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Heart failure (HF) is considered a deadliest disease worldwide. *erefore, different intelligent medical decision support systems
have been widely proposed for detection of HF in literature. However, low rate of accuracies achieved on the HF data is a major
problem in these decision support systems. To improve the prediction accuracy, we have developed a feature-driven decision
support system consisting of two main stages. In the first stage, χ2 statistical model is used to rank the commonly used 13 HF
features. Based on the χ2 test score, an optimal subset of features is searched using forward best-first search strategy. In the second
stage, Gaussian Naive Bayes (GNB) classifier is used as a predictive model. *e performance of the newly proposed method
(χ2-GNB) is evaluated by using an online heart disease database of 297 subjects. Experimental results show that our proposed
method could achieve a prediction accuracy of 93.33%. *e developed method (i.e., χ2-GNB) improves the HF prediction
performance of GNB model by 3.33%. Moreover, the newly proposed method also shows better performance than the available
methods in literature that achieved accuracies in the range of 57.85–92.22%.

1. Introduction

Heart failure (HF) is a condition whereby the heart is unable to
supply enough blood to satisfy the body’s requirements. *e
coronary artery as an integral part of the heart is accountable for
supplying blood to the heart. Coronary artery disease (narrowed
or blocked arteries) is the most prevalent type of heart disease
and the most common cause of HF [1].

*ere are many imperilling conditions that result in a HF
disease. *ese conditions can be put into two categories,
with the first category consisting of risk or imperilling
conditions that cannot be altered, e.g., patient’s sex, age, and

family history. *e second category, which can be altered,
consists of conditions that are attributed to the way of life of
the patient, for instance, smoking habit, