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Abstract

Genome-scale network reconstructions are useful tools for understanding cellular metabolism, and comparisons of such
reconstructions can provide insight into metabolic differences between organisms. Recent efforts toward comparing
genome-scale models have focused primarily on aligning metabolic networks at the reaction level and then looking at
differences and similarities in reaction and gene content. However, these reaction comparison approaches are time-
consuming and do not identify the effect network differences have on the functional states of the network. We have
developed a bilevel mixed-integer programming approach, CONGA, to identify functional differences between metabolic
networks by comparing network reconstructions aligned at the gene level. We first identify orthologous genes across two
reconstructions and then use CONGA to identify conditions under which differences in gene content give rise to differences
in metabolic capabilities. By seeking genes whose deletion in one or both models disproportionately changes flux through a
selected reaction (e.g., growth or by-product secretion) in one model over another, we are able to identify structural
metabolic network differences enabling unique metabolic capabilities. Using CONGA, we explore functional differences
between two metabolic reconstructions of Escherichia coli and identify a set of reactions responsible for chemical
production differences between the two models. We also use this approach to aid in the development of a genome-scale
model of Synechococcus sp. PCC 7002. Finally, we propose potential antimicrobial targets in Mycobacterium tuberculosis and
Staphylococcus aureus based on differences in their metabolic capabilities. Through these examples, we demonstrate that a
gene-centric approach to comparing metabolic networks allows for a rapid comparison of metabolic models at a functional
level. Using CONGA, we can identify differences in reaction and gene content which give rise to different functional
predictions. Because CONGA provides a general framework, it can be applied to find functional differences across models
and biological systems beyond those presented here.
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Introduction

Advances in genome sequencing and computational modeling

techniques have sparked the construction of genome-scale network

reconstructions (GENREs) [1] for over 100 prokaryotic and

eukaryotic organisms [2]. These reconstructions describe the

functions of hundreds of metabolic genes, and enable a concise

mathematical representation of an organism’s biochemical capa-

bilities via genome-scale models. Constraint-based methods [3]

can then be applied to genome-scale models to understand and

predict cellular behavior. Genome-scale models are becoming a

common framework for representing genomic information, as

evidenced by recent works simultaneously reporting genome

sequences and metabolic models [4,5]. Efforts like the new Model

SEED database will facilitate this process, by enabling the rapid

construction and refinement of network reconstructions as genome

annotations change [6].

The abundance of genome sequences has led to advances in

comparative genomics, in which biological insight comes from

interrogation of genome structure and function across species. The

advent of tools such as the Model SEED paves the way for

functional comparison of genome-scale reconstructions, but

computational methods for comparing models at a functional

level have not yet emerged. Existing network comparison

approaches such as reconstruction jamborees [7,8] or metabolic

network reconciliation [9] compare models of the same or closely-

related organisms with the aim of identifying and reconciling

differences between models. These approaches rely on a manual

mapping of metabolic compounds and reactions across the

networks and then look at differences and similarities in reaction

and gene content to identify structural differences (e.g., the presence

or absence of particular genes or reactions). However, existing

approaches do not identify functional differences (e.g., differences in

organism behavior), or explain how structural differences impact

the functional states of the network (e.g., achievable rates of
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growth or chemical production). Instead, models must be analyzed

individually, and a number of simulations may be necessary before

functional differences arising from structural differences are

observed. Additionally, reaction alignment approaches can be

time-consuming, since biochemical databases (such as BiGG,

BioCyc, KEGG or SEED [10–13]) and model construction

platforms (such as Pathway Tools [14] or the Model SEED [6])

may use different nomenclatures or abbreviations to describe

metabolites and reactions.

We have developed a bilevel mixed-integer linear programming

(MILP) approach to identify functional differences between models

by comparing network reconstructions aligned at the gene level,

bypassing the need for a time-consuming reaction-level alignment.

We call this new constraint-based method CONGA, or Compar-

ison of Networks by Gene Alignment. We first use orthology

prediction tools (e.g., bidirectional best-BLAST) to identify sets of

orthologs in two organisms based on their genome sequences, and

then we use CONGA to identify conditions under which

differences in gene content (and thus reaction content) give rise

to differences in metabolic capabilities. Because orthologs often

encode proteins with the same function, we would expect their

gene-protein reaction (GPR) associations, and thus their associated

reactions, to be similar. Therefore, a gene-level alignment serves as

a proxy for a reaction-level alignment. By identifying genetic

perturbation strategies that disproportionately change flux through

a selected reaction (e.g., growth or by-product secretion) in one

model over another, we are able to functional differences (e.g.,

biomass yield) between the two organisms. Once these functional

differences are found, they can be further evaluated to identify

structural differences (e.g., gene and reaction differences) between

the organisms’ network reconstructions. By using an MILP

approach, we are able to identify these differences directly and

in an exhaustive fashion, without manually aligning all reactions in

the two networks.

We demonstrate that this approach can be used to study both

closely- and distantly-related organisms and to address a variety of

biological questions, by applying it to three pairs of organisms with

increasing phylogenetic distance. We first examine differences

between two published metabolic reconstructions of E. coli

metabolism, iJR904 [15] and iAF1260 [16]. The iAF1260 model

is an update to the iJR904 model, constructed to more accurately

reflect experimental data, including gene essentiality data and

growth phenotypes [17,18]. While both models have been used as

tools to help design new chemical production strains [19–22],

these two models have not been evaluated with respect to

differences in their metabolic engineering predictions. By identi-

fying knockout strategies where one model predicts a larger

chemical production rate than the other, we are able to determine

a small set of reactions responsible for predicted chemical

production differences between the two models.

We have also used CONGA to aid in the development of a

genome-scale network reconstruction of the photosynthetic

cyanobacterium Synechococcus sp. PCC 7002, which we name

iSyp611, by comparing it to the iCce806 reconstruction of

Cyanothece sp. ATCC 51142 [23]. Photoautotrophic microbes, such

as cyanobacteria, possess the ability to fix carbon dioxide and

transform light into chemical energy, making them strong

candidates for biofuel production hosts [24–27]. Through our

automated comparison, we also demonstrate the conserved aspects

of cyanobacterial physiology, and gain insight into the unique

properties of Synechococcus and Cyanothece.

Finally, we applied CONGA to compare the susceptibility of

distantly-related human pathogens to loss of metabolic enzymes.

We selected published networks of M. tuberculosis H37Rv [28] and

S. aureus N315 [29] and sought gene knockout strategies that are

predicted to be lethal in only one organism. We were then able to

identify differences in their metabolic networks which point to

unique metabolic functions as possible targets for organism-

specific antimicrobials. Such antibiotics are needed to expand the

limited scope of existing broad-spectrum antibiotics [30] and to

provide novel mechanisms of action which make the transfer of

resistance across species less probable [31–34]. We show that

many of the functions we identified have been experimentally

verified as essential, demonstrating that our computational

approach allows us to provide a list of candidate enzymes for

more focused study. As a component of this comparison, we used

three distinct orthology prediction tools to prepare a gene

alignment between the pathogens. We then analyzed the number

of false positive ortholog calls made by each method, and

examined the effect these incorrect orthology assignments had

on the results generated by CONGA.

Through these three case studies, we demonstrate that CONGA

can be used to rapidly compare metabolic networks regardless of

phylogenetic distance. We are also able to show that CONGA has

applications in metabolic engineering, model development, and

antibiotic discovery. We show that CONGA can facilitate

jamboree and network reconciliation efforts by pinpointing those

metabolic or genetic differences which give rise to differences in

model predictions.

Results

We have developed a bilevel mixed-integer linear programming

(MILP) approach, called CONGA, to identify functional differ-

ences between two networks by comparing network reconstruc-

tions aligned at the gene level. We have constructed an illustrative

example to demonstrate the types of functional differences

CONGA can identify. We then present three case studies and

demonstrate how CONGA results have implications in metabolic

engineering (comparison of E. coli models), model development

(comparison of cyanobacterial models), and drug discovery

(comparison of human pathogen models).

Identification of Network Differences via CONGA
CONGA identifies functional differences between two networks

by comparing network reconstructions aligned at the gene level.

The constraint-based method identifies gene deletion strategies

leading to different optimal flux distributions in the two networks.

CONGA calculates the flux difference between two reactions in

different models (e.g., Flux 1 in Species A minus Flux 2 in Species

B) and identifies deletions such that the specified flux difference is

maximized while both models are simultaneously maximizing

biomass (Figure 1).

We refer to a solution identified by CONGA as a gene deletion set.

CONGA can select any genes for deletion, with the restriction that

orthologous genes present in both models be deleted simulta-

neously from both models. We note that while CONGA can

calculate the flux difference between any two reactions, we believe

that selecting equivalent reactions (e.g., biomass) provides the most

useful objective for comparing models. Via manual investigation of

the results, we are able to classify gene deletion sets identified by

CONGA as arising due to one of four types of functional network

differences:

1. genetic differences, in which gene-protein-reaction (GPR) relation-

ships differ between models;

CONGA: An Automated Tool for Network Comparison
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2. orthology differences, in which genes encoding enzymes with

identical functions cannot be assigned as orthologs (e.g., due to

sequence dissimilarity);

3. metabolic differences, where one organism has additional reactions

which enable it to carry out unique biochemical transforma-

tions; and

4. mixed differences, which arise due to some combination of types

1–3.

Using two example networks, we demonstrate the types of

functional differences CONGA can identify (Figure 2). Each

reaction network catalyzes the conversion of substrate (S) to

biomass (BM) and some by-product (P) (Figure 2A). We refer to

the two species as A and B, and the biomass- and by-product-

producing reactions as vBM and vP, respectively. Each pathway

producing biomass gives different yields for BM and P (Figure 2B),

though the optimal flux distributions maximizing biomass without

any gene deletions are identical in the two organisms (Figure 2C).

By applying CONGA with different objective functions, we can

identify gene deletion conditions under which network differences

become apparent (Figure 2D).

