). Furthermore,

several well‐known fresh‐water bacteria were detected in lower

fractions but showed little variation between samples such as the

wide‐spread alpha‐proteobacterial LD12 clade, Sediminibacterium,

Polynucleobacter, and other Burkholderiales, unidentified members of

phylum Bacteroidetes and subdivision 3 of phylum Verrucomicrobia,

and several members of the beta‐proteobacterial family Comamona-

daceae. Other notable taxa displayed relatively high abundance in a

selection of samples but had a spottier distribution, such as genera

(a)

(c)

(b)

F IGURE 2 Barplots showing the relative composition at the phylum level of samples for the 200 most common taxa, grouped by location (a)
and season (b). (c) Center‐log ratio transformed PCA showing the relative composition of sampling sites for the top 200 taxa. Colors correspond
to the sampling location while shapes correspond to the sampling season. Character adjacent to DWTP name (A/P) indicates if a location was
classified as Anthropogenically affected or Pristine. DWTP, drinking water treatment plant; PCA, principal component analysis.
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Fluviicola, Terrimicrobium, Blastopirellula, Anaerolineaceae, Rhodoferax,

Acidovorax, members of families Rhodocydaceae and Alcaligenaceae,

in addition to genera Flavobacterium and Sphingorhabdus.

To summarize the general diversity analysis of the raw water

assemblages, we have identified a complex pattern of variation

between sites, seasons, water quality parameters, and sequence

taxonomy. This observed complexity implies that further modeling is

warranted to disentangle the different sources of variation.

3.1 | Model analysis reveals three distinct and
abundant metacommunities

To determine if bacterial assemblages responded to habitat char-

acteristics and displayed signs of interactions among ASVs, a GLLVM

was fitted to the ASV occurrence data, with turbidity, color value, air

temperature, and COD‐Mn included as covariates and location and

season as factor level predictors in the model. Only the top 200 ASVs

in terms of total abundance were included, with a high degree of

ASVs being shared (i.e., present in at least 90% of samples and with

an abundance of at least 0.1% of reads) between locations

(Figure A5). The selection of the most common taxa and the

exclusion of comparably more rare taxa were performed as these

likely represent biologically important species and are less sensitive

to both, noise in the data (i.e., close to detection limits, PCR induced

bias, database incompleteness) and problems with compositionality

inherent to all sequencing analyses with technical limits to sequenc-

ing depth (Alteio et al., 2021). All inferred associations with 95%

confidence intervals are provided in Table S1 available at 10.5281/

zenodo.7066483. When including all predictors in the model, 41% of

the total variation was accounted for in the analysis, which better

allows us to draw conclusions from the inferred ASV correlations

after adjusting for the predictors (Figure A6). By inspecting the

inferred factor loadings of the model, the ASVs that explain most

variation in ASV abundance were assigned to the phyla Proteobac-

teria and Bacteroidetes (Figure A7). A variable importance analysis

was performed where the geographic location effect was found to be

most influential (of the included predictors) on composition

(Table A1).

Potential biotic interactions based on the results of the GLLVM

analysis were analyzed by assessing the estimated correlations

across ASVs. Three distinct metacommunities were identified using

hierarchical clustering (Figure 3a). The first metacommunity did not

exhibit any clear pattern on average correlation within (r1 = 0.056

[0.196]) and between communities (results not shown), while the

second and third metacommunities displayed strong positive

within community correlation (mutualism; r2 = 0.330 [0.201],

r3 = 0.499 [0.205]) and negative between community correlation

(r2,3 = −0.249 [0.174]). The three metacommunities consisted of

members with different taxonomic affiliations at the phylum level

(Figures 2b and A8). Metacommunity 1 and 2 were highly diverse

with most phyla present in the data set represented, although in

both cases Actinobacteria and Proteobacteria were dominant, with

Bacteroidetes representing a significant fraction of metacommu-

nity 1 but mostly present in lower amounts in metacommunity 2.

Metacommunity 3 was almost exclusively composed of Bacter-

oidetes and Proteobacteria, in contrast to the other two communi-

ties, and showed a lower diversity at the phylum level. In contrast

to community 1, which mostly mirrored the general diversity in the

data set, communities 2 and 3 comprised taxa associated with

specific conditions and consisted of mutually exclusionary and

unique organisms. Worth noting is that members from the same

metacommunity tended to cluster together in the phylogeny. This

clustering distribution of metacommunities in the phylogeny was

tested using delta‐statistic, with an obtained δm = 3.28 compared

to δ0 = 2.12 (0.63) of the null distribution (p = 0.000), which implies

the presence of a phylogenetic signal (i.e., the ecological similarity

between taxa is related to phylogenetic relatedness), showing that

specific life‐strategies adopted by taxa is governed to an extent by

shared evolutionary history although this can vary between taxa

even if comparing on the same taxonomic level. The spatio-

temporal trends of the three metacommunities were accessed by

investigating their relative contribution to each assemblage

(Figure A9). On average, metacommunity 1 was the most abundant.

Both, temporal dependency on metacommunity compositions and

side effects were observed, where metacommunity 2 was most

abundant (on average) in Östersund and Borås (average frequen-

cies of 21.2% and 15.0%, respectively) while metacommunity 3

was most abundant in Motala and Trollhättan (24.5% and 16.0%,

respectively).

