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Comorbid anxiety-like behavior in a rat model of colitis is
mediated by an upregulation of corticolimbic fatty acid
amide hydrolase
Haley A. Vecchiarelli1,2,3, Maria Morena 2,3,4,5, Catherine M. Keenan2,6,7, Vincent Chiang2,3,4,5, Kaitlyn Tan2,3,4,5, Min Qiao2,3,4,5,
Kira Leitl2,3,4,5, Alessia Santori2,3,4,5, Quentin J. Pittman2,3,6,7, Keith A. Sharkey2,6,7 and Matthew N. Hill2,3,4,5

Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric
disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for
inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations
in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of
emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant
regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the
development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene
sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral
inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These
alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes
the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with
broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor
signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA
produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological
management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.

Neuropsychopharmacology (2021) 46:992–1003; https://doi.org/10.1038/s41386-020-00939-7

INTRODUCTION
In peripheral inflammatory conditions, such as inflammatory
bowel diseases (IBD), comorbid anxiety and depression are
associated with increased disease activity, greater rate of relapse
and reduced responsiveness to therapies [1–5], significantly
reducing patient quality of life [6, 7]. It is established in cohorts
from around the world that patients with IBD (ulcerative colitis
and Crohn’s disease; combined, and each, separately,) show a 2–3
times greater incidence of anxiety and depression [2–4, 8–29]. It is
likely that the driving force behind these psychiatric comorbidities
is disease activity [8, 13, 30–35], implying, at least partially, that
inflammation and a dysregulation of the gut-brain axis may be
involved in the pathogenesis of psychiatric comorbidities in IBD.
Both basally and during disease states, the gut-brain axis allows
for bidirectional communication between the brain and the gut,
including at the levels of the autonomic nervous system and
circumventricular organs [36]. As such, understanding the neural
mechanisms that underlie the generation of anxiety and depres-
sion in peripheral inflammatory disorders may allow for the
development of novel treatment approaches to manage these

comorbid symptoms that severely impact individuals with these
disorders.
Peripheral inflammation, particularly within the gut, is known to

be a potent activator of the hypothalamic-pituitary-adrenal (HPA)
axis [37, 38]. Sustained elevations in circulating glucocorticoid
hormones can modulate central processes, including those
involved in the regulation of emotional behavior [39, 40]. One
system known to be sensitive to hormonal components of the
HPA axis, and that is a significant regulator of emotional behavior,
is the endocannabinoid (eCB) system [41–43].
Constitutive eCB signaling constrains anxiety, as acute pharma-

cological disruption of eCB function rapidly produces a state of
anxiety [44–46]. Similarly, exposure to stress is known to increase
activity of the enzyme fatty acid amide hydrolase (FAAH), which
metabolizes the eCB ligand anandamide (AEA) [47–49], through
the release of the neuropeptide corticotropin-releasing factor
(CRF; alternatively corticotropin-releasing hormone (CRH)) and
subsequent activation of the CRF type 1 receptor (CRF-R1) [50].
This suppression of AEA signaling by CRF-R1 activity promotes the
development of anxiety, largely through coordinated actions in
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corticolimbic circuits encompassing the amygdala [50], medial
prefrontal cortex [51], and hippocampus [52]. Interestingly, CRF
signaling is also known to be important for the development of
anxiety in response to inflammation, as blockade of CRF signaling
can dampen anxiety and other adverse behavioral responses to a
variety of experimental inflammatory conditions such as cerebral
ischemia [53], arthritis [54, 55], and inflammatory pain [54, 56, 57].
As sustained inflammation is known to produce an upregulation
of central CRF [57–59], it seems plausible that this could result in a
suppression of AEA signaling that in turn could contribute to the
development of comorbid anxiety in colitis.
To further examine the relationship between eCBs and

peripheral inflammation, we utilized a rat model of colitis to
investigate the potential role that the eCB system plays in the
mechanisms underlying psychiatric comorbidity in chronic inflam-
matory diseases. Colitis represents an ideal condition for this
investigation, as humans afflicted with colitis exhibit considerable
psychiatric comorbidities, particularly anxiety [1–5], and antagon-
ism of CRF-R1 in humans with IBD has been found to normalize
both alterations in neural connectivity and changes in emotional
behavior [60, 61]. Rodent models of colitis produce a sustained
state of systemic inflammation [62–65], exhibit upregulation
of central CRF [66–69] and recapitulate the anxiety phenotype
[70–73] seen in the human condition, making them an ideal
model to explore the role of eCBs in these processes.