We first used CONGA to compute gene deletion sets

maximizing vBM in Species B over Species A (vBMB
{vBMA

). This

objective will be greatest when a gene deletion set is predicted to

be lethal in Species A and not in Species B. One such deletion set

contains the ortholog G12, which is present in both models

(Figure 2E). Under this deletion, growth becomes impossible in

Species A, whereas Species B has additional reactions which allow

it to convert I1 to B via metabolite I4. Thus, this gene deletion set

points to a metabolic difference between the two models. CONGA

can also be used to identify genetic differences (Figure 2F). For

instance, the deletion of GS1 is lethal only in Species A, because

Species B has an additional isozyme (GS1a) which carries out the

same transformation. Thus, this deletion set points to a genetic

difference. Other deletion sets point to orthology differences

(Figure 2G). For example, genes G23a and G23b are not orthologs

even though they carry out the same reaction. Thus, the deletion

of G2B and G23a is lethal in Species A, but Species B can still

carry flux through the reaction associated with G23b.

CONGA can also identify how metabolic differences affect

cellular phenotypes other than growth rate (Figure 2H). In this

example, the objective is to maximize the difference in flux

through vP in Species A over Species B (vPA
{vPB

). (The resulting

phenotypes for each model are analogous to production

phenotypes predicted by OptORF [35].) Deleting G2B forces

Species A to utilize the lower reaction pathway, producing 0.06

BM and 0.2 P per S. However, the optimal flux distribution for

Species B uses the upper reaction pathway, as this route produces

more biomass (0.08 BM per S vs 0.06 BM per S via the lower

pathway). As a consequence, Species A produces more by-product:

0.2 P per S in Species A vs. 0.1 P per S in Species B.

Because production values may not be unique at the maximum

growth rate, CONGA can artificially inflate flux differences

between models. This can only occur when the fluxes whose

difference is being maximzed (e.g., chemical production rates)

differ from the fluxes maximized by each model (e..g, biomass). In

this case, we impose a a tilt on the objective of the inner problem.

This tilt forces CONGA to identify deletions such that the

specified flux difference is maximized when the individual fluxes

through each reaction are at their lowest values that still support

maximum biomass production. See Methods for additional

details.

Comparison of E. coli Metabolic Models
We first used CONGA to compare two genome-scale metabolic

models of E. coli, the iJR904 model [15] and the iAF1260 model

[16]. The iAF1260 model extends the iJR904 model by

compartmentalizing the network (separating the cytoplasm and

periplasm), improving the biomass composition, and adding new

metabolic reactions. The iJR904 model has been used frequently

for metabolic engineering studies [36], but to our knowledge no

studies have examined the extent to which the iAF1260 model’s

additional metabolic content affects computationally derived strain

designs.

To explore the effect of the iAF1260 model’s larger network, we

used CONGA to identify gene deletion strategies for three

commonly studied fermentation products–ethanol, lactate, and

succinate–seeking identical knockout conditions where the

iAF1260 model predicted higher production rates than the

iJR904 model, and vice versa. We refer to such strategies as

model-dominant strategies. For example, an iAF1260-dominant

strategy is one in which the same gene deletion set predicts higher

chemical production in the iAF1260 model than in the iJR904

model. Because some of these knockout strategies result in

nonunique chemical production rates, model-dominant strategies

were identified with respect to the lowest possible production rate

consistent with the maximum growth rate.

Our initial CONGA results revealed a need to reconcile the

fermentation pathways between the two models, due to changes in

representation made in the iAF1260 model. We thus modified the

iJR904 model to reflect these changes and repeated the

simulations using the reconciled models. (See Dataset S2 for

details.) For ethanol, succinate, and lactate, we identified the top

three model-dominant strategies for each model for up to three,

four, and five knockouts, respectively. We observed that multiple

deletions are necessary to detect differences in production of these

latter metabolites, and the difference in yield does not improve

significantly beyond four or five knockouts, depending on the

Figure 1. Conceptual structure of the CONGA formulation.
CONGA employs a bilevel optimization problem to identify genetic
perturbations with nonidentical effects in each of two networks. The
outer problem is an MILP which finds gene deletions maximizing the
difference in flux value between two reactions in two different models.
The inner problems (in italics) are flux-balance analysis (FBA) problems
which ensure the flux difference is maximized while both models are
maximizing biomass. An optional tilt can be added to the inner
problem which forces the flux in the outer problem to the lowest value
that still support maximum biomass production. FBA imposes
constraints based on reaction stoichiometry, reaction directionality,
and enzyme capacities. GPR constraints associate genes to reactions
and are used to enforce the reaction deletions associated with the gene
deletions in the outer problem. CONGA can select any genes for
deletion, with the restriction that orthologous genes present in both
models be deleted simultaneously from both models. Finally, a limit
may be imposed on the total number of gene deletions.
doi:10.1371/journal.pone.0034670.g001
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model and product. We also employed OptORF [35], without

transcriptional regulation, to identify the top three deletion

strategies for each model and product, for each number of gene

deletions. We refer to these strategies as OptORF strategies. These

strategies were then compared to the model-dominant strategies

identified by CONGA, to determine if optimal OptORF strategies

are likely to give similar or different predictions between the two

models.

The CONGA results for the model-dominant strategies for

ethanol production are presented in Figure 3A. We observed that

only 4 of the 16 (25%) model-dominant strategies were also

OptORF strategies (red bars), and none of the triple-deletion

model-dominant strategies were OptORF strategies. This suggests

that, when examining optimal OptORF strategies for higher

numbers of gene knockouts, either model’s predictions are likely to

be similar at the maximum growth rate. However, the models may

predict different ethanol production rates using the same gene

deletion set for strategies which do not result in the maximum level

of chemical production.

Figure 2. Application of CONGA to an example pair of metabolic networks. (A) In these two example networks, substrate (S) is utilized to
produce biomass (BM) and some by-product (P). We refer to the two species as A and B, and the biomass- and product-producing reactions as vBM

and vP , respectively. (B) List of genes and reactions present or absent in each network. All shared reactions have orthologs present in both networks,
except for the reaction associated with genes G23a and G23b, which are not orthologs. (C) A schematic view of the wildtype network behaviors in
which flux through vBM is maximized. (D) Gene deletion sets identified by CONGA for the stated CONGA objectives The first three objectives
maximize vBM in Species B over Species A. The last objective maximizes vP in Species A over Species B. The type of model difference (genetic,
orthology, or metabolic) associated with each deletion set is also given. (E through H) Schematic views of the flux distributions associated with each
gene deletion set in D. The optimal flux distributions in the example networks change as a result of the gene deletion sets in D. Differences in the
optimal flux distributions are due to differences in the two networks.
doi:10.1371/journal.pone.0034670.g002

CONGA: An Automated Tool for Network Comparison
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The CONGA results for model-dominant strategies for the

production of lactate and succinate were quite different (Figure

S1A and S2A). Here, 15 of the 30 model-dominant strategies are

also OptORF strategies. Of these 15 strategies, 13 are iJR904-

dominant strategies, with 11 involving the deletion of mphF and

adhC (thereby removing acetaldehyde dehydrogenase). When these

two genes are deleted, ethanol synthesis is no longer possible in the

iJR904 model, while the iAF1260 model can synthesize ethanol

via a second pathway (Figure 4A). The double deletion of mphF

and adhC enables iJR904-dominant strategies for lactate and

succinate production, with additional deletions determining

whether lactate or succinate is the dominant product. We also

observed that the iAF1260-dominant strategies for succinate

production are all of low-yield (less than 10% the theoretical

maximum). In fact, the iAF1260 model requires five gene deletions

to obtain yields greater than 10% of the theoretical maximum,

while the iJR904 model requires only two gene deletions. These

results demonstrate that CONGA can also be used to identify

differences in the ease of coupling growth to chemical production

in different models or organisms.

We then set out to investigate which network differences

between iJR904 and iAF1260 account for the production

differences associated with each gene deletion set found by

CONGA. Of the 46 total model-dominant strategies, 34 (74%)

could be attributed to at least one of six metabolic differences

between the two models (Table 1). The remaining 12 model-

dominant strategies predicted production differences of less than

10% the theoretical maximum yield, and in many cases much less.

Figure 3. Model-dominant production strategies for ethanol. (A) Deletion strategies for ethanol production. Each bar represents the absolute
difference in predicted ethanol yields between the iJR904 and iAF1260 models as a fraction of the maximum theoretical yield (2 ethanol/glucose).
Left side: Strategies for which the iAF1260 model predicts higher production. Right side: Strategies for which the iJR904 model predicts higher
production. Corresponding gene deletion strategies involving 1, 2, or 3 genes are given below the figure. Numbers above each bar indicate the
fraction of the theoretical maximum yield obtained by each model, with the dominant model listed first. Some strategies have a nonunique ethanol
production phenotype, in which multiple ethanol production values can occur at the maximum growth rate. For these scenarios, the production
difference calculated by CONGA is from the lowest expected level of ethanol production in each model, and such strategies are indicated in green.
Strategies for which the yield of the dominant model meets or exceeds the yield for the third-best OptORF strategy for that model are known as
OptORF strategies, and such strategies are indicated in red. (B) The same gene deletion strategies after reconciliation of the iJR904 and iAF1260
networks with respect to metabolic differences.
doi:10.1371/journal.pone.0034670.g003

CONGA: An Automated Tool for Network Comparison
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Two of the network differences (1,2-propanediol synthesis and

hexokinase) were associated only with iJR904-dominant ethanol

production strategies, while others were responsible for more than

one set of model-dominant strategies. For example, differences in

the succinate transport mechanism were implicated in strategies

associated with iAF1260-dominant production of ethanol and

lactate, and with iJR904-dominant production of succinate.