In the GLLVM analysis, associations between the taxa and

environmental, seasonal, geographic, and water quality variables

were inferred: all significant associations are highlighted in

Figures 4, A10, and A11 while the highest positive and negative

associations for each predictor are shown in Table A2. Turbidity

resulted in the most positive significant associations, with members

from metacommunity 2 over‐represented. Additionally, the air

temperature resulted in many positive associations. Most taxa

showed a negative response to higher color values, except for two

representatives assigned to metacommunity 1 (Alkaligenaceae and

Polynucleobacter). For the season predictor, most ASVs with a

significant association between spring and any other season were

over‐represented in the spring assemblages (i.e., a negative effect

size value in Figure 5a). When contrasting summer against spring

factor levels, a greater number of taxa belonging to metacommunities

1 and 2 were showing a moderate decrease during summer, while

members of metacommunity 3 showed an over‐representation

during summer. The overall fall season response was similar to the

summer response, while the winter season resulted in most taxa

showing an under‐representation. Investigations of the impact of the

site generally revealed that ASVs assigned to metacommunities 1 and

2 showed a higher number of associations than ASVs assigned to

metacommunity 3, further reinforcing that metacommunity three

members consist of generalist bacteria (Figure A8d). In general,

members of the same metacommunity showed joint preference,

albeit with some exceptions.
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(a)

(b)

F IGURE 3 (a) Heatmap of correlations between amplicon sequence variants (ASVs) and clustering dendrogram with the three
metacommunities highlighted as separate colors, red, green, and blue for metacommunities 1, 2, and 3, respectively. The legend shows the
correlation interval. (b) Cladogram of the top 200 ASVs and their metacommunity and taxonomic assignments at the phylum level. Color coding
for metacommunity association as per description for (a).
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To summarize the results of the GLLVM analysis, three distinct

metacommunities were identified in the top 200 ASV co‐occurrence data.

These metacommunities showed a distinct community structure and

associations to the measured environmental data. Members of meta-

community 1 showed a positive estimated response to air temperature,

while for metacommunity 2, many positive associations between ASV co‐

occurrence and turbidity were inferred. Both site and season factors

resulted in many differentially abundant ASVs indicating the presence of a

spatiotemporal effect on Swedish raw water assemblages.

3.2 | The predicted function of metacommunal
metabolic potential reveals specific adaptations

To further investigate these metacommunities, an analysis of

predicted metabolic functions was undertaken so that differences

in function pertaining to the ecological roles fulfilled by the

communities could be investigated.

Reconstruction of the theoretical metabolic capability of the top

200 most abundant taxa by use of the PICRUSt2 software for

functional inference was performed, followed by differential abun-

dance analysis of the resulting KEGG orthologues and METACyc

pathways for each sample site and taxa. Results showed that the

three metacommunities inferred from the model analysis differ in

favored orthologue/pathway abundance, as shown by a PCA plot of

the relative abundances of metabolic features as shown in Figure 5.

Hierarchical clustering of the metabolic capability of the three

metacommunities revealed that they can clearly be distinguished on

metabolic capability alone, as illustrated in Figures 5a and A12a–d.

Intriguing details emerge showing that metacommunity 1, when

considering the more abundantly observed orthologues/pathways,

appears to favor a diverse metabolism with no specific focus,

(a)

(b)

F IGURE 4 The estimated coefficient of corresponding ASVs associated with: (a) site effects where Stockholm DWTP is set as a reference
and (b) season effects where spring is set as a reference level. The estimated mean value is shown as a point with 95% CI as lines around the
point. Only coefficients with intervals not including zero effect size are shown here. The colors of the coefficients, red, green, and blue
correspond to metacommunities 1, 2, and 3, respectively. Character adjacent to DWTP name (A/P) indicates if a location was classified as
Anthropogenically affected or Pristine. AVS, amplicon sequence variant; CI, confidence interval; DWTP, drinking water treatment plant.
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reflecting the diverse composition of this metacommunity with

constituting taxa from many different bacterial phyla. The greatest

number of highly abundantly observed metabolic associated ortho-

logues belong to carbohydrate metabolism, something shared with

both other metacommunities. Metacommunity 2, on the contrary,

showed an increased number of orthologues involved in methane

metabolism and other predominantly anaerobic processes, and to a

lesser degree amino acid and lipid metabolism. Finally, metacommu-

nity 3 showed the highest amount of increased abundance of

carbohydrate metabolism orthologues, in conjunction with an

increase of lipid metabolism orthologues.

4 | DISCUSSION

In this multisite longitudinal study of bacterial communities in

Swedish raw waters, with a selection of environmental and

meteorological data, degree of land usage, and physical and biological

properties of the waters sampled during the study period, we

identified several (key) insights. (1) Overall, the total bacterial

diversity showed a clear seasonal pattern, with the highest diversity

observed in summer. The studied raw water sources were diverse

and showed distinct microbial communities separated by geographi-

cal location. (2) Nevertheless, we identified a stable, albeit numeri-

cally not dominant, set of core taxa (constituting approx. 0.5% of the

total amplicon‐determined microbiome). (3) Physical and chemical

water parameters commonly measured do not necessarily show a

correlation with microbial community composition, suggesting either

those unknown parameters not measured may have been responsible

for divergent microbiome composition, or that interactions between

taxa explained a much larger portion of the variation in composition.