METHODS AND MATERIALS
Animals
All experiments utilized adult (~300–350 g at time of colitis
induction), male or female, Sprague Dawley rats from Charles River
(Saint Constant, QC, Canada, RGD Cat# 734476; RRID:
RGD_734476). Animals were allowed to acclimate for at least
one week prior to experiment onset. Rats were paired-housed
under specified pathogen free conditions on a 12:12 h light/dark
cycle with ad libitum access to food and water. All experiments
were conducted during the light phase of the cycle. All animal
protocols were approved by the University of Calgary Animal Care
Committee and followed guidelines from the Canadian Council for
Animal Care. For each set of experiments described below,
animals from a minimum of 2, and up to 4, cohorts were used,
aside from locomotor activity which was assessed in a single
cohort.

Colitis induction and assessment
Under brief isoflurane anesthesia, rats received an intracolonic
bolus of 2,4,6-trinitrobenzenesulfonic acid (TNBS) (Millipore Sigma,
Darmstadt, Germany, #92822; 0.45 mL, 50mg/mL, 50% [vol/vol] in
ethanol/water), via a cannula, inserted 7 cm proximal to the anus
[74–77]. TNBS haptenizes self and microbial proteins, which makes
them available to initiate an immune response in the host’s own
immune system [78–80]. Control animals received the same
volume of saline delivered similarly, as is standard in the field.
Body weight was monitored. Behavioral testing took place 1-week
after the induction of colitis after which rats were euthanized by
decapitation. Colons were quickly removed, rinsed with ice-cold
physiological saline (0.9%) and cut open longitudinally to enable
macroscopic scoring for damage and inflammation, including
adhesions, diarrhea and degree of ulceration. This score was
adapted from those previously reported [74, 77] and is described
in the Supplementary Materials. An ~100 mg sample of colon was
excised, snap frozen and stored at −80 °C until assayed for
myeloperoxidase (MPO) activity, as previously described [74–77]
and in the Supplementary Materials.

Behavioral measures
Locomotor activity. Ambulatory activity was assessed using the
Opto-Varimex-5 Auto Track (Columbus Instruments, Columbus,

OH, USA) infrared beam activity monitor with a 17.5”x17.5” arena
as previously described [81]. Day 0 testing occurred prior to TNBS
or saline administration. Data were normalized within an animal to
a percentage of its Day 0 activity.

Elevated plus maze (EPM). Animals were subjected to handling
and body weight measurement in the behavior testing room at
least 5 days prior to anxiety testing. EPM (Med Associates, Fairfax,
VT, USA) testing occurred on Day 7 following colitis induction
under dim light and with a white noise background. EPM was
performed for 5 min as previously described [82] and is detailed in
the Supplementary Materials.

Biochemical and molecular measures
Corticosterone enzyme-linked immunosorbent assay (ELISA). After
behavioral experiments were completed on Day 7 after the
induction of colitis, trunk blood was collected as previously
described [83, 84] and plasma corticosterone levels were assayed
using a commercially available ELISA kit (Cayman Chemical
Company, Ann Arbor, Michigan, USA, #500655), according to the
manufacturer’s protocol.

Endocannabinoid measurements. Excisions of brain structures
were performed on ice as described previously [85] and samples
were immediately snap frozen and stored at −80 °C. Analysis of
AEA, and the other primary eCB 2-arachidonoylglycerol (2-AG),
was conducted through liquid chromatography/tandem mass
spectrometry on an Eksigent ekspert micro liquid chromatogra-
pher 200 coupled to an AB Sciex Qtrap 5500 mass spectrometer
(SCIEX, Framingham, MA, USA) as previously described [82, 86]
and in the Supplementary Materials.

Enzyme activity assays. Brain structures were excised on ice [85]
and samples were then immediately snap frozen and stored at
−80 °C. Brain tissues were homogenized and membrane fractions
were isolated as described previously [50].
The activity of the enzyme FAAH, which is responsible for the

degradation of AEA, was measured as the conversion of [3H]-AEA
to [3H]-ethanolamine [87]. Similarly, monoacylglycerol lipase
(MAGL) activity was measured as the conversion of [3H]-2-
oleoylglycerol (2-OG) to [3H]-glycerol [88]. The maximal hydrolytic
activity (Vmax) of FAAH and MAGL and the binding affinities (Km) of
AEA for FAAH and 2-AG for MAGL were determined by fitting the
data to the Michaelis-Menten equation using Prism v8 (GraphPad,
San Diego, CA, USA, RRID:SCR_002798).

Gene expression analysis. mRNA isolation and cDNA synthesis
was performed as previously described [50, 83, 84] and detailed in
the Supplemental Materials, using magnetic bead homogeniza-
tion with a TissueLyser LT (Qiagen, Hilden, Germany) and the
RNeasy Plus Universal Mini Kit (Qiagen, #73404) on a Qiacube
(Qiagen, RRID:SCR_018618) followed by the QuantiTect Reverse
Transcription Kit (Qiagen, #205314) according to the manufac-
turer’s protocols. Primers for genes of interest were designed
using IDTDNA PrimerQuest (Coralville, Iowa, USA) and acquired
from IDTDNA (Table S1). qPCR was performed as previously
described (1min at 90 °C, 40 cycles of 95 °C for 5 s and 60 °C for 30 s,
before a final melt step) using PerfeCTa SYBR Green Fast Mix
(QuantaBio, Beverly, MA, USA, #95072) on a RotoGene Q light cycler
(Qiagen). Data were analyzed using the 2−ΔΔCT method. Data were
normalized so the average of the saline group was 1.