Many of these network differences affect the balance of possible

fermentation products (Figure 4 and Figure S3). For example, the

iAF1260 network contains an additional pathway to convert

acetyl-CoA to ethanol via L-2-amino-3-oxobutanoate and allo-

threonine (Figure 4A). As noted above, this extra pathway for

ethanol synthesis in the iAF1260 model carries flux in many of the

iJR904-dominant lactate and succinate production strategies,

demonstrating that a single network difference can be found

under multiple simulation conditions. In other instances, network

differences affect flux balances outside the central fermentation

pathways (Figure 4B). For example, when the genes edd (or eda),

tpiA, and fsaB are deleted, disrupting glycolysis and the Entner-

Doudoroff pathway, the iJR904 and iAF1260 models produce

different products. The iJR904 model converts glucose into ribose-

5-phosphate (r5p) via the oxidative and non-oxidative branches of

the pentose phosphate pathway. The r5p is then converted to

deoxyribose-5-phosphate and broken down into glyceraldehyde-3-

phosphate (g3p), which enters glycolysis, and acetaldehyde (acald),

which gets converted to ethanol. In contrast, the iAF1260 model

converts glucose to g3p and dihydroxyacetone phosphate (dhap).

As in the iJR904 model, g3p enters glycolysis, while dhap enters

the methylglyoxal (mthgxl) pathway. Some of the mthgxl is

converted to 1,2-propanediol (12 ppd) via a unique 12 ppd

synthesis pathway, while the remaining mthgxl continues through

the pathway to make pyruvate.

After identifying the metabolic differences that lead to model-

dominant strategies, we modified the iJR904 and iAF1260

networks to contain identical representations of each pathway

(Dataset S2) and re-evaluated the phenotype predictions of each

knockout strategy. After the network reconciliation, we found that

all but one of the knockout mutants are now predicted to have

similar production rates (Figure 3B, Figures S1B and S2B).

While other studies have identified functional differences

between the iJR904 and iAF1260 models with respect to growth

phenotypes (e.g., gene essentiality predictions [16]) using an

enumerative approach, here we compared the two reconstructions

with respect to their metabolic engineering predictions using an

algorithmic approach that identifies just those conditions resulting

in different model predictions. We hypothesized that coupling of

metabolites to biomass would be more difficult in the larger

iAF1260 model, and that the model might have higher production

levels (or larger production ranges if multiple products are

possible), due to the larger network containing more ways to

balance internal fluxes. These hypotheses were not borne out (with

the notable exception of coupling succinate production to

biomass), as we were able to predict similar production levels

using both models. In fact, the production differences we did

observe were due to only 21 reactions that represent just 3.5% of

the 594 unique metabolic reactions in the iAF1260 model

(described previously in [16]).

Cyanobacterial Metabolic Differences
Having analyzed two models of the same organism, we then

sought to analyze two models of closely related but distinct

organisms, and to examine organisms less well-studied than E. coli,

to see if CONGA can be used to generate new physiological

insights. For this application, we selected two cyanobacteria,

Synechococcus sp. PCC 7002 and Cyanothece sp. ATCC 51142. Very

few genome-scale metabolic reconstructions of cyanobacteria have

been published to date [37–39], and our group has recently

developed two more, the iSyp611 model of Synechococcus (this

paper) and the iCce806 model of Cyanothece [23]. In order to gain

insight into the metabolic similarities and differences between

these two cyanobacterial strains, we used CONGA to identify gene

Figure 4. Flux maps illustrating differences in metabolic
pathways in E. coli GENREs. The text above each map indicates
the pathway responsible for the phenotypic difference, the phenotype
with which the strategy is associated, and the gene deletion for which
the phenotype occurs. (A–B) Schematic views of the flux distributions
associated with the indicated gene deletion set. Metabolites are
represented in plain text. Metabolic transformations are indicated via
arrows, with thicker arrows indicating higher flux. In some instances,
multiple transformations are combined into a single dashed arrow or
lumped into a subsystem. Subsystems are indicated by plain text
enclosed in a grey rectangle. Fluxes active in the iAF1260 network are in
red, fluxes active in the iJR904 network are in blue, and inactive fluxes
are in grey. If gene (reaction) deletions occur in the fermentation
pathway, they are indicated by black ‘X’s. Fluxes crossing the dashed
boundary indicate transport to the extracellular environment. Metab-
olite abbreviations: 12 ppd, 1,2-propanediol; 2aobut, L-2-Amino-3-
oxobutanoate; actp, acetyl phosphate; athr, allo-threonine. All other
abbreviations match those used in the iSyp611 metabolic model (see
Dataset S2).
doi:10.1371/journal.pone.0034670.g004

CONGA: An Automated Tool for Network Comparison
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deletion sets that were predicted to be lethal in only one

cyanobacterial metabolic model, as well as to improve our draft

Synechococcus reconstruction.

We first applied CONGA to the draft iSyp611 model. Some of

the gene deletion sets identified by CONGA arose due to missing

genes in the draft iSyp611 model. For example, CONGA

identified gene deletion sets containing protein synthesis enzymes

present only in the iCce806 network. Synechococcus also has these

proteins, but they had not been included in the model. Other

network differences arose due to incomplete GPR associations in

the draft iSyp611 model. For example, the iCce806 model

associated HisB with both histidinol-phosphatase and imidazole-

glycerol-phosphate dehydratase, while the draft iSyp611 network

only associated the protein with histidinol-phosphatase. The

original annotation indicated the gene was bifunctional, and the

draft iSyp611 model was updated accordingly. This approach

increased the size of the iSyp611 model from 542 to 611 genes, an

increase in gene content of 13%. This increase in gene content is

comparable to that seen in metabolic network reconciliation [9],

which was used to expand the gene content of genome-scale

models of Pseudomonas aeruginosa and Pseudomonas putida by 3% and

18%, respectively.

After refining the draft model based on these results, the

resulting model (iSyp611) was compared again to iCce806 using

CONGA. We identified 30 gene deletion sets that are lethal only

in the iSyp611 model and 36 gene deletion sets that are lethal only

in the iCce806 model (Table 2). We found that in many instances

different gene deletion sets mapped to the same set of reaction

deletions (or reaction deletion set). For example, we identified six gene

deletion sets lethal in the iSyp611 model that all mapped to

photosystem II. As a result of these and other redundancies, the 30

gene deletion sets for the iSyp611 model reduced to 20 unique

reaction deletion sets, and the 36 gene deletion sets for the iCce806

model reduced to 18 unique reaction deletion sets.

Of the four types of functional network differences, we were

most interested in metabolic differences, although the other types

are also important. For example, genetic differences may occur

because the genes encoding an essential protein have not yet been

identified in one organism. In total, the metabolic differences

accounted for 4 of 30 gene deletion sets (or 2 of 20 reaction

deletion sets) for the iSyp611 model and 10 of 36 gene deletion sets

(or 5 of 18 reaction deletion sets) for the iCce806 model (Table 3).

Two of the reaction deletion sets which are lethal only in the

iCce806 model require deletion of two reactions from both models

(Figure 5). In the first deletion set (Figure 5A), deletion of

glutamate dehydrogenase and glutamate synthase prevents the

iCce806 model from synthesizing glutamate. The iSyp611 model

has a unique reaction, valine amino-transferase (VPAMT), which

allows it to recover from this double deletion (blue arrows). In the

second deletion set (Figure 5B), deletion of pyruvate kinase and

malate dehydrogenase prevents the iCce806 model from making

pyruvate. The iSyp611 model has another unique reaction,

aspartase (ASPT), which enables it to produce pyruvate and

recover from the double deletion. A search of the Cyanothece

genome failed to reveal candidate genes for ASPT and VPAMT,

lending support to the hypothesis that they may be true metabolic

differences between the two cyanobacteria.

CONGA reveals differences that can be used to reconcile and

improve genome-scale metabolic models of closely-related species.

We intend to use the remaining genetic and orthology differences

found by CONGA as a starting point in further updating our

reconstruction, as they may indicate missing or incorrectly

annotated genes. CONGA can also identify differences in

metabolic capabilities between models: our analysis here indicates

Synechococcus and Cyanothece share a significant number of pathways,

with important differences in central and amino acid metabolism.

Drug Targeting in Human Pathogens
While were able to idenitfy metabolic differences between the

two cyanobacteria, many of the differences identified by CONGA

were not due to reaction-level differences. We thus sought to use

CONGA to explore differences in metabolic capabilities between

two dissimilar oganisms, and to exploit those differences to identify

organism-specific drug targets. For this application, we applied

CONGA to existing models of two phylogenetically distant human

pathogens, the iNJ661 model of M. tuberculosis [28] and the iSB619

model of S. aureus [29], in order to explore differences in

pathogenicity and drug resistance based on differences in reaction

Table 1. Explanation of metabolic differences between the iJR904 and iAF1260 models of E. coli.

Metabolic Difference Description of Metabolic Difference Functional Effect

1,2-Propanediol Synthesis The iAF1260 model has the ability to secrete
1,2-propanediol; the iJR904 model does not.

The ability to convert glucose to 1,2-propanediol gives the iAF1260 model
greater flexibility in choosing fermentation products under some conditions.

Aldehyde Dehydrogenase The iAF1260 model has a unique aldehyde
dehydrogenase which the iJR904 model lacks.

This reaction grants the iAF1260 model the ability to convert acetaldehyde to
acetate using NADP. This reaction was selected for deletion by CONGA in iJR
dominant strategies, but was never directly implicated in a solution.

Ethanol Synthesis The iAF1260 model has unique reactions to
convert acetyl-CoA to acetaldehyde which
the iJR904 model lacks.

Deletions are possible in which the iJR904 model produces no ethanol while
the iAF1260 model produces ethanol at high levels.

Hexokinase The iAF1260 model has a unique hexokinase
that it can use as an alternative to
phosphoglucose isomerase (PGI).

The iAF1260 model has the ability to recover from multiple-reaction deletions
containing PGI, while the iJR904 model does not.

Hydrogen Transport The iAF1260 model has the ability to secrete
hydrogen gas; the iJR904 model does not.

The ability to secrete hydrogen gas allows the iAF1260 model to convert formate
to CO2 and H2 , consuming a proton in the process. This provides the iAF1260

model an additional way to consume cytoplasmic Hz , and changes the preferred
fermentation products under some conditions.

Succinate Transport The iAF1260 model employs a hydrogen
antiporter for succinate; the iJR904 model
employs a hydrogen symporter.

Production of succinate becomes less energetically favorable in the iAF1260 model,
as the synthesis route consumes fewer cytoplasmic protons.