(4) The investigated aquatic microbial communities, no matter their

geographic origin, contained clearly defined subcommunities, consti-

tuting three distinct metacommunities that were identified in the top

200 ASV co‐occurrence data. (5) These metacommunities showed a

distinct community structure and associations to the measured

environmental data. (6) Finally, the metabolic pathway characteristics

of the metacommunities were reconstructed by visualizing the

reconstructed abundance, and the observed differences indicate as

to which factors determine the observed patterns.

(a)

(b)

F IGURE 5 PCoA plot of differential abundance values for (a) BioCyc metabolic pathways and (b) KEGG orthologues of the three
metacommunities. Color coding of data points is according to results from model analysis designation to the three metacommunities where red,
green, and blue correspond to metacommunities 1, 2, and 3, respectively. Ellipses correspond to 95% confidence intervals. KEGG, Kyoto
Encyclopedia of Genes and Genomes; PCoA, principal coordinate analysis.
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4.1 | A stable set of core taxa

The different sampling locations presented here represent a variety

of trophic conditions and thus a diverse mixture of environments

ranging from affected by anthropogenic action (i.e., a greater extent

of farm and urban land use) to much less exposed areas. While the

sampling locations fall on a gradient, they were divided into two

groups for ease of interpretation, here called A (for anthropogenically

affected) and P (pristine) as proposed by Numberger et al. (2020). Yet,

the detected core set of taxa represents a comparatively small part of

the whole community, with taxa present everywhere constituting

under 0.5% of the total amount. Given the extensive number of

assemblages sampled across seasons and watersheds with very

different water quality traits, this small proportion of the total

constituting the core microbial community is not surprising. The core

microbiome was dominated by representatives within the families of

Rhodobacteraceae, Puniceicoccaceae, Sphingomonadaceae, Opituta-

ceae, Rickettsiaceae, and Microbacteriaceae, with some of the other

representative taxa present only at very low abundances, which

suggests that the core microbiome consists of generalists that occur

within a stable span in frequency, and that this pattern reflects a life‐

strategy more oriented towards changing conditions and an

opportunistic lifestyle. Our finding that there exist well‐defined core

taxa among the different sampling sites, coupled with the results of

others (Llirós et al., 2014; Newton & McLellan, 2015; Numberger

et al., 2020), suggest that the observed genera contain species with a

mixture of oligotrophic and eutrophic preferred conditions. Thus, a

plausible conclusion is that within‐genus lifestyle specialization is

actively shaping the community composition of freshwater in

anthropogenic affected areas.

4.2 | Noncorrelation of physical and chemical
water parameters with microbial community
composition

Interestingly, the measured water quality/meteorological variables

included in the GLLVM analysis (here CODMn, turbidity, air

temperature, and color value) explained a relatively small portion of

the total variation in community composition. Thus, the geographical

and/or water quality differences at the sampling locations influenced

the community composition more heavily in our study area. Spatial

effects on composition have been documented on both global and

regional scales (Eriksson et al., 2022; Ge et al., 2021), as well as

eutrophic status and water quality differences (Shen et al., 2019). The

portion of the variation not accounted for here might be a result of

several factors. First, there might be factors not assessed in our study

design, such as the nutrient and metal richness of the water (Carrero‐

Colón et al., 2006; Ge et al., 2021; Sun et al., 2012). Second, the

measured data included here are only proxies rather than reflecting

the true underlying factors forming the actual gradient of parameters

influencing the assemblies. Using the water temperature instead of

the air temperature near the location is one such example, and the

definition of seasons (based on the meteorological definition) is

questionable. Third, biotic interactions between microbes might be

an important force, which we have included (in conjunction with

unaccounted environmental predictors) in the GLLVM analysis as

latent variables approximating an unstructured residual term (Niku

et al., 2019; Ovaskainen et al., 2017; Warton et al., 2016).

4.3 | Effect of anthropogenic impact

We found evidence of taxa augmentation, manifested as approxi-

mately higher levels of alpha diversity in water sites in higher

anthropogenic affected regions with higher levels of fecal indicator

bacteria (Group A, Borås, Trollhättan, and Stockholm) than in those in

less‐urbanized regions (Group P, Östersund, Härnösand, and Motala,

see also Hägglund et al., 2018). In addition, we found differences

between group A and P in relative abundances among common

bacterial groups (i.e., top 200 ASVs), where Methyloparacoccus had

decreased representation, and Pedobacter and an unknown bacterial

genus, placed within the Ilumatobacter clade, had increased

representation in the more heavily anthropogenically affected sites.

Similar associations of genera correlated to nutrient richness or

eutrophication were reported by Yang et al. (2020), who constructed

microcosms with eutrophic freshwater lake sediment to investigate

the effect of different ammonium dosages on methanotrophic

bacteria communities including Methyloparacoccus.