Pharmacological intervention - behavioral studies
As global FAAH inhibition is associated with suppression of colonic
inflammation [89–97], we administered the FAAH inhibitor
intracerebroventricularly (icv) to be able to establish the
importance of central FAAH inhibition on colitis-induced anxiety.
Rats underwent intracranial cannulations as previously described
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[50]. Briefly, under isoflurane anesthesia and analgesic treatment
(meloxicam (1 mg·kg−1, subcutaneously)), rats were implanted
with a 12 mm unilateral cannula into the lateral ventricle
(coordinates: −0.90mm anteroposterior, 1.4 mm mediolateral,
and −2.8 mm dorsoventral from Bregma). Rats were given one
week of recovery before colitis induction, and as in the previous
experiments, anxiety-like behavior was tested 7 days later. On the
three consecutive days before drug infusion and testing, rats were
exposed to daily mock infusions. Two hours prior to EPM testing,
animals received icv infusions (2 μL; 1 μL/min) of solutions
containing vehicle (0.9% saline:dimethylsulfoxide (DMSO):Tween-
80 [80:10:10; vol:vol:vol]) or a FAAH inhibitor (PF-04457845 (PF);
Pfizer, New York, NY, USA; 100 ng and 1 μg) [98–100]. Infusers
extended 2mm past guide cannula and were left in place 1 min
following infusion. Two hours following drug administration all
animals were tested for 5 min in the EPM as described above.
Following testing, animals were euthanized and ventricular
cannula placement was confirmed with dye infusion post-mortem.

Pharmacological intervention - biochemical studies
To understand the role of CRF signaling on the colitis-induced
reductions of AEA signaling, we examined the impact of sustained
disruption of CRF-R1 signaling during the entire duration of colitis
(i.e., 7 days) utilizing continuous drug infusion with an osmotic
mini-pump (Alzet, Cupertino, CA, USA; Model 2002; 0.5 μL/h)
connected to a 5mm cannula (Alzet, Brain Infuser Kit 2) [101]. The
osmotic mini-pumps were pre-loaded with vehicle (artificial
cerebral spinal fluid [102]: DMSO [90:10; vol:vol]) or a CRF-R1
antagonist (antalarmin (Cayman Chemical Company, 15147);

10 μg/day) [103] and were incubated at 37 °C submerged in
sterile physiological saline for 1–3 days prior to implantation.
Under isoflurane anesthesia and analgesic (meloxicam (1 mg·kg−1,
subcutaneously)) treatment, the unilateral cannula was placed into
the lateral ventricle, −0.90 mm anteroposterior and 1.4 mm
mediolateral from Bregma, and the pump was placed subcuta-
neously. Surgeries were performed on the same day, but prior to,
TNBS or saline administration. One week following surgery and
colitis onset, brain regions were isolated as described above for
eCB analysis. Ventricular cannula placement was confirmed post-
mortem with dye infusion.

Statistical analyses
All statistics were carried out using Prism v8. For comparison of
two groups, one-tailed (phenotypic confirmation of damage,
corticosterone and anxiety-like behavior) or two-tailed Student’s
t tests were used (remaining data, including correlations). For
comparison of repeated measures, a repeated measure analysis of
variance (ANOVA) or mixed-effect analysis was performed. For
comparisons between two independent variables, two-way
ANOVAs were performed. For all ANOVA analyses, significant
interactions and main effects were reported, and specific group
comparisons were made using Fisher’s Least Significant Difference
tests. Planned comparisons based on a priori hypothesis were
performed using independent t tests. t- or F-values, p values and
eta squared (R2) are reported, as well as Pearson correlation
coefficients (r) (weak= 0.1 < 0.3; moderate= 0.3 < 0.05; strong= 0.5
< 0.7; very strong= >0.7). Data are presented as mean ± standard
error of the mean (SEM). Outliers were removed using the ROUT
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Fig. 1 TNBS-induced colitis phenotype. A There was a significant interaction on body weight between time post-administration and
trinitrobenzene sulfonic acid (TNBS) administration, and a main effect of both time and colitis. Saline animals gained weight each day. TNBS
animals initially lost weight, but gained after Day 3. There were no differences at baseline between conditions, but there were at Days 3, 5,
and 7. n= 12/group. ♦ p < 0.05, ♦♦♦ p < 0.001, ♦♦♦♦♦ p < 0.0001 compared to previously recorded weight in same condition. ***p < 0.001,
****p < 0.0001 saline vs. TNBS on the same day. B TNBS administration at Day 7 post-administration led to a significant increase in macroscopic
tissue damage. n= 12/group. ****p < 0.0001 t test saline vs. TNBS. C TNBS administration at Day 7 post-administration led to a significant
increase in myeloperoxidase activity (MPO). Each 1 Unit (U) of MPO activity was the amount of enzyme required to split 1μmol H2O2 per min at
25 °C. n= 12/group. ***p < 0.001 t test saline vs. TNBS. D There were no differences in locomotor activity between saline and TNBS groups at
baseline, but there was a reduction in ambulatory activity at Day 3 and Day 5, but not at Day 7. Saline and TNBS administered animals both
showed reductions in ambulatory activities compared to their baselines. n= 4–6/group. ♦♦ p < 0.01, ♦♦♦ p < 0.001, ♦♦♦♦ p < 0.0001
compared to Day 0 in same condition. *p < 0.05 saline vs. TNBS on the same day. E TNBS led to a significant increase in plasma corticosterone
levels. n= 17–18/group at Day 7 post-administration. *p < 0.05 t test saline vs. TNBS. Saline= left, black bars with circles. TNBS= right, orange
bars with squares.
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method [104], set to a 1% threshold, as previously described [83]. p
< 0.05 was considered statistically significant. Detailed statistics for
data represented in figures, as well as correlation values, are
reported in Tables S2–4.