Six metabolic differences accounted for the majority of the model-dominant strategies identified by CONGA.
doi:10.1371/journal.pone.0034670.t001
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and gene content. As with our analysis of the cyanobacterial

models, we sought genetic perturbation strategies that were

predicted to be lethal in only one organism.

Our preliminary analysis identified a total of 168 unique gene

deletion sets, of which 139 (83%) could be traced in whole or in

part to genetic or orthology differences. As these differences made

up the majority of identified differences, we manually evaluated

the quality of the orthology assignments and the original GPR

associations. This analysis resulted in the modification of the GPR

associations for 19 reactions in the iSB619 model and 36 reactions

in the iNJ661 model (Dataset S2). As a result of these changes, 7

genes were eliminated from and 3 added to the iSB619 model,

with 10 genes eliminated from and 4 added to the iNJ661 model.

A number of these initial genetic- and orthology-related gene

deletion sets arose due to different representations of the glycine

cleavage complex (GCC) and pyruvate dehydrogenase system

(PDH) in the two models (Figure 6A). Both GCC and PDH are

composed of three separate enzymes (a, b, and c), each of which

carries out a distinct catalytic activity. Deletion of GCC is

predicted to be lethal in both organisms, and because one subunit

is shared by GCC and PDH, deletions to one complex may affect

the other. In its original form, the iSB619 reconstruction modeled

PDH as an overall reaction, and GCC via its three individual

reactions (Figure 6B). In contrast, the iNJ661 model represented

both PDH and GCC as individual and overall reactions

(Figure 6B). Due to these differences, a number of ortholog

deletions are lethal in only one model. For example, deletion of the

ortholog pair (SA0945, Rv2495) deletes PDH from the iSB619

network, but only deletes PDHb from the iNJ661 network. The

deletion is lethal only in the iSB619 model. We thus revised the

GPR associations for these complexes to give a consistent

representation between the two models (Figure 6C). These

changes also required changes to the stoichiometric matrices in

each model. (See Dataset S2 for details.)

We applied CONGA again after this initial reconciliation, and

identified 71 gene deletion sets lethal only in the iSB619 model

and 84 gene deletion sets lethal only in the iNJ661 model (Table 4).

Of these, a total of 99 gene deletion sets (64%) were still due to

genetic or orthology differences. Nevertheless, CONGA identified

18 gene deletion sets arising from metabolic differences which

were lethal only in the iSB619 model, and 38 such gene deletion

sets lethal only in the iNJ661 model. As with the cyanobacteria, in

some instances multiple gene deletion sets mapped to the same

reaction deletion set (Table 4). Of these, we examined only those

gene deletion sets arising from metabolic differences, and

identified 17 unique reaction deletion sets lethal only in the

iSB619 model and 28 unique reaction deletion sets lethal only in

the iNJ661 model.

These 45 unique reaction deletion sets served as the starting set

of potential drug targets. We employed a multi-step process to

reduce these reaction deletion sets to a set of candidate antibiotic

targets. First, because genes may be associated with more than one

reaction, we eliminated from each unique reaction deletion set any

reactions that were nonessential to the set. For example, CONGA

identified the deletion of SA1487 as lethal in S. aureus, leading to

the reaction deletion set DHFS and THFGLUS. However, the

deletion of THFGLUS is not lethal, so THFGLUS was removed

from the reaction deletion set, giving the reduced reaction deletion

set DHFS. We then examined the reduced reaction deletion sets

and eliminated those sets where more than one reaction deletion

was required to give a lethal prediction. Such reaction deletion sets

are likely to be poor candidates for potential drug targets, because

they may require development of a multiple-drug treatment

strategy. For example, CONGA identified the reaction deletion set

RNDR1, RNDR4 as being lethal in M. tuberculosis, with both

reaction deletions necessary to give a lethal prediction. This set

was subsequently eliminated from the set of candidate antibiotic

targets. Finally, we eliminated those reactions included in the

Recon 1 genome-scale metabolic model of human metabolism

[40], as drugs targeting these reactions may cause adverse side-

effects in humans. This procedure yielded 10 reactions as

candidate antibiotic targets in S. aureus and 37 reactions as

candidate antibiotic targets in M. tuberculosis (Table 5).

Table 2. Number of lethal gene deletion sets for the cyanobacterial models iSyp611 and iCce806. Numbers in parentheses
correspond to unique reaction deletion sets.

i Syp611 i Cce804 Interpretation Example

Genetic 20 (12) 22 (9) A gene-protein-reaction (GPR) relationship differs between
models.

The iSyp611 model has a unique
isozyme for phosphoglucomutase.

Orthology 4 (4) 4 (4) Genes encoding enzymes with identical functions cannot be
assigned as orthologs.

Both organisms have annotations for
dihydroorotase, but the genes are not
matched as orthologs due to
sequence dissimilarity.

Metabolic 4 (2) 10 (5) One organism has an additional reaction which enables
it to carry out a unique biochemical transformation.

The double deletion of glutamate
dehydrogenase and glutamate
synthase is lethal only in the iCce806
model.

Mixed 2 (2) 0 (0) More than one of the above types is implicated in the
predicted phenotype difference.

The Synechococcus gene for malic
enzyme (NADP-catalyzed) is predicted
to be an ortholog to the Cyanothece
gene for malic enzyme (NAD-
catalyzed) (orthology difference). The
iCce806 has both NAD- and NADP-
catalyzed versions of malic enzyme
(metabolic difference).

Total 30 (20) 36 (18)

Functional network differences were classified into one of four types based on their biological interpretation. In many cases, different gene deletion sets led to the same
reaction deletion set. The number of unique reaction deletion sets is given in parentheses.
doi:10.1371/journal.pone.0034670.t002
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Many of the candidate antibiotic targets are already targeted by

existing antibiotics (Table 5), demonstrating that our approach can

correctly identify candidate metabolic functions for drug targeting.

Most of the reactions for which antimicrobials exist are involved in

cell wall and cell membrane synthesis. While both organisms

require these biosynthetic capabilities, their cell walls and

membranes are structurally different, and so different proteins

and reactions are required. These differences are reflected in the

standard antimicrobial treatments for these two pathogens. For

example, vancomycin binds to the D-alanine terminus of

peptidoglycan and prevents the incorporation of teichoic acids

into the matrix [41]. Mycobacteria, such as M. tuberculosis, have

structurally distinct cell walls, for which isoniazid, ethambutol, and

pyrazinamide are required treatments [42–44]. We were also able

to find reports of small molecule inhibitors of fatty acid synthesis in

both S. aureus [45,46] and M. tuberculosis [47].

Table 3. Explanation of metabolic differences between the cyanobacterial models iSyp611 (Synechococcus) and iCce806
(Cyanothece).

Reaction Deletion Set Lethal In Explanation of Metabolic Difference

PDH iSyp611 Acetyl-CoA synthase (ACS), pyruvate dehydrogenase
(PDH), and phosphotransacetylase (PTA) are responsible
for acetyl-CoA synthesis. The iSyp611 model requires
PDH to supplement the activity of ACS, while the
iCce806 model requires PTA. Thus, the deletion of PDH is
lethal only in the iSyp611 model.

MDH and ME2 iSyp611 Fumarate, produced as a byproduct of arginine
biosynthesis, is converted to malate and then to
oxaloacetate (by malate dehydrogenase, MDH). In the
absence of MDH, malic enzyme (ME) can instead convert
malate to pyruvate. The iSyp611 model contains NADP-
catalyzed malic enzyme (ME2), while the iCce806 model
contains both NADP- (ME2) and NAD-catalyzed (ME1)
malic enzyme. Thus, the deletion of MDH and ME2 is
lethal only in the iSyp611 model.

ASNS1 iCce806 This reaction synthesizes asparagine. The iSyp611 model
does not contain this reaction, because Synechococcus
instead aminates aspartyl-tRNA to asparaginyl-tRNA prior
to protein synthesis.

PQPCOR iCce806 Cyanothece is unique among the two cyanobacteria in
using plastocyanin during photosynthesis. Hence, the
iCce806 model contains the reaction PQPCOR, while the
iSyp611 model does not.

PTA iCce806 Acetyl-CoA synthase (ACS), pyruvate dehydrogenase
(PDH), and phosphotransacetylase (PTA) are responsible
for acetyl-CoA synthesis. The iCce806 model requires
PTA to supplement the activity of ACS, while the iSyp611
model requires PDH. Thus, the deletion of PTA is lethal
only in the iCce806 model.

GLUD and GLUS iCce806 GLUD (glutamate dehydrogenase) and GLUS (glutamate
synthase) synthesize glutamate from alpha-
ketoglutarate. This step incorporates ammonia into the
metabolism and begins amino acid synthesis. The
iSyp611 model has an extra reaction, valine-pyruvate
aminotransferase (VPAMT), which allows it to recover
from this deletion. Under the deletion scenario,
ammonia gets combined with pyruvate to make alanine.
Alanine is converted to valine which in turn is convered
to glutamate.

MDH and PYK iCce806 Pyruvate synthesis is necessary to meet biomass
demands. Pyruvate is normally synthesized from
phosphoenolpyruvate via pyruvate kinase (PYK). In the
absence of PYK, pyruvate can be synthesized from
malate. Malate is produced as a result of biomass
demands for arginine and tetrahydrofolate, but in
insufficient levels to meet demand. Malate
dehydrogenase (MDH) can make up for the demand by
converting oxaloacetate to malate. As a consequence,
deletion of both genes is lethal. The iSyp611 model has
the unique reaction aspartase (ASPT), which it can use
instead of MDH to convert oxaloacetate to malate, by
way of aspartate. As a consequence, MDH function is no
longer required in the absence of PYK, and the double
deletion is nonlethal.

We identified two unique reaction deletion sets lethal only in the iSyp611 model, and five unique reaction deletion sets lethal only in the iCce806 model. From these, we
identified seven metabolic differences between the two models.
doi:10.1371/journal.pone.0034670.t003
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We also identified a variety of other metabolic functions which

antibiotics do not yet target. For example, the iSB619 model

requires tetrahydrofuran (THF) and NAD to produce biomass.