Other studies have reported a correlation of genera within phyla

Proteobacteria and Bacteroidetes to increased nutrient levels, which

comes with increased anthropogenic activity, both in microcosms and

in lake systems (e.g., Andersson et al., 2018; Buelow et al., 2016;

Fisher et al., 2015). Newton and McLellan (2015) found an elevated

abundance of the genera Limnohabitans, Polynucleobacter, and

Rhodobacter in the urbanized site (urban estuary of Milwaukee),

while Numberger et al. (2020) found enriched levels of bacterial

families with possible association to fecally contaminated water in

urban affected lakes in Brandenburg, Germany, such as Bacteroida-

ceae, Prevotellaceae, Rikenellaceae, Tannerellaceae, and Weeksella-

ceae, and defined these as an urban bacterial fingerprint.

Taken together, our results and other studies show that

anthropogenic action results in an effect on the structure and

composition of the bacterial communities although the microbial taxa

constituting the anthropogenic or urban signature differ.

4.4 | Ubiquitous distinct metacommunities

Interactions between different microbes play an important role in

aquatic ecosystem functioning, where biotic interactions can impact

the community structure. We found a strong concordance between

members of two metacommunities in the selection of aquatic

ecosystems included in the study, both within and between

communities. If two metacommunities display similar abundances of

metabolic pathways, it would seem to indicate that either of the two
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scenarios is correct; (1) The two communities are in direct

competition for the same ecological niche and pure chance and

temporal variations determine which one is present in a particular

freshwater sample or (2) environmental factors that are not

accounted for in the set of predictors (which might explain variation

in community composition by evolutionary advantageous adaptations

by the respective communities not readily detected by the utilized

methods) are responsible for the dominance of the particular

metacommunity. On the contrary, if the two communities have

clearly different capabilities, it would indicate that the larger

assemblies of microbes present in these natural environments are

adapted to different ways of utilizing the resources present and that

the observed differences have their basis in alternative evolutionary

paths and adaptations to different lifestyles followed by the

metacommunities.

The three distinct metacommunities partitioned from the top

200 abundant ASV were supported by two independent analyses

using two data sources: that is, the co‐occurrence data based solely

on abundance and the predicted metabolic pathways of the bacterial

communities, based on reconstructed metabolism. In other words, we

found that the predicted functionality of the bacterial freshwater

metacommunity resembles the inferred correlation pattern among

ASVs after adjusting for design and water quality parameters.

To assess if members of the metacommunities were associated

with water quality turbidity was used as a proxy. The connection

between turbidity and other water quality indicators has been well

studied, and significant correlations with pathogens Giardia spp. and

Cryptosporidium spp. (Ferguson et al., 1996), Synthetic Organic

Compound (SoC) and nitrogen–ammonia (NH3–N) substances (Nnane

et al., 2011) and fecal indicators (Ferguson et al., 1996; Herrig

et al., 2019) have been observed. In our study, metacommunity 2

included most members that were positively associated with

turbidity, while metacommunity 1 displayed a mixed response and

the third contained few taxa showing association to this factor. Using

turbidity as a proxy, we showed that an increased abundance of

metacommunity‐2 members, such as the genus Illumatobacter and

Nitrosospira, in freshwater collected at important raw drinking water

resources in Sweden would mimic that of a reduction in water quality

and thus, a potential increase in risk for the consumers. A potential

approach to implement these findings in practical use in water

management and surveillance activities of important water resources

would be the development of qPCR‐based markers that target these

community members for rapid detection of reduced water quality

(McLellan & Eren, 2014).

Of note is that metacommunity 2, shown to be positively

correlated with turbidity, displayed several orthologues present in

pathways involved in methane metabolism at a high likelihood of

increased abundance. As methanogenic and methanotrophic pro-

cesses are associated with anaerobic metabolism predominantly, this

may point to the possibility of anoxic micro‐environments present in

particle‐associated niches common in waters with high turbidity, or

direct association of methane‐producing taxa with photoautotrophic

species by direct transfer of substrates (Grossart et al., 2011).

Metacommunity 3 showed a higher abundance of orthologues

associated with lipid metabolism (although this was not pronounced)

as well as the highest abundance of carbohydrate metabolism‐related

orthologues among the three metacommunities, potentially linking

this metacommunity with nutrient‐rich waters, supported by the

association of this metacommunity with elevated levels of COD‐Mn

(chemical oxygen demand).

In conclusion, the findings presented here show that bacterial

communities at six Swedish raw drinking water sources are

subjected to selective pressure from environmental and land use

conditions. Anthropogenic perturbation results in an effect on the

structure and composition of the bacterial communities although

the microbial taxa constituting the anthropogenic signature differ.

Across this gradient, the communities were structured into three

metacommunities which were present at all locations across the

study period, albeit at different frequencies, and consisted of

typical freshwater families such as Burkholderiaceae, Flavobacter-

iaceae, Commamonadeceae, and Pseudomonadaceae. Bacterial

lineages within metacommunities showed strong correlation and,

thus, preference for occupying the same ecological niches.

Between metacommunities, lineages correlated negatively. By

predicting metabolic functions of the communities, the same

metacommunity structure was recovered, supporting this finding.

An important goal for future research is to study competing and co‐

existing bacterial lineages to better understand their role when

aquatic systems are impacted by anthropogenic stress.
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APPENDIX A

See Figures A1–A13 and Tables A1–A3.

Materials and Methods

GLLVM analysis

This model, Equation (1) in the main article, allowed us to

estimate correlations between ASVs while simultaneously accounting

for predictor variables. Three latent variables were used in the

analysis, which is believed to capture most of the relevant variation in

composition: see example in Warton et al. (2015) and Niku et al.