RESULTS
Colitis induction produced behavioral indices of increased anxiety-
like behavior
Data presented on colitis phenotype (i.e., weight loss, macroscopic
tissue damage and MPO activity; Fig. 1A–C) are a representative
set of data from the rats used for AEA and 2-AG analysis, but these
effects were consistent across all experimental cohorts. Animals
administered TNBS lost weight between Day 0 and Day 3 but
started gaining it again thereafter (Fig. 1A); whereas controls
gained weight daily. There were no differences at baseline
between saline and TNBS-treated animals, but TNBS-treated
animals weighed less than saline-treated animals all other days
(Fig. 1A).
Rats administered TNBS also show an increase in colonic

inflammation as measured by macroscopic tissue damage (Fig. 1B)
and MPO activity (Fig. 1C) 7 days after treatment. Together these
results indicate that peak weight loss occurred at Day 3, and gut
inflammation was sustained at Day 7 after treatment.
Before initiating behavioral tasks, we wanted to verify that there

would be no locomotor deficits (Fig. 1D), as reductions in
locomotor activity can be a significant confound in behavioral
tests of anxiety [105]. Using a mixed-effect model to analyze, we
found that animals in both saline and TNBS groups had reduced
locomotor activity after the first test day, likely due to habituation
to the task. Animals administered TNBS showed reduced activity
at Days 3 and 5 compared to saline-treated rats, but this difference
was not present at baseline or Day 7. TNBS-treated animals also
exhibited an elevation in circulating levels of corticosterone
(Fig. 1E), the hormonal endpoint of the HPA axis, at Day 7.

Corticosterone levels were strongly positively correlated with
damage. Based on these results, we proceeded with anxiety-like
behavior testing on Day 7, as at this time point animals showed no
locomotor deficits, but TNBS-treated animals had sustained gut
inflammation.
In the EPM, TNBS-treated animals had increased anxiety-like

behavior as indicated by a reduction in the time spent in the
open arms, increased time spent in the closed arms and reduction
in head dips (Fig. 2A, B, H). There were no changes in open
arm entries, closed arm entries, total arm entries, latency to
enter open arms, or stretch attend postures (Fig. 2C–G). There
was no correlation between damage score and any of these
measures.

TNBS-induced colitis altered central endocannabinoid levels
In order to investigate the role of the eCB system on colitis-
induced anxiety-like behavior, we analyzed whether the eCB
system was altered in Day 7 TNBS-treated rats. We found that AEA
levels were reduced in the amygdala, medial prefrontal cortex and
hippocampus but not in the hypothalamus in animals treated with
TNBS (Fig. 3A–D). AEA levels, overall, were moderately or strongly,
negatively correlated with macroscopic tissue damage, except in
the hypothalamus. Concomitantly, TNBS treatment led to an
increase in the hydrolytic activity of AEA’s metabolic enzyme,
FAAH (Vmax), in the amygdala and medial prefrontal cortex, but
not in the hypothalamus or hippocampus (Fig. 3E–H). TNBS
treatment resulted in no differences in the binding affinity of AEA
for FAAH (Km) (Table S3) in the amygdala, hypothalamus or
hippocampus; however, animals with colitis had an increase in Km
in the medial prefrontal cortex. Similar to AEA levels, FAAH
hydrolytic activity, but not binding affinity, overall, was strongly,
but positively, correlated with damage score, particularly in the
amygdala and medial prefrontal cortex. These data indicate that
colitis is associated with an increase in corticolimbic FAAH-activity
and a decline in the pool of AEA.