Unfortunately, many staphylococci are already resistant to

inhibitors of THF synthesis [48], while inhibitors of the

nicotinamidases S. aureus uses for NAD synthesis have only

recently been identified [49]. However, M. tuberculosis can grow in

media lacking THF and NAD [28], suggesting the lack of THF

and NAD in the iNJ661 biomass equation may reflect a model

development choice, rather than a biological difference. We

identified M. tuberculosis’ unique use of siderophores for iron

transport, for which biosynthesis inhibitors have been identified

[50]. We also identified mycobacteria’s use of unique glycolipids,

but we were unable to identify inhibitors that have been reported

in the literature, making glycolipid synthesis a potential new target

for new M. tuberculosis-specific antibiotics. Of the remaining

organism-specific metabolic functions, two candidate antibiotic

targets (nicotinamidase in S. aureus and siderophore synthesis in M.

tuberculosis) had not been identified by previous computational

studies of these models [28,29].

By comparing pathogens against each other, we are able to

identify essential functions unique to a particular pathogen. This

enables the identification of narrow-spectrum antibiotics tailored

to individual pathogens. It is believed that the use of such

antibiotics can overcome multi-drug resistance through novel

mechanisms of action [32,33] and slow the rate of resistance

transfer across species [31,34]. We believe our framework provides

a rapid means of identifying unique metabolic functions as possible

targets for new antimicrobials, and will provide a useful tool for

combating the rapid rise of multi-drug resistant bacteria.

Assessment of Ortholog Calling Methods
Before CONGA can be applied to a pair of metabolic models, a

gene-level alignment must be performed. We perform this

alignment by identifying the orthologous genes between the two

models, and we force CONGA to select ortholog pairs as a single

unit. Prior to applying CONGA to the pathogen models, we

examined three methods for identifying orthologous genes

(Figure 7). The first method utilized a BLAST search [51] to

identify those pairs of M. tuberculosis and S. aureus genes which were

mutual best-BLAST hits of each other, called bidirectional best-

BLAST hits. An E-value of 10{5 was employed as a cutoff. The

second method used OrthoMCL [52] to identify pairs of genes

belonging to the same ortholog group (a cross-taxa group of genes

in which all genes are bidirectional best-BLAST hits of one

another). The last method utilized the SEED [13] to identify genes

belonging to the same FIGfam (sets of proteins homologous along

their entire length).

We first identified ortholog pairs where both the M. tuberculosis

and S. aureus genes were included in the iNJ661 and iSB619

models, respectively. We found that the number and content of

ortholog calls depended on the method used (Figure 7A). The

bidirectional best-BLAST search identified a total of 287 of a

possible 619 genes. SEED identified the fewest, with only 229

orthologs. Of these, 175 orthologs were common to all methods,

with smaller numbers of orthologs being shared by pairs of

methods.

We also analyzed the three methods for false positive ortholog

calls (Figure 7B). A false positive ortholog call is one in which two

orthologs are associated with different reactions in their respective

models. We found that all three methods identified 7 ortholog

pairs for which model annotations were distinctly different

(Table 6). SEED identified the fewest additional false positives,

giving 14 total. Full details of orthologs assigned by each method

Figure 5. Identified metabolic differences in cyanobacteria. (A)
Top: Pathways for synthesis of glutamate (glu) from alpha-ketoglutarate
(akg) used in iCce806. Bottom: Pathway predicted by the iSyp611 model
when glutamate dehydrogenase (GLUD) and glutamate synthase (GLUS)
are deleted. Valine aminotransferase (VPAMT) enables the synthesis of
glutamate from pyruvate (pyr). (B) Top: Pathway for conversion of
phosphoenolpyruvate (pep) to pyruvate when pyruvate kinase (PYK) is
deleted from iCce806. Bottom: Pathway predicted by the iSyp611 model
when malate dehydrogenase (MDH) is also deleted. Aspartase (ASPT)
allows malate (mal) to be synthesized entirely from fumarate (fum), rather
than from fumarate and oxaloacetate (oaa). (A and B) Red arrows
indicate flux in the iCce806 model. Blue arrows represent flux in the
iSyp611 model under the indicated knockout condition. Black arrows
indicate inactive reactions and reaction deletions are indicated by black
‘X’s. Gray arrows (top panels) indicate reactions not present in the
iCce806 model. Arrow thickness corresponds to relative flux levels.
Reaction and metabolite abbreviations are identical in the iSyp611 and
iCce806 models and are given in Dataset S2.
doi:10.1371/journal.pone.0034670.g005
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can be found in Dataset S3. We then analyzed the effect of each

ortholog calling method on the gene deletion sets identified by

CONGA. We found that using orthologs identified by bidirec-

tional best-BLAST and OrthoMCL yielded numerous gene

deletion sets containing false positive ortholog pairs. In contrast,

the number of gene deletion sets containing true ortholog pairs

was relatively insensitive to the method used to call orthologs. We

thus chose to perform all simulations using SEED orthologs.

Using the orthologs identified by SEED, we then assessed the

metabolic overlap between the two models (Figure 7C). In

addition to the 224 orthologs present in both models, the

iSB619 model contains 33 genes with orthologs that are not

included in the iNJ661 model, and the iNJ661 model contains 13

genes with orthologs that are not in the iSB619 model. These 46

genes can likely be used to expand the scope of each model.

Additionally, we identified 253 orthologs included in neither

model. Using SEED, we were able to classify these 253 orthologs

into subsystems and found that 45% were involved in protein,

DNA, or RNA metabolism, while 15% were involved in non-

metabolic functions such as cell division, regulation, and the stress

response. An additional 22% were of unknown or uncertain

function. The remaining 18% were spread across a variety of

metabolic subsystems, with 35 of the 253 (8%) orthologs being

involved in vitamin and cofactor synthesis. Many of these 35 genes

are involved in the assembly of metal clusters and would not

generally be included in a metabolic model. Finally, we observed

that metabolic genes are enriched for members of an ortholog

pair: 37% (229 of 619) of genes in the iSB619 model had orthologs

Figure 6. Example adjustment of pathogen models following preliminary analysis. (A) Original model annotations for the glycine cleavage
(GCC) and pyruvate dehydrogenase (PDH) complexes. Green boxes represent reactions and gray boxes represent genes. S. aureus loci are in blue text
and M. tuberculosis loci are in red text. Dashed lines indicate orthologs and solid lines connect genes to reactions. SA1365 and SA1366 are
orthologous to the N-terminus and C-terminus of Rv1832, respectively, and together are orthologous to the entire Rv1832 sequence. A ‘+’ sign
between genes indicates a complex; a ‘/’ sign indicates isozymes. (B) The two models were inconsistent in their representation of these two enzyme
complexes. This table indicates the presence or absence of individual (a, b, c) and lumped (GCC, PDH) reactions before and after model adjustments.
The shaded gray boxes indicate the presence of a particular function, and the small black text indicates that model’s specific reaction. (C) Revised
model annotations for the GCC and PDH complexes. The color scheme is the same as in A.
doi:10.1371/journal.pone.0034670.g006
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in the iNJ661 model, while only 21% (528 of 2515) of genes in the

S. aureus genome had orthologs in the M. tuberculosis genome

(x2 P{valuev0:001).

Discussion

In this work, we developed a bilevel mixed-integer program-

ming approach to identify the functional differences between

networks by comparing network reconstructions aligned at the

gene level. The constraint-based method first identifies a set of

orthologous genes based on genome sequence, and then identifies

conditions under which differences in gene content give rise to

differences in metabolic capabilities. Our gene-centric approach

allows for the rapid identification of functional differences between

networks which can be traced back to the presence or absence of

particular genes or reactions (structural differences) in one network or

the other. We demonstrate that our algorithm can be used to

identify genetic, orthology, and metabolic differences between

reaction networks with applications in metabolic engineering,

model development, and antibiotic discovery.

Increasingly, new genome-scale reconstructions are being

created by identifying bidirectional best-BLAST hits against

genomes for which models have already been constructed. GPR

and reaction annotation information can then be copied into the

Table 4. Number of lethal gene deletion sets for the human pathogen models iSB619 and iNJ661. Numbers in parentheses
correspond to unique reaction deletion sets.

iSB619 iNJ661 Interpretation Example

Genetic 3 (3) 13 (8) A gene-protein-reaction (GPR) relationship differs between models. Only the iSB619 model has a gene associated with
sulfur reductase.

Orthology 17 (17) 14 (14) Genes encoding enzymes with identical functions can- not
be assigned as orthologs.

Both organisms have putative annotations for
chorismate mutase, which are not matched as
orthologs due to sequence dissimilarity.

Metabolic 18 (17) 38 (28) One organism has an additional reaction which enables it to
carry out a unique biochemical transformation.

The deletion of homoserine kinase is lethal only in
the iSB619 model.

Mixed 33 (26) 19 (11) More than one of the above types is implicated in the
predicted phenotype difference.

Only the iNJ661 model has a gene associated with
phosphoserine transaminase (genetic difference).
This reaction deletion is nonlethal in the iSB619
model because it can utilize alternative pathways
to perform this function (metabolic difference).

Total 71 (63) 84 (61)

Functional network differences were classified into one of four types based on their biological interpretation. In many cases, different gene deletion sets led to the same
reaction deletion set. The number of unique reaction deletion sets is given in parentheses.
doi:10.1371/journal.pone.0034670.t004

Table 5. Potential drug targets in the human pathogens S. aureus and M. tuberculosis.