(2019). To improve convergence, jittering of latent variables was set

to 0.5 (jitter.var = 0.5). The negative binomial distribution was

selected to model the count data. For further details of the modeling,

please consult Niku et al. (2017, 2019). To visualize the inferred

regression parameters, we made use of the ggplot2 R package.

To reduce the dimension of the co‐occurrence data, the top 200

ASVs were selected to be included in the analysis to avoid spurious

correlations with low‐abundant features close to the noise level. In

the analysis, we first checked whether including predictors (i.e., full

model as in Equation 1 in the main paper) improved the results in

terms of accounting for a large proportion of the total variation in

ASV abundance as compared to a model without the predictors (i.e.,

null model). By including all predictors in the model, 41% of the total

variation was accounted for in the analysis, which better allows us to

draw conclusions from the inferred ASV correlations after adjusting

for the predictors (Figure A3). For example, little or no side effects

remain after including the corresponding site predictor in the model

(i.e., no visible pattern in communities shown in Figure A6a), contrary

to what was evident in the null model and the standard ordination

results (Figure A6b and Figure).

To check for collinearity, we calculated the pair‐wise Pearson

correlations between predictors (Figure A11). One out of six

estimated pair‐wise correlations was large (r = 0.87) suggesting a

potential problem of collinearity for CODMn and Color value. All

other obtained estimates were between −0.1 and 0.3. Thus, they

cannot independently predict the value of the dependent variable:

they explain partly the same variance in the dependent variable.

Because of this, caution is needed when interpreting individual

associations of CODMn and color value with ASVs.

Results

GLLVM analysis

In the GLLVM analysis, associations were also determined

between the bacterial assemblages and environmental, design, and

(a)

(c)

(b)

F IGURE A1 Clustering of 230 water samples
into two partitions based on water quality
indicator variables, highlighted by the proportion
of samples assigned to the undisturbed partition
using k‐means clustering (a) and the average
difference between partitions of normalized
indicator variable abundance based on the
clustering result (b), as well as with a PCA plot of
PC1 and PC2 (c). Character adjacent to DWTP
name (A/P) indicates if a location was classified as
Anthropogenically affected or Pristine. DWTP,
drinking water treatment plant; PCA, principal
component analysis.
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water quality variables: all non‐zero associations are highlighted in

Figures 5 and A7–A9. Turbidity and air temperature resulted in the

most significant associations. Of the taxa showing a positive

response to the CODMn predictor, the majority belonged to

community 1. Intriguingly, a few representatives of community 2

(consisting of members of the Flavobacterium genus), also displayed

a positive response. Most ASVs showed a negative response to

higher color values, except for two representatives from commu-

nity 1 (assigned as Alkaligenaceae and Polynucleobacter). For

metacommunities 1 and 2, the air temperature had a clear positive

effect, with almost all taxa showing increases. A clear pattern was

evident, where a significant number of taxa belonging to meta-

community 2 showed a positive response to turbidity (n = 26 ASVs

in total), amongst them Nitrosospira and taxa belonging to

Verrucomicrobia clade, along with a number of taxonomically

undefined taxa including some belonging to metacommunity 1.

Furthermore, a clear signal from cyanobacteria Family 1 corre-

sponds to a small selection of samples where a clear cyanobacterial

bloom was taking place. This result indicates that metacommunity 2

constitutes microorganisms adapted to waters with a high number

of suspended particles present and could be seen, at the most basic

level, as a proxy for a trophy or primary productivity. Furthermore,

a number of taxa belonging to metacommunity 1 (Pseudomonas,

Comamonadaceae, Polynucleobacter, Methylococcaceae, Cerasicoc-

cus, and Plancomycetaeae) showed a negative response to higher

turbidity, in line with the hypothesis that these represent more

generalist species and are not well adapted to the specific

circumstances found in particle rich waters, where conditions

would favor more specialized organisms.

For the season predictor, most ASVs with a significant associa-

tion between spring and any other season were overrepresented in

the spring assemblages (i.e., a negative effect size value in Figure 4a).

When contrasting summer against spring factor levels, a greater

number of taxa belonging to metacommunities 1 and 2 were showing

a moderate decrease during summer, while metacommunity 3 taxa

showed an overrepresentation during summer. The overall autumn

season response was similar to the summer response, with a few

notable exceptions. Overrepresented taxa in the autumn are

dominated by members of metacommunity 3, although genus

Flavobacterium displayed a mixed response, with some taxa (n = 13)

showing an overrepresentation and a number displaying a more

pronounced underrepresentation (n = 12). metacommunities 1 and 3

showed a large number of taxa with a weak underrepresentation in

abundance. When contrasting spring and winter factor levels, most

taxa showed an underrepresentation in the winter collected

assemblages (Figure 5). Of the taxa showing a larger underrepre-

sentation, all were members of metacommunity 3 (Flavobacterium).

Intriguingly two ASVs, both methanotrophs assigned to metacom-

munity 1, showed the largest overrepresentation in abundance across

all seasons. In addition, one ASV assigned to the genus Cerasicoccus

(phylum Verrucomicrobia) was overrepresented in both, the summer

and autumn seasons. Furthermore, one ASV assigned to metacom-

munity 3 belonging to the genus Acinetobacter was also over-

represented in abundance across the seasons compared to spring.