A

Saline TNBS

125

100

75

50

25

0

O
p

en
 a

rm
 

ti
m

e 
(s

ec
)

20

16

12

8

4

0
Saline TNBS

E

To
ta

l a
rm

en
tr

ie
s 

(#
)

B

Saline TNBS

300

240

180

120

60

0

C
lo

se
d

 a
rm

 
ti

m
e 

(s
ec

)
300

240

180

120

60

0
Saline TNBS

F
O

p
en

 a
rm

la
te

n
cy

 (
se

c)

C

Saline TNBS

10

8

6

4

2

0

O
p

en
 a

rm
en

tr
ie

s 
(#

)

D

Saline TNBS

15

12

9

6

3

0

C
lo

se
d

 a
rm

en
tr

ie
s 

(#
)

15

12

9

6

3

0
Saline TNBS

S
tr

et
ch

 a
tt

en
d

p
o

st
u

re
s 

(#
)

G H 25

20

15

10

5

0
Saline TNBS

H
ea

d
 d

ip
s 

(#
)

Fig. 2 TNBS-induced colitis leads to anxiety-like behavior in the EPM at Day 7 post-administration. At Day 7 post-trinitrobenzene sulfonic
acid (TNBS) administration there was an increase in anxiety-like behavior as indicated by a (A) reduction in time spent in the open arms, (B)
increase in time spent in the closed arms and (H) a reduction in head dips; however, there were no effects on (C) open arm entries, (D) closed
arm entries, (E) total arm entries, (F) latency to open arm or (G) stretch attend postures. n= 14–15/group. *p < 0.05 t test saline vs. TNBS.
Saline= left, black bars with circles. TNBS= right, orange bars with squares.

Comorbid anxiety-like behavior in a rat model of colitis is mediated by. . .
HA Vecchiarelli et al.

995

Neuropsychopharmacology (2021) 46:992 – 1003



In contrast to AEA levels, 2-AG levels were increased in the
medial prefrontal cortex and hippocampus, but not significantly
changed in the amygdala or hypothalamus (Fig. 3I–L), following
TNBS administration. There was no impact of TNBS-colitis on the
activity of 2-AG’s metabolic enzyme (Vmax; Fig. 3M–P), MAGL, or its
Km (Table S3) in the amygdala, medial prefrontal cortex,
hypothalamus or hippocampus. Overall, only hippocampal 2-AG

was strongly, positively, correlated with damage; neither MAGL
activity (excepting the hypothalamus) nor binding affinity
correlated with damage score.
In addition, we examined the gene expression levels of a

number of the molecular components of the eCB system
(Table S4). There were no significant changes in any genes
examined.

A
E

A
(p

m
o

l/g
 t

is
su

e)
2-

A
G

(n
m

o
l/g

 t
is

su
e)

M
A

G
L 

V
m

ax
 

(p
m

o
l/m

g
 

p
ro

te
in

/m
in

)

FA
A

H
 V

m
ax

 
(p

m
o

l/m
g

 
p

ro
te

in
/m

in
)