Organism Reaction Deletion Set Subsystem Known Drugs

S. aureus ALATA_D Cell wall synthesis Vancomycin [41]

S. aureus DHFS Cofactor synthesis Trimethoprim and Sulfonamides [48]

S. aureus KAS11 or KAS12 or KAS13 Cell membrane synthesis Small molecules [45,46]

S. aureus NNAM Cofactor synthesis Small molecules [49]

S. aureus TECA1S or TECA2S or TECA3S or TECA4S Cell wall synthesis Vancomycin [41]

M. tuberculosis CHRPL Cell membrane synthesis None

M. tuberculosis FACOAL80 or FACOAL160 or FACOAL200 or
FACOALPHDCA

Cell wall synthesis Small molecules [17]

M. tuberculosis FAS80_L or FAS100 or FAS120 or FAS140 or
FAS160 or FAS180 or FAS200 or FAS240_L or
FAS260 or FASPHDCA

Cell wall synthesis Pyrazinamide [42]

M. tuberculosis FASm220 or FASm240 or FASm260 or
FASm280 or FASm300 or FASm320 or
FASm340 or FASm2201 or FASm2202 or
FASm2401 or FASm2402 or FASm2601 or
FASm2602 or FASm2801 or FASm2802

Cell wall synthesis Isoniazid [43,44]

M. tuberculosis MCBTS Siderophore synthesis Small molecules [50]

M. tuberculosis PREPPACPH Cell membrane synthesis None

M. tuberculosis PPTGS or PPTGS_TB1 or PPTGS_TB1 or UDCPDP Cell wall synthesis Ethambutol [43,44]

We identified five unique reaction deletion sets lethal only in the iSB619 model, and seven unique reaction deletion sets lethal only in the iNJ661 model. From these, we
identified 10 candidate antibiotic targets in S. aureus and 37 candidate antibiotic targets in M. tuberculosis. Antibiotics targeting some of these reactions have already
been developed.
doi:10.1371/journal.pone.0034670.t005
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new model (see for example [53–57]). Our results point to two

possible challenges with this approach. First, a bidirectional best-

BLAST search might not identify all orthologs: the iSyp611 model

was constructed from a draft iCce806 model containing 591 genes.

Orthologs for 537 of these genes were copied to the iSyp611

model, representing a 9% gene loss. Of the 54 Cyanothece genes for

which a bidirectional best-BLAST search did not identify

orthologs in Synechococcus, manual curation identified orthologs

for 26 of them. While these orthologs were not bidirectional best-

BLAST hits, we decided the genes had sufficiently high sequence

similarity and sufficiently similar annotations to be considered

orthologs. (Annotations were collected from NCBI, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [12], and SEED

[13].) This suggests that construction of new models using only

bidirectional best-BLAST hits may exclude significant numbers of

genes from new reconstructions. Second, using bidirectional best-

BLAST hits to identify orthologs may also generate large numbers

of false positive ortholog pairs. Our bidirectional best-BLAST

comparison of the manually curated S. aureus and M. tuberculosis

models yielded 41 false positives (14% of the 287 orthologs, where

a false positive indicates orthologs were associated with different

metabolic reactions). If one model had been created from the

other, these genes would have incorrect reactions associated with

them. Manual assessment of the cyanobacterial bidirectional best-

BLAST hits yielded 35 (of 537, or 7%) false positive orthologs in

the draft iSyp611 model, which were subsequently removed from

the final reconstruction. Thus, false positive ortholog calls

represent a significant problem even for closely-related organisms.

Our approach represents a significant advance in comparing

genome-scale network reconstructions. CONGA is a single

instance of a broader approach, in which two different networks

are compared and analyzed for functional differences. This

represents a significant advance over existing model-comparison

approaches [7–9], which typically do not identify the effect of

network differences on achievable functional states. However,

CONGA is not a replacement for more exhaustive approaches

such as jamborees or network reconciliation: CONGA will not

lead to the identification of all structural differences between

models, just those causing different functional states. For example,

a reaction-level alignment of the iSyp611 and iCce806 models

identified 172 reactions unique to the iCce806 model and 57

reactions unique to the iSyp611 model. Of these 229 reaction

differences, 126 cannot be utilized under the photoautotrophic

conditions studied here. Of the remaning 113 unique reactions,

only 15 were identified by CONGA as leading to differences in

gene essentiality in the two cyanobacterial models under carbon-

limited photoautotrophic conditions (when all genes are consid-

ered for deletion). Additional reaction differences could be picked

up by CONGA if other environments (e.g., dark fermentation),

growth conditions (e.g., suboptimal instead of lethal gene

deletions), and objective functions (e.g, chemical production rates)

Figure 7. Comparison of ortholog identification methods for S.
aureus and M. tuberculosis. (A) Number of model genes identified as
orthologs by each of the three methods. Only the orthologs present in
both models are included in the diagram. Overlapping areas indicate
orthologs identified by one or more methods. (B) Number of false
positive orthology assignments made by each of the three methods. A
false positive orthology assignment indicates the two genes are
associated with different reactions in their respective models.
Overlapping areas indicate false positives identified by one or more
methods. (C) Overlap of gene content between the two pathogens,
based on SEED FIGfams. Smaller circles represent genetic content of the
two models, with the larger circles representing the entire genome.
Numbers within overlapping areas indicate numbers of orthologs.
doi:10.1371/journal.pone.0034670.g007

Table 6. False positive ortholog calls in the iSB619 (S. aureus) and iNJ661 (M. tuberculosis) human pathogen models.

S. aureus M. tuberculosis

Locus Reaction Locus Reaction

SA0486 Glutamyl-tRNA synthetase Rv2992 Alanyl-tRNA synthetase

SA0760 Glycine cleavage complex, subunit B Rv1826 Glycine cleavage complex, entire complex

SA1059 Methionyl-tRNA synthetase Rv1406 Methionyl-tRNA formyltransferase

SA1131 2-oxoglutarate synthase Rv2455 Ferredoxin oxidoreductase

SA1132 2-oxoglutarate synthase Rv2454 Ferredoxin oxidoreductase

SA1519 L-alanine, glycine, and L-serine transport via ABC system Rv1704 D-alanine, D-serine, glycine, and L-serine transport via
proton symport

SA2467 Imidazole-glycerol-3-phosphate synthase Rv1602 Glutamine phosphoribosyldiphosphate
amidotransferase

All three methods for assigning ortholog pairs identified seven pairs of orthologs which carried out different functions in the iSB619 and iNJ661 models.
doi:10.1371/journal.pone.0034670.t006
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were considered, and if orphan reactions (those without a GPR

association) could be deleted as well (since 20 of the 229 unique

reactions did not have GPR associations). Despite the inability to

identify all structural differences, CONGA can identify those gene

(and thus reaction) differences which give rise to differences in

predicted growth and production rates, as well as other

phenotypes. As a result, we believe that it will be a useful tool to

complement existing model reconciliation and comparison efforts,

such as jamborees.

While this work identified gene deletions pointing to functional

metabolic differences, other network perturbations may be equally

effective indicators of network differences. Robust algorithms for

identifying other types of perturbations have also been developed

[35,58–63] and can be easily incorporated into CONGA.

Furthermore, gene and reaction differences may not be the only

source of differences between models, differences in the represen-

tation (abstraction) of the underlying biology may also play a role.

For example, the iAF1260 model includes a periplasmic space and

an explicit (instead of lumped) representation of fatty-acid

biosynthesis. Many of the reaction differences between the

iJR904 and iAF1260 models arise due to these differences in

model abstraction. In such a scenario, a reaction-alignment

approach may be challenging, whereas using CONGA we can

identify how these abstraction differences affect model predictions.

CONGA can also be used to examine abstractions at the level of

constraints, by comparing identical models with otherwise

different constraints based on gene expression, regulation, or

thermodynamics. Finally, we envision our approach being used to

examine cellular behavior under different environmental condi-

tions, or to compare evolved and un-evolved cellular phenotypes.

Ultimately, a comparative approach such as ours will enable rapid

evaluation of the influence of network and model differences on

predicted functional states.

Methods

Formulation of Bilevel Optimization Problem for
Identification of Gene Deletion Sets

The CONGA framework employs a bilevel optimization

problem to identify genetic perturbations which disproportionately

change flux through a selected reaction (e.g., growth or by-product

secretion) in one organism over another (Figure 1). The outer

problem is a mixed-integer linear program (MILP) which finds

gene deletions maximizing the flux difference between two

reactions in different models. The two inner problems (one for

each model) are flux-balance analysis (FBA) problems [64], linear

programs (LPs) which maximize growth subject to reaction

stoichiometry, thermodynamics, and enzyme capacities. We alter

the FBA problems using deletions given by the outer problem.

Gene-protein-reaction (GPR) constraints associate genes with

reactions and are used to enforce the gene deletions given by

the outer problem. These constraints are formulated using the

logical relationships developed previously [35]. CONGA can

select any genes for deletion, with the restriction that orthologous

genes present in both models be deleted simultaneously from both

models.

The FBA formulation for each model’s inner problem is shown

below:

max
P

j

cjvj ð1Þ

s:t:
P

j

Sijvj~0 Vi[I ð2Þ

ajƒvjƒbj Vj[J ð3Þ

vj~0 Vj[J Dyj~0 ð4Þ

Each reaction j in the set of reactions j has a flux given by vj .

The FBA objective is a linear combination of fluxes
P

j cjvj , where

c is a vector of weights. We choose to maximize for biomass alone,

in which case cj is a standard basis vector along biomass, and the

objective is written as vBM . Each reaction j consumes and produces

some metabolites i in the set of metabolites I, with stoichiometry

given by Sij . By conservation of mass, net production of each

metabolite across the entire network must be zero at steady-state

(equation 2). Each reaction is constrained to have flux within an

appropriate range as given by enzyme capacities and thermody-

namics (equation 3). For reactions deleted by the outer problem, a

binary variable (yj ) takes a zero value (yj~0), and the

corresponding flux vj is constrained to zero (equation 4).

On-off reaction states are given by the binary variable y and

determined by GPR constraints embedded in the outer problem:

yj~f (zĝg,wp̂p) VGPR(j,p̂p,ĝg)[J,P,G ð5Þ

Each gene g in the set of genes G, protein p in the set of proteins

P, and reaction j in the set of reactions J has a corresponding

binary variable z, w, and y, respectively, which determines the

gene, protein, or reaction’s on-off state. (See [35] for details.) Each

reaction j with a known GPR association can be carried out by a

subset of enzymes p̂p, and each enzyme is specified by the subset of

gene products ĝg. The outer problem selects one or more genes for

deletion (zg~0), and the GPR constraints GPR(j,p̂p,ĝg) implement

the necessary logical relationships to determine the set of deleted

reactions (yj~0).