(a) (b)

F IGURE A2 Diversity plots highlighting differences in alpha diversity, grouped according to locale (a) and season (b). Brackets show
significant differences in groups as determined by the analysis of variance test with * signifying p = 0.05, **p = 0.01, and ***p = 0.001. Before
analysis sequences corresponding to mitochondria and chloroplasts were removed, otherwise unfiltered (but rarefied to even depth) data
was used.
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Investigations of site effects on ASVs revealed that generally,

ASVs assigned to metacommunities 1 and 2 showed a higher number

of associations than ASVs assigned to metacommunity 3, further

reinforcing that metacommunity three members consist of generalist

bacteria (Figure 5b). A set of ASVs showed similar associations across

multiple sites with Verrucomicrobia, genus Cerasicoccus, being

overrepresented in terms of abundance at the Borås, Trollhättan,

and Härnösand sites. One ASV classified as methanotroph (Methy-

loparacoccus) was overrepresented in Östersund and Härnösand

sites. One ASV assigned as a member of the Pedobacter genus

(Bacteroidetes) was overrepresented in Stockholm compared to both

Härnösand and Motala, while one ASV without any assignment at the

phylum level, placed in the Illumatobacter clade was overrepresented

in Stockholm compared to Östersund and Motala. When compared to

Stockholm, Härnösand showed the greatest divergence in response

of taxa, with 39 and 51 ASVs out of 200 significantly over‐ and

underrepresented in Härnösand, respectively. The water in Trollhät-

tan is sourced from a river and thus subject to varying conditions in

the upstream sources, which manifested as a large portion (n = 102)

of the 200 ASVs being associated with a site difference, mostly

overrepresented in the Stockholm assemblages.

Variable importance analysis

One goal was to determine the importance of the included

predictors in the GLLVM analysis, both in terms of the goodness‐

of‐fit of the model to the raw water assemblage data, and model

complexity (i.e., more complex predictors require more degrees of

freedom in the model). To do so, separate models with a single

predictor were fitted to the data, with AIC and BIC scores

calculated by the GLLVM R package: low scores indicated a

better‐suited model. All models were analyzed using the same

parameter set as the full model analysis. The most important

predictor by far was the location of the raw water sources, even

though this predictor required the highest degrees of freedom,

suggesting that the gradient across water sources induced the

highest variation in composition (Table S1) and accounted for

approximately 20% of the total variation. The other set of

F IGURE A3 Taxonomic profile of all samples at the phylum level, separated by sampling location
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F IGURE A4 Heatmap showing the core taxa present in at least 90% of the samples. In cases where no classification on the Genus level was
present, the lowest identified taxonomic level is given after the taxa name.
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F IGURE A5 Heatmap showing the amount of shared top 200 abundant amplicon sequence variants between locales. The yellow color
indicates a high degree of overlap while blue indicates less overlap.
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(a) (b)

F IGURE A6 (a) Model‐based ordination with all predictors included in the model shown as latent variable one and two‐parameter space
(LV1 and LV2), and (b) ordination without any predictors in the model for LV1 and LV2 (i.e., the null model). For illustration, both site and season
factors are highlighted with colors and shapes respectively. The included predictors of the full model explained 41% of the total variation in
amplicon sequence variant abundance.
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F IGURE A7 Inferred factor loadings of the GLLVM model of the top 200 ASVs where their respective phylum assignments are highlighted in
colors, with the first two dimensions of the latent variables (LV) shown. ASV, amplicon sequence variant; GLLVM, generalized linear latent
variable model.
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(a) (b)

(c) (d)

F IGURE A8 Taxonomic composition at the phylum phylogenetic level of (a) top 200 taxa, (b) clade 1 metacommunity, (c) clade 2
metacommunity, and (d) clade 3 metacommunity
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F IGURE A9 Barplots of the relative abundance of the top 200 amplicon sequence variants assigned to each metacommunity plotted per
sampling location
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(a)

(b)

F IGURE A10 (a) The estimated coefficient of corresponding ASVs associated with environmental predictors included in the model analysis.
The estimated mean value is shown as a point with 95% CI as lines around the point. Only coefficients with intervals not including zero effect are
shown here. The colors of the coefficients, red, green, and blue correspond to metacommunities 1, 2, and 3, respectively. (b) The estimated
coefficient of corresponding ASVs associated with environmental predictors included in the model analysis, where only small but significant
effects are shown. The estimated mean value is shown as a point with 95% CI as lines around the point. The colors of the coefficients, red, green,
and blue correspond to metacommunities 1, 2, and 3, respectively. ASV, amplicon sequence variant; CI, confidence interval.
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(a)

(b)

F IGURE A11 The estimated coefficient of small, but significant, effects corresponding ASVs associated with: (a) site effects where
Stockholm DWTP is set as a reference and (b) season effects where spring is set as a reference level. The estimated mean value is shown as a
point with 95% CI as lines around the point. The colors of the coefficients, red, green, and blue correspond to metacommunities 1, 2, and 3,
respectively. ASV, amplicon sequence variant; CI, confidence interval; DWTP, drinking water treatment plant.
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(a)

F IGURE A12 Heatmap showing 100 greatest log2 fold‐changes and 100 most significant adjusted p values for of BioCyc pathways (a) and
(b) and KEGG orthologues (c) and (d) for all samples as determined from theoretical metabolic capacity calculated by the PICRUSt2 software
followed by differential abundance analysis with Deseq. 2, based on the top 200 most abundant taxa. The top bar is colored according to the
affinity of taxa to the three subpopulations determined by the analysis shown in Figure A9. Red squares denote blocks of orthologues more
abundant in each of the three subpopulations.
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(b)

F IGURE A12 Continued

BRINDEFALK ET AL. | 27 of 33



(c)

F IGURE A12 Continued
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(d)

F IGURE A12 Continued
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F IGURE A13 Heatmap showing inferred pair‐
wise Pearson correlations between continuous
predictor variables included in the full generalized
linear latent variable model

TABLE A1 Model selection scores where each model included a
single predictor (otherwise the same as the full model)

Predictor df AIC BIC

NULL 800 340547.3 343022.3

Location 1998 329758.6 335939.9

Season 1598 336090.7 341034.5

Temperature 1198 337340.6 341046.9

Turbidity 1198 337194.3 340900.7

CODMn 1198 337543.9 341250.2

Color value 1198 337206.6 340912.9

Note: Higher scores indicate less good model performance. The NULL
model did not include any predictors.

Abbreviations: AIC, Aikake information criterion score; BIC, Bayesian
information criterion score; df, model degrees of freedom.
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TABLE A2 The top significant associations of the 200 included taxa and predictors in the GLLVM analysis results

Phylum Family Genus Metacommunity Predictor Estimate (95% CI)

Ochrophyta Bacillariophyta ‐ 3 Temperature 2.8 (1.1, 4.5)

Color value −7.2 (−13.2, −1.3)

Motala site −26.6 (−26.6, −26.6)

Bacteroidetes Flavobacteriaceae Flavobacterium 3 Temperature −1.8 (−3.4, −0.1)

Cyanobacteria GpI ‐ 1 Turbidity 1.9 (0.7, 3.04)

Verrucomicrobia Puniceicoccaceae Cerasicoccus 1 Turbidity −4.0 (−7.5, −0.5)

Borås site 31.2 (25.5, 37.0)

Acidobacteria Holophagaceae Geothrix 2 CODMn 4.1 (2.0, 6.2)

Östersund site −27.2 (−27.2, −27.2)

Verrucomicrobia Puniceicoccaceae Cerasicoccus 1 CODMn −4.8 (−8.6, −1.0)

Turbidity −4.0 (−7.5, −0.5)

Härnösand site 34.7 (29.7, 39.6)

Motala site 12.8 (3.6, 22.1)

Trollhättan site 29.2 (26.4, 32.0)

Enterobacteriaceae Escherichia 1 Color value 5.3 (0.0, 10.6)

Moraxellaceae Acinetobacter 3 Summer season 25.0 (21.7, 28.3)

Fall season 30.4 (28.7, 32.0)

Winter season 27.4 (24.2, 30.7)

Cryptomonadaceae ‐ 2 Summer season −7.7 (−11.9, −3.5)

Bacteroidetes Flavobacteriaceae Flavobacterium 3 Fall season −9.4 (−12.5, −6.3)

Bacteroidetes Flavobacteriaceae Flavobacterium 3 Winter season −16.2 (−16.2, −16.2)

Actinobacteria ‐ ‐ 1 Borås site −22,1 (‐22.1, −22.1)

Trollhättan site −25.3 (−25.3, −25.3)

‐ ‐ ‐ 2 Härnösand site −30.5 (−30.5, −30.5)

Proteobacteria Methylococcaceae Methyloparacoccus 1 Östersund site 20.9 (12.5, 29.3)

Note: For the site predictors, Stockholm was set as the reference level and for the season predictors, spring was set as the reference level.

Abbreviations: CI, confidence interval; GLLVM, generalized linear latent variable model.
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TABLE A3 The number of reads per sample for the complete data set and for the trimmed data set comprising just the top 200 taxa

Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs

Boras1 127,446 97,451 Harnosand1 218,817 166,095 Motala1 116,442 86,026

Boras10 89,897 73,656 Harnosand10 98,574 81,449 Motala10 65,166 45,031

Boras11 125,329 98,216 Harnosand11 174,886 139,978 Motala11 84,678 70,849

Boras12 156,737 129,462 Harnosand13 62,881 46,331 Motala12 231,317 166,215

Boras14 95,605 74,653 Harnosand14 83,589 61,017 Motala14 166,850 107,000

Boras15 94,280 60,044 Harnosand15 241,060 166,356 Motala15 115,584 92,286

Boras16 165,774 100,507 Harnosand16 233,951 120,098 Motala16 79,339 65,955

Boras17 175,558 133,438 Harnosand17 45,498 23,559 Motala17 137,338 107,327

Boras18 252,354 184,009 Harnosand18 105,937 73,349 Motala18 98,722 76,968

Boras19 83,475 57,759 Harnosand19 154,111 105,538 Motala19 73,696 61,883

Boras2 134,971 96,911 Harnosand2 98,660 73,942 Motala2 54,920 41,916

Boras20 80,013 56,431 Harnosand20 132,649 87,363 Motala20 44,878 39,926

Boras21 129,007 92,565 Harnosand21 88,981 64,978 Motala21 51,947 45,113

Boras22 164,352 124,591 Harnosand22 106,957 77,131 Motala22 82,506 66,499

Boras23 906,88 67,019 Harnosand23 129,048 99,960 Motala23 68,685 51,519

Boras24 58,392 44,532 Harnosand24 43,550 34,810 Motala3 56,911 44,946

Boras25 55,855 45,062 Harnosand25 43,071 33,700 Motala4 433,918 374,908

Boras26 40,200 33,575 Harnosand26 57,644 47,560 Motala5 245,189 211,234

Boras27 43,755 33,492 Harnosand27 61,024 51,587 Motala6 101,362 92,499

Boras28 43,585 37,561 Harnosand28 66,870 55,571 Motala7 170,193 154,590

Boras29 39,171 33,924 Harnosand29 61,807 50,407 Motala8 158,653 142,576

Boras3 78,542 63,590 Harnosand3 71,742 49,895

Boras30 59,638 52,547 Harnosand4 63,957 50,788

Boras31 65,544 49,172 Harnosand5 66,797 52,384

Boras32 60,921 51,257 Harnosand6 53,566 41,464

Boras4 51,350 42,031 Harnosand7 286,349 213,519

Boras5 55,915 45,818 Harnosand8 206,095 154,958

Boras6 339,947 270,287 Harnosand9 119,191 90,302

Boras7 136,771 119,715

Boras8 93,113 81,127

Boras9 291,021 246,311

Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs

Ostersund1 131,678 106,984 Stockholm1 132,202 95,315 Trollhattan1 94,223 77,452

Ostersund11 77,746 55,171 Stockholm10 162,284 141,407 Trollhattan10 177,217 145,359

Ostersund12 78,563 58,590 Stockholm11 165,049 149,971 Trollhattan12 79,889 55,327

Ostersund13 232,183 189,834 Stockholm13 137,431 108,604 Trollhattan13 97,128 70,217

Ostersund14 187,953 158,201 Stockholm14 124,610 97,998 Trollhattan14 224,233 144,340

Ostersund15 82,747 67,673 Stockholm15 237,002 181,964 Trollhattan15 239,811 152,548

Ostersund16 67,504 50,405 Stockholm16 204,238 158,371 Trollhattan16 262,527 183,110
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predictors resulted in very similar model performance with 0%–5%

of the total variation explained, and thus much less variation

explained than the location predictor. Following AIC, the season

effect was the second most important predictor, while BIC

preferred turbidity (BIC penalized degrees of freedom more than

AIC). However, all predictors resulted in marginally better models

than the null model without predictors. Color value and turbidity

resulted in very similar model performance.

TABLE A3 (Continued)

Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs Location All ASVs Top 200 ASVs

Ostersund17 83,749 65,255 Stockholm17 247,431 199,037 Trollhattan17 62,121 27,959

Ostersund18 86,478 60,375 Stockholm18 235,972 186,626 Trollhattan18 87,063 59,462

Ostersund19 131,425 89,887 Stockholm19 222,076 187,260 Trollhattan19 108,748 72,156

Ostersund2 106,517 90,931 Stockholm2 77,061 56,178 Trollhattan2 208,235 136,007

Ostersund20 73,757 50,744 Stockholm20 88,293 66,581 Trollhattan20 154,989 115,470

Ostersund21 79,318 61,661 Stockholm21 94,750 71,435 Trollhattan21 184,100 143,613

Ostersund22 43,466 35,306 Stockholm22 91,229 65,280 Trollhattan22 115,401 54,135

Ostersund23 37,424 31,614 Stockholm23 131,093 102,347 Trollhattan23 88,802 44,702

Ostersund25 59,307 52,481 Stockholm24 172,210 135,016 Trollhattan24 93,153 49,833

Ostersund26 62,211 55,363 Stockholm25 347,433 275,912 Trollhattan25 138,124 105,817

Ostersund27 76,285 57,576 Stockholm26 95,906 79,613 Trollhattan26 88,090 71,410

Ostersund3 44,083 37,927 Stockholm27 46,612 40,852 Trollhattan27 76,697 63,918

Ostersund4 53,049 45,565 Stockholm28 47,774 41,442 Trollhattan28 62,873 54,541

Ostersund5 376,939 323,937 Stockholm3 252,377 185,107 Trollhattan29 59,623 50,757

Ostersund6 166,074 126,610 Stockholm30 72,045 64,806 Trollhattan3 56,434 47,801

Ostersund7 124,504 109,742 Stockholm31 72,392 61,501 Trollhattan30 56,457 47,424

Ostersund8 142,539 120,941 Stockholm32 76,234 65,839 Trollhattan31 58,833 46,168

Ostersund9 187,572 164,837 Stockholm4 77,220 61,270 Trollhattan32 59,719 47,499

Stockholm5 66,324 54,921 Trollhattan4 78,559 67,981

Stockholm6 46,874 40,286 Trollhattan5 27,958 24,359

Stockholm7 348,748 295,004 Trollhattan6 395,119 324,354

Stockholm8 309,971 256,771 Trollhattan7 337,355 290,630

Stockholm9 177,053 156,809 Trollhattan8 177,052 156,176

Trollhattan9 129,354 111,398

Abbreviation: ASV, amplicon sequence variant.
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