Amygdala

A 20

16

12

8

4

0
Saline TNBS

I 20

16

12

8

4

0
Saline TNBS

M 50

40

30

20

10

0
Saline TNBS

2500

2000

1500

1000

500

0
Saline TNBS

E

medial
Prefrontal

cortex

B 20

16

12

8

4

0
Saline TNBS

J 15

12

9

6

3

0
Saline TNBS

N 250

200

150

100

50

0
Saline TNBS

F 1500

1200

900

600

300

0
Saline TNBS

Hypothalamus

C 15

12

9

6

3

0
Saline TNBS

K 15

12

9

6

3

0
Saline TNBS

O 100

80

60

40

20

0
Saline TNBS

G 500

400

300

200

100

0
Saline TNBS

Hippocampus

D 30

24

18

12

6

0
Saline TNBS

L 20

16

12

8

4

0
Saline TNBS

P 50

40

30

20

10

0
Saline TNBS

1000

800

600

400

200

0
Saline TNBS

H

Fig. 3 Colitis altered central endocannabinoid levels. Following trinitrobenzene sulfonic acid (TNBS) administration, at Day 7, anandamide
(AEA) levels were reduced in the (A) amygdala, (B) medial prefrontal cortex and (D) hippocampus, but not the (C) hypothalamus.
Concomitantly, there was an increase in AEA’s metabolic enzyme’s (fatty acid amide hydrolase (FAAH)) activity (Vmax), in the (E) amygdala, (F)
medial prefrontal cortex, with no differences in the (H) hippocampus or (G) hypothalamus. In contrast to AEA levels, Day 7 2-arachindonylyl
glycerol (2-AG) levels were increased in the (J) medial prefrontal cortex, (L) hippocampus, and no significant changes occurred in the (I)
amygdala or (K) hypothalamus with TNBS administration. There were no differences at Day 7 post-administration in the activity of 2-AG’s
metabolic enzyme (monoacylglycerol lipase (MAGL); Vmax) in the (M) amygdala, (N) medial prefrontal cortex, (O) hypothalamus or (P)
hippocampus from colitis. n= 9–12/group for levels and n= 4= 6/group for enzyme activity. *p < 0.05, **p < 0.01, ****p < 0.0001, t test saline
vs. TNBS. Saline= left, black bars with circles. TNBS= right, orange bars with squares.
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Central FAAH inhibition reversed colitis-induced anxiety-like
behavior
To determine if the elevated FAAH activity and reduced AEA levels
contributed to the increase in anxiety-like behavior, we examined
if acute inhibition of FAAH, to elevate AEA signaling, would
counter the colitis-induced anxiety. Given that FAAH activity was
broadly increased following colitis, we opted to perform a central
inhibition of FAAH to determine the impact of widespread central
elevations in AEA signaling. We administered a FAAH inhibitor (PF)
acutely at two doses and examined anxiety-like behavior in the
EPM in order to investigate the relevance of changes in eCB levels
to the increase in anxiety-like behavior.
Open arm time was reduced with TNBS-induced colitis and

increased with administration of the FAAH inhibitor (Fig. 4A).

Based on the outcomes of the initial experiments in this
study, we made the a priori hypothesis that colitis would
increase anxiety-like behavior and that treatment with a FAAH
inhibitor would reverse that. Analysis of these planned
comparisons demonstrated that, even following cranial surgery,
there was a reduction in open arm time in TNBS-treated
animals treated with saline vs. control animals treated with
saline, supporting the robustness of this behavioral effect (as
was seen in Fig. 2A). Administration of PF dose-dependently
reversed the reduction of open arm time in the EPM;
whereas 100 ng PF treatment in TNBS-treated animals partially
reversed the anxiety phenotype (as it was no longer signifi-
cantly different relative to vehicle-control animals, but
not different from TNBS-vehicle animals), TNBS-treated animals
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Fig. 4 Central FAAH inhibition reversed colitis-induced anxiety-like behavior. We examined (A) time in the open arms and found main
effects of colitis reducing open arm time, and PF administration increasing it. Planned comparisons revealed that there was a reduction in
open arm time between the vehicle saline vs. TNBS groups. TNBS animals treated with 1 μg PF had significantly increased open arm time
relative to vehicle treated animals. Colitis reduced (C) open arm entries and (G) head dips, but there was no effect of FAAH inhibition or
interaction between colitis and PF on these measures. For (B) closed arm time, (D) closed arm entries, (E) total arm entries and (F) open arm
latency there was not a significant effect of colitis, FAAH inhibition or interaction between PF and TNBS. H Macroscopic tissue damage was
increased with colitis, but this was modulated by PF administration, specifically, with the 1 μg dose, which had reduced damage scores
compared to the TNBS vehicle group. n= 12–24/group. *p < 0.05, ****p < 0.0001. saline vs. TNBS within same treatment, ♦♦ p < 0.01 vs. vehicle
of same condition. Saline= left, black bars with circles. TNBS= right, orange bars with squares.
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treated with 1 μg PF exhibited significantly elevated time in the
open arms relative to the TNBS-vehicle treated animals (Fig. 4A).
We found that TNBS-treated rats had reduced open arm entries
and head dips, but neither of these were influenced by
administration of PF (Fig. 4C, G). There were no significant
effects on closed arm time, closed arm entries, total arm entries
or open arm latency as a result of TNBS-treatment or PF
administration (Fig. 4B, D–F).

Macroscopic damage of the colon was increased in TNBS-
treated rats, but this was lower in the 1 μg PF dose compared to its
vehicle (Fig. 4H). Specifically, there was a significant reduction in
the 1 μg PF group in most scorable items, including ulceration
score, diarrhea and bowel thickness (data not shown). MPO
activity was also increased with TNBS-treated animals, but was not
influenced by central administration of 1 μg PF (Table S2). In
addition, in most indices measured, there were weak, negative
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correlations with damage score. Together these results indicate
that central FAAH inhibition reverses colitis-induced suppression
of open arm time and reduces macroscopic colonic tissue
damage score.