To identify lethal gene deletion sets, the outer problem identifies

deletions such that the growth rate of one species (A) is maximized

with respect to the other (B). So long as growth is unconstrained,

an objective of the form

max vBMA
{vBMB

ð6Þ

will first identify gene deletions lethal only in species B. Finally,

additional constraints are added which impose a limit K on the

total number of gene deletions,

X

g

(1{zg)ƒK ð7Þ

and which ensure that all pairs of orthologous genes are deleted in

common:

zgA
~zgB

V(zgA
,zgB

)[O ð8Þ

The set of orthologs O contains all pairs of genes zgA
and zgB

found to be orthologous between Species A and Species B.
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The final formulation results from using equation (6) as the

outer objective, and accumulating equations (1)–(5), (7), and (8) as

constraints. Equations (1)–(5) and (7) must be imposed for each

species:

max vBMA
{vBMB

s:t: equations 1ð Þ to 4ð Þ V Species A and B

equation 5ð Þ V Species A and B

equation 7ð Þ V Species A and B

equation 8ð Þ

Reformulation to Single-Level Optimization Problem
To facilitate the solution process, we reformulated the bilevel

program as single-level MILP by replacing the inner maximiza-

tion problems with their optimality conditions, in accordance

with strong duality [65]. The strong duality theorem for a linear

program states that, at optimality, the values of the primal and

dual objectives are equal, and the primal and dual variables

satisfy the primal and dual constraints, respectively [65]. Thus,

each inner problem (equations (1) to (4)) can be replaced by

formulating its dual, equating the primal and dual objectives, and

accumulating the primal and dual constraints. This reformulation

was first proposed for the bilevel strain design problem

OptKnock [66] and has since been described for other bilevel

problems [35,60,67].

This reformulation requires a new variable for each constraint

of the inner problem. Each metabolite i must satisfy the mass

balance, for which we introduce the unconstrained dual variable

u1,i. Active reactions are further constrained to be within the range

ajƒvjƒbj , for which we introduce the positive dual variables u2,j

and u3,j , respectively. In many cases, a and b are assigned large,

arbitrary values. To reduce the size of the reformulation, we

eliminated the upper bound constraint (vƒb) and imposed the

lower bound constraint (aƒv) only on uptake fluxes and

irreversible reactions, collectively the set JLL. Finally, reactions

removed by gene knockouts are constrained to zero flux, for which

we introduce a free dual variable u4,j . This allows the dual of each

inner problem to be formulated as:

min {
P

j

aju3,j ð9Þ

s:t:
X

i

Si,ju1,i{u3,jzu4,j~cj Vj[J ð10Þ

u3,j~0 Vj=[JLL ð11Þ

u3,j~0 Vj[J Dyj~0 ð12Þ

u4,j~0 Vj[J Dyj~1 ð13Þ

u3,j§0 ð14Þ

Constraints (11) to (13) can be implemented using big-M

constraints [68] or using the GAMS/CPLEX indicator constraint

facility (the latter was used in this work).

The single-level formulation can then be constructed by using

equation (6) as the outer objective, equating the primal and dual

objectives (1) and (9) for each network, including constraints (2) to

(5), (7), and (10) to (14) for each network, and adding equation (8).

Equating the primal and dual objectives of the inner problem gives

X

j

cjvj~{
X

j

aju3,j ð15Þ

so that the final, single-level formulation can be expressed as:

max vBMA
{vBMB

s:t: equations 2ð Þ{ 5ð Þ, 7ð Þ, 10ð Þ{ 15ð Þ
V Species A and B

equation 8ð Þ

We also implemented integer cut constraints [69] to allow the

generation of multiple solutions.

Modifications for Identification of Model-Dominant
Strategies

To identify model-dominant chemical production strategies in

the E. coli models, we sought gene deletions maximizing chemical

production in one model with respect to the other. For these

simulations, a few modifications from the previous formulation are

required. First, the outer objective, equation (6), was altered to

reflect chemical production flux. The vector c was changed to a

standard basis vector along the production flux of interest. We

denote this objective as vP.

max vPA
{vPB

ð16Þ

Some knockout conditions result in a nonunique phenotype for a

particular chemical, in which multiple chemical production values

can occur at the maximum growth rate. Under such conditions,

CONGA can artificially inflate flux differences between models,

by choosing a large production rate in one model and a small

production rate in the second. We thus imposed a tilted objective

function on each inner problem, which maximizes biomass while

imposing a small penalty (c) on chemical production; this causes

the inner problem to return the value of vP representing the lowest

expected flux through the reaction [70].

max vBM{cvP ð17Þ

Because flux values in general are not necessarily unique, this

tilted objective is necessary whenever the fluxes whose difference is

being maximzed (e.g., chemical production rates) differ from the

fluxes maximized by each model (e..g, biomass). We found this

formulation is sensitive to the value chosen for c. If c is too small,

the tilt does not correctly return the value of vP representing the

lower bound through the reaction, and if c is too large, the tilt

returns solutions with a slightly suboptimal growth rate. For our

comparison of the E. coli models, we found that setting c~10{4

avoided both of these problems. However, the tradeoff between

growth rate and chemical production flux varies from model to

CONGA: An Automated Tool for Network Comparison

PLoS ONE | www.plosone.org 15 April 2012 | Volume 7 | Issue 4 | e34670



model and product to product, suggesting our value of c~10{4

may not be generally applicable. Modifying the inner objective in

this way requires modifying the weight vector c in equation 15 to

include the value cj~{c where j~P. We also imposed this tilted

objective function when using OptORF to identify the top deletion

strategies for each model and product.

We also constrained the dual variables associated with the

reaction deletion constraint to be between [21, 1] to improve

solver performance [35,71].

{1ƒu4,jƒ1 ð18Þ

Finally, we constrained both models to have nonzero biomass.

The final, single-level formulation can be expressed as:

max vPA
{vPB

s:t: equations 2ð Þ{ 5ð Þ, 7ð Þ, 10ð Þ{ 15ð Þ, 18ð Þ
V Species A and B

vBMw0

V Species A and B

equation 8ð Þ

A sample implementation of CONGA for the network in

Figure 2 can be found in Text S1.

Finally, we note that CONGA can be rewritten to consider a

reaction alignment and reaction deletions, by redefining the set O

(equation (8)) and using reaction instead of gene deletions

(equation (7)).

Reducing the Number of Variables
In order to reduce simulation times, we eliminated essential and

blocked genes from consideration as possible deletions by

CONGA. For each of the six models, we performed single-gene

deletions with all possible nutrients provided to the model in order

to identify essential genes (those required for cellular growth).

Genes whose orthologs were essential in both models as well as

essential genes without orthologs were then excluded from

consideration by CONGA. Flux-variability analysis (FVA) [72]

was also used, again with all possible nutrients provided, to identify

blocked reactions (those incapable of carrying flux), and genes

encoding only blocked reactions were also excluded from

consideration (i.e., if a gene encoded both a blocked and a

nonblocked reaction, CONGA was allowed to select that gene for

deletion).

For our comparison of the E. coli models, we performed

additional steps in order to improve the run-time performance of

CONGA. First, we identified essential and blocked genes (as

described above) on glucose media under anaerobic conditions

(i.e., the simulation conditions). We also removed from consider-

ation all genes associated with membrane transporters. These two

steps forced CONGA to consider only metabolic genes that can be

active under the simulation conditions. Finally, we developed a

procedure to reduce the number of genes needed to determine the

on-off state of each reaction. For a set of isozymes catalying the

same set of reactions, all but one isozyme were fixed to the off

state, such that deleting the remaining isozyme forced the set of

reactions to the off state. Likewise, for a set of subunits which are

all components of the same protein, all but one subunit were fixed

to the on state, such that deleting the remaining subunit forced the

protein to the off state. These sets of isozymes and subunits were

identified using a mixed-integer programming (MIP) approach

(Text S2). Finally, as in CONGA, orthologs present in both

models were forced to have the same state. This ensures an

internally consistent selection of isozymes and subunits (e.g., if one

member of an ortholog pair is fixed to the on (or off) state, the

other must be also). The complete set of isozyme and subunit sets

for the two E. coli models can be found in Dataset S3. The same

genes that were fixed to be on or off in CONGA were also fixed to

be on or off in the OptORF simulations used to identify the top

deletion strategies for each model and product.

Identification of Orthologs
A gene-based alignment of two networks requires a method for

identifying orthologous genes between two genomes. Since the E.

coli simulations studied two models of the same organism, we were

able to immediately match gene loci. For the cyanobacterial

simulations, we used the set of bidirectional best-BLAST hits

identified during the first step of the iSyp611 reconstruction

process. Genes added during the manual reconstruction process

were checked against the final iCce806 model, and additional

orthologs were identified. For the pathogen studies, we used SEED

to identify orthologs, as this method identified the smallest number

of false positive ortholog pairs (Table 6 and Discussion). A full

summary of ortholog pairs used in each simulation can be found in

Dataset S3.

Construction of the iSyp611 Metabolic Network
We have formulated a genome-scale network reconstruction of

the photosynthetic cyanobacterium Synechococcus sp. PCC 7002

consisting of 611 genes, 533 proteins, 552 reactions, and 542

metabolites (Table 7). A total of 517 reactions (94%) are associated

with genes and proteins, represented by gene-protein-reaction

(GPR) associations.

The model was constructed from a draft version of the iCce806

reconstruction of Cyanothece sp. ATCC 51142 via a gene-level

comparison. The Synechococcus sp. PCC 7002 genome sequence was

downloaded from the GenBank database at the National Center

for Biotechnology Information (NCBI) website [73]. A bidirec-

tional best-BLAST search was used to identify potential orthologs

between the two genomes. The validity of the associations was

manually assessed using annotation information available from

NCBI, KEGG, [12], and SEED [13]. For those genes deemed

highly probable orthologs, protein and reaction associations were

copied from the iCce806 model to create a draft reconstruction

using SimPheny (Genomatica Inc., San Diego, CA).