Central CRF-R1 signaling regulates colitis-induced alterations in
AEA
As increased FAAH activity was found to contribute to the
generation of colitis-induced anxiety, and given previous work
that showed that activation of CRF-R1 can induce FAAH hydrolysis
of AEA during psychological stress [50, 106], we examined CRF
signaling as a potential upstream mechanism in our model [68].
We investigated if blocking central CRF-R1 with an antagonist,

antalarmin, for the 7-days post-TNBS administration altered colitis-
induced changes in AEA levels. While this caused no changes to
TNBS-induced increases in macroscopic tissue damage (Table S2),
antalarmin reversed colitis-induced reductions in AEA levels
(Fig. 5A, D) in the amygdala and hippocampus. As in Fig. 3C,
there was no effect of TNBS on hypothalamic AEA levels, nor was
there an effect of antalarmin (Fig. 5C). In the medial prefrontal
cortex, antalarmin alone reduced AEA levels, but did not alter
TNBS-induced changes in AEA levels (Fig. 5B). CRF-R1 antagonism
had no effect on 2-AG levels in the amygdala, hypothalamus and
hippocampus (Fig. 5E, G, H). However, in the medial prefrontal
cortex (Fig. 5F), antalarmin administration in saline animals
increased 2-AG but did not alter 2-AG levels in the TNBS-treated
animals. No overall pattern emerged with regards to correlation
with macroscopic damage. Together these data demonstrated
that the colitis-induced reductions in AEA, at least within the
amygdala and hippocampus, were driven through CRF-R1
signaling.

TNBS-colitis also reduced central AEA levels in female rats
Comorbid anxiety with IBD is not restricted to males and is also
observed in females [16, 27]. To this end, we examined if there
was a similar alteration in the eCB system as a result of TNBS
administration in female rats in order to understand potential
generalizability across sexes of the phenomenon we have
demonstrated. Female rats also showed an increase in macro-
scopic tissue damage and MPO activity. Similar to male rats, there
was a reduction (although smaller) of AEA levels in the medial
prefrontal cortex (Fig. S1B) and no change in the hypothalamus
(Fig. S1C), but reductions seen in males in the amygdala and
hippocampus (p > 0.05) (Fig. S1AD) were not seen. Also, in contrast
to male levels, there were no alterations (p > 0.05) in 2-AG levels in
any of these areas (Fig. S1E–H). Unlike what was seen in males,
neither AEA nor 2-AG levels were correlated with macroscopic
damage.

DISCUSSION
We demonstrate that the TNBS-model of colitis in rats, consistent
with other rodent models of colitis [70–73, 107–109], produces an
increase of anxiety-like behavior (Fig. 2), similar to the well-
established comorbidity of colitis and anxiety in humans [1–
5, 22, 27]. Colitis also resulted in an increase in FAAH-mediated
hydrolysis of AEA across corticolimbic structures (Fig. 3) important
for the regulation of affective behavior [105]. The magnitude of
reductions in AEA and increases in FAAH activity is overall
correlated with macroscopic damage, suggesting that the greater
the disease severity the larger the impact on FAAH and AEA. This
reduction in AEA signaling was mediated by central CRF-R1
(Fig. 5), and it contributed to the development of colitis-induced
anxiety, as this was reversed by central inhibition of FAAH (Fig. 4).
Together these data indicate that sustained peripheral inflamma-
tion can modulate affective behavior through an attenuation of
central AEA signaling, which is driven by a recruitment of stress-
responsive signaling systems. As such, this would suggest that

inhibition of FAAH could represent a novel therapeutic approach
to managing comorbid anxiety in peripheral inflammatory
diseases.
Endocannabinoid signaling is well established to regulate

affective behavioral processes such as anxiety through actions
localized within the amygdala, medial prefrontal cortex and
hippocampus [43, 110]. The current data extend these findings to
demonstrate that a sustained inflammatory state results in a loss
of central AEA signaling that contributes to the development of
anxiety. Previous work has suggested that AEA and FAAH may be
involved in behavioral changes produced by inflammation. For
example, administration of the viral mimetic poly I:C produces
changes in thermoregulation, pain sensitivity and anxiety, which
are reversed by administration of a FAAH inhibitor [111]. In
addition, acute early life inflammatory events have been shown to
reduce social behavior during adolescence, a process that is also
reversible through pharmacological inhibition of FAAH [112]. The
current data, however, are the first demonstration that a sustained
peripheral inflammatory insult reduces AEA levels and increases
FAAH activity via central CRF-R1 activity, to increase anxiety, and
thereby provides a putative model by which peripheral inflamma-
tion can modulate the central regulation of affective behavior.
Recent work from our group shows that both male and female

mice exhibit anxiety-like behavior in a dextran sulfate sodium
model of colitis [73]. Here we show in males that anxiety-like
behavior induced by TNBS colitis is mediated through an CRF-R1
suppression of AEA levels. We also demonstrate in female rats that
TNBS administration leads to a reduction of AEA levels, albeit to a
lesser magnitude than in the males. It is possible that in females
this reduction of AEA levels also contributes to the anxiety like-
behavior observed across models, as previous work has demon-
strated a correlation between AEA levels and anxiety-like behavior
[113]; and, the difference in magnitude of AEA changes between
sexes may contribute to the sex differences in anxiety-like
behavior previously observed [73].
The finding that CRF-R1 activity mediates the colitis-induced

reduction in AEA content broadens previous work indicating that
CRF and FAAH exhibit an intricate relationship in the regulation of
affective behavior [50, 106]. Chronic exposure to glucocorticoids
results in sustained elevations in central FAAH hydrolysis and this
is mediated by the elevated CRF/CRF-R1 activity as this effect of
glucocorticoids is blocked by continuous administration of a CRF-
R1 antagonist and is replicated by genetic overexpression of
forebrain Crh [50, 106]. Inflammation is well-established to
increase drive on the HPA axis, likely in an auto-regulatory
manner where the elevations in potent anti-inflammatory
glucocorticoids act to dampen inflammation itself [35, 114, 115].
Consistent with this, our data replicate previous studies [116, 117]
showing that TNBS-colitis results in chronic elevations in
corticosterone secretion, which is in line with the established
increase in central Crh expression in rodent models of gut
inflammation [54, 57, 59, 66, 67, 69, 89]. These data would suggest
colitis-induced inflammation produces sustained adrenocortical
responses, which result in the upregulation of CRF levels in the
brain, producing an increase in FAAH activity and a reduction in
AEA signaling. Consistent with previous work [50], this effect of
glucocorticoids and CRF-R1 signaling on FAAH does not appear to
be mediated by transcriptional changes in gene expression.
An unexpected finding of this study was that acute central

inhibition of FAAH reduced the severity of colitis. Endocannabi-
noids are well-established anti-inflammatory molecules [118, 119],
and FAAH inhibitors have been repeatedly found to be capable of
reducing multiple aspects of gut inflammation across several
animal models [89–91, 96, 120, 121]. While these anti-
inflammatory effects of AEA signaling in colitis are largely due
to peripheral actions on colonic tissue directly or local immune
cells, there is evidence that central cannabinoid type 1
receptors (CB1) contribute to reducing inflammation in colitis
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[122]. It is also possible that PF entered the circulation, elevating
AEA levels outside of the brain to influence the damage score.
That said, the magnitude of reduction of colitis damage in the
current study from central FAAH inhibition was relatively minor.
Regardless, these data support previous findings that central
FAAH inhibition is capable of modulating colonic inflammation.
In addition to reduced AEA, we also found that colitis was

associated with elevations in 2-AG throughout several corticolim-
bic structures (Fig. 2). Prolonged elevations in CRF signaling have
been found to produce elevations in tissue 2-AG levels [106]. This
effect was not as robust as the reduction in AEA, as it was largely
lost following cannulation surgery, and not seen in females. Unlike
the reductions in AEA, the relevance of these increases in 2-AG
during colitis has yet to be elucidated. As stress-induced
elevations in 2-AG signaling have been proposed to produce
both anxiolytic and anxiogenic effects [43], future work is required
to examine this question in more depth.
We did not investigate which receptors mediate the anxiolytic

effect observed herein. Previous work with psychological stress
points to a role for CB1 in this regard [43]. AEA’s anxiolytic effect
seems to be due to its signaling at the CB1 receptor [43].
Furthermore, differently from AEA, the ability of 2-AG to buffer
anxiety is linked to signaling at the CB1 receptor, but also the CB2
receptor [123–126]. Given our anxiolytic effect was observed with
FAAH inhibition, which elevates AEA and not 2-AG, it was likely
through a CB1 mechanism; however, future work will have to
elucidate these specifics, especially as AEA can also act on the
transient receptor potential cation channel subfamily V member 1
(TRPV1) and peroxisome proliferator-activated receptors (PPARs).
More so, FAAH also metabolizes oleoylethanolamide (OEA) and
palmitoylethanolamide (PEA) which have also been implicated in
anxiety and inflammation [127–133].
Together, these data demonstrate that the induction of colitis

results in a suppression of central AEA signaling via a CRF-R1
mediated increase in FAAH activity, which then promotes the
development of anxiety. Given the similarities seen to chronic
stress and glucocorticoid exposure [50, 106], this suggests that
compromised central AEA signaling may be a broad mechanism
favoring the development of anxiety in response to a host of
psychological or physiological insults, particularly those that
produce increased demand on the HPA axis. As such, these data
would support the investigation of FAAH inhibitors as a treatment
approach in chronic inflammatory disease states, both for the
inflammatory pathology itself but also the psychiatric comorbid-
ities. FAAH inhibitors have already been established in humans to
reduce anxiety that develops during cannabis withdrawal [134],
dampen the subjective and physiological responses to stress [135]
and produce clinically relevant anxiolysis in social anxiety disorder
[136], indicating their feasibility and potential efficacy for the
management of affective disturbances in humans. In line with this,
many individuals with chronic inflammatory diseases use cannabis
which is associated with broad improvements in affective state
and quality of life [137, 138], suggesting that cannabinoids may
also have some therapeutic value in this domain. Therefore, there
is potential for FAAH inhibition on both the primary outcomes of
inflammatory diseases, as well as comorbid psychiatric issues and
quality of life measures, serving as a dual-pronged therapeutic.
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