After assembling the draft network, missing functions were

added to ensure production of all biomass components. Candidate

reactions were selected based on pathways in other cyanobacterial

strains. Potential genes for these reactions were located by best-hit

BLAST analysis against other cyanobacterial genomes as well as

annotation information obtained from NCBI, KEGG, and SEED.

In cases where genomic information was unavailable, reactions

were selected based on their frequency of occurrence in related

strains. This draft model contained 542 genes, of which 497 were

orthologous to genes in Cyanothece (Table 7).

We also applied CONGA to our draft reconstruction, and use

the results to add new subunits and isozymes to existing reactions.

In all, nearly 70 genes were added to the reconstruction. A

complete list of reactions and GPR associations in the iSyp611

model is included in the Supporting Information, in Microsoft

Excel and SBML formats (Datasets S1 and S2).

Wherever possible, the reactions used to represent RNA, DNA,

protein, fatty acid, and lipid synthesis were updated to reflect the

particulars of Synechococcus sp. PCC 7002. DNA and RNA
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composition was based on genomic GC content, and protein

composition was obtained from amino acid counts of the

proteome. Fatty acid composition was taken from Synechococcus

sp. PCC 7002 [74,75], and lipid composition was taken from

Synechococcus sp. PCC 7942 [76]. The biomass equation was

formulated using weight fractions of macromolecules (DNA, RNA,

protein, lipid, fatty acids, glycogen) measured from Synechosystis sp.

PCC 6803 in batch culture [77], and the composition of the

soluble pool was copied from the iJR904 model [15].

The final metabolic reconstruction was used to formulate a

constraint-based model of Synechococcus metabolism. Experimen-

tally, Synechococcus is able to grow phototrophically using light,

carbon dioxide, and ammonium. Our constraint-based model was

capable of predicting growth under photoautotrophic and glycerol

heterotrophic conditions via FBA.

Models and Simulation Conditions
The CONGA analysis of the two published models of E. coli,

iJR904 [15] and iAF1260 [16] were performed under anaerobic,

glucose-limited conditions (uptake rate 18.5 mmol/gDW/hr). All

reported chemical production levels were normalized to the

theoretical maximum (2 mol ethanol/mol glucose, 2 mol lactate/

mol glucose, and 1.71 mol succinate/mol glucose).

For the iSyp611 and iCce806 comparisons, several reactions in

the iSyp611 model were replaced with their iCce806 equivalents,

including biomass, ATP synthase, DNA, RNA, lipid, and protein

synthesis, and cytochrome oxidases unique to Cyanothece (Dataset

S2). Simulations were performed under carbon-limited photoau-

totrophic conditions, with maximum uptake fluxes for photons for

both photosystems, carbon dioxide, and ammonium constrained

to 100 mmol photons/gDW/hr, 20 mmol/gDW/hr, and

10 mmol/gDW/hr, respectively. Unconstrained uptake of inor-

ganic phosphate, oxygen, magnesium(II), protons, sulfate, and

water was also allowed. Growth-associated and non-growth

associated ATP maintenance requirements were set to zero.

For the iNJ661 and iSB619 models, simulations were performed

on nine distinct minimal media with different carbon and nitrogen

sources (Dataset S2). The set of gene deletion sets common to all

conditions was then analyzed for potential drug targets.

All simulations were performed using CPLEX 12 (IBM,

Armonk, NY) accessed via the General Algebraic Modeling

System (GAMS, GAMS Development Corporation, Washington,

DC). Simulations were performed on a Red Hat Enterprise Linux

server with 2.66 GHz Intel Xeon processors and 8 GB of RAM.

CONGA can identify a lethal gene deletion set containing just one

gene in less than a second. Lethal gene deletion sets containing two

or three genes took on average 3 minutes to identify. Identifying

model-dominant chemical production strategies is more time-

consuming, with a model-dominant strategy containing two genes

requiring on average 2 minutes. Model-dominant strategies

containing three, four, or five genes took an average of 15 minutes,

75 minutes, and 5 hours to identify, respectively. A full summary

of differences identified by each simulation can be found in

Dataset S3.

Supporting Information

Figure S1 Model-dominant production strategies for
lactate. (A) Deletion strategies for lactate production. Each bar

represents the absolute difference in predicted lactate yields

between the iJR904 and iAF1260 models as a fraction of the

maximum theoretical yield (2 lactate/glucose). Left side: Strategies

for which the iAF1260 model predicts higher production. Right

side: Strategies for which the iJR904 model predicts higher

production. Corresponding gene deletion strategies involving 3, 4,

or 5 genes are given below the figure. Numbers above each bar

indicate the fraction of the theoretical maximum yield obtained by

each model, with the dominant model listed first. Some strategies

have a nonunique lactate production phenotype, in which multiple

lactate production values can occur at the maximum growth rate.

For these scenarios, the production difference calculated by

CONGA is from the lowest expected level of lactate production

in each model, and such strategies are indicated in green.

Strategies for which the yield of the dominant model meets or

exceeds the yield for the third-best OptORF strategy for that

model are known as OptORF strategies, and such strategies are

indicated in red. OptORF strategies which also have a nonunique

production phenotype are indicated in orange. (B) The same gene

deletion strategies after reconciliation of the iJR904 and iAF1260

networks with respect to metabolic differences.

(PDF)

Figure S2 Model-dominant production strategies for
succinate. (A) Deletion strategies for succinate production. Each

bar represents the absolute difference in predicted succinate yields

between the iJR904 and iAF1260 models as a fraction of the

maximum theoretical yield (1.71 succinate/glucose). Left side:

Strategies for which the iAF1260 model predicts higher produc-

tion. Right side: Strategies for which the iJR904 model predicts

higher production. Corresponding gene deletion strategies involv-

ing 2, 3, or 4 genes are given below the figure. Genes enclosed in

parentheses indicate a deletion unique to the iAF1260 model.

Numbers above each bar indicate the fraction of the theoretical

maximum yield obtained by each model. Strategies for which the

yield of the dominant model meets or exceeds the yield for the

third-best OptORF strategy for that model are known as OptORF

strategies, and such strategies are indicated in red. (B) The same

gene deletion strategies after reconciliation of the iJR904 and

iAF1260 networks with respect to metabolic differences.

(PDF)

Figure S3 Differences in metabolic pathways in E. coli
GENREs. The text above each map indicates the pathway

responsible for the phenotypic difference, the phenotype with

which the strategy is associated, and the gene deletion for which

the phenotype occurs. (A–C) Schematic views of the flux

distributions associated with the indicated gene deletion set.

Metabolites are represented in plain text. Metabolites are

represented in plain text. Metabolic transformations are indicated

via arrows, with thicker arrows indicating higher flux. In some

instances, multiple transformations are combined into a single

dashed arrow. Fluxes active in the iAF1260 network are in red,

Table 7. Comparison of iSyp611 (Synechococcus) and iCce806
(Cyanothece) cyanobacterial models.

Draft i Syp611
Model

i Syp611
Model

iCce806
Model

Genes (Orthologs) 542 (497) 611 (529) 806 (529)

Proteins 461 533 690

Reactions 491 552 667

Reactions w/GPRs 491 517 625

Metabolites 529 542 587

The draft and final reconstructions of the iSyp611 model differ considerably in
size. The size of the iCce806 model is given as a point of reference.
doi:10.1371/journal.pone.0034670.t007
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fluxes active in the iJR904 network are in blue, and inactive fluxes

are in grey. If gene (reaction) deletions occur in the fermentation

pathway, they are indicated by black ‘X’s. Fluxes crossing the

dashed boundary indicate transport to the extracellular environ-

ment. Metabolite abbreviations: 2aobut, L-2-Amino-3-oxobutano-

ate; actp, acetyl phosphate; athr, allo-threonine; glc, glucose. All

other abbreviations match those used in the iSyp611 metabolic

model (see Additional File 2). (A) As a consequence of growth, E.

coli produces protons which must be consumed by reactions in the

network or secreted into the media. The succinate (succ) antiporter

in the iAF1260 model makes succinate transport energetically

unfavorable, so flux is instead diverted to ethanol (etoh). (B) This

knockout eliminates ATP synthase, necessary for pumping protons

into the cytosol. Deletion of ATP synthase forces protons to be

consumed via the fermentation reactions. The ability of the

iAF1260 model to transport H2 allows it to utilize formate

hydrogen lyase for this purpose. As a consequence, flux is diverted

away from ethanol to CO2. This effect becomes more pronounced

as additional genes are deleted. (C) Wild-type FBA predicts that

both E. coli models uptake glucose via the phosphotransferase

system (PTS), and convert the resulting glucose-6-phosphate (g6p)

to fructose-6-phosphate (f6p). The deletion of pgi prevents this

transformation. The iAF1260 network contains an additional

hexokinase which allows it to bypass the deletion by bypassing the

PTS. The iJR904 model lacks this reaction and is forced to use

PTS. The deletion of edd then forces the iJR904 network to

metabolize glucose via the oxidative branch of the pentose

phosphate pathway. This process generates electrons, leading to

higher levels of fermentation products than in the iAF1260 model.

(PDF)

Dataset S1 SBML version of the iSyp611 model.

(XML)

Dataset S2 Microsoft Excel versions of the iSyp611
model. Description of stoichiometric and annotation changes

made to each of the six metabolic models examined over the

course of this study.

(XLSX)

Dataset S3 Computational results of all simulations.
This Microsoft Excel file contains 1) the simulation conditions for

each study, 2) the full results of all CONGA simulations performed

in this study, 3) all ortholog assignments used in performing the

CONGA simulations, and 4) results from each ortholog calling

method applied to the human pathogen models.

(XLSX)

Text S1 Sample implementation of CONGA formula-
tion in GAMS format. A free demo version of GAMS can be

downloaded from http://www.gams.com. This file contains the

example network described in Figure 2.

(GMS)

Text S2 Variable Reduction Procedure. This section

contains additional details about the algorithm used to decrease

the number of genes considered by CONGA.

(PDF)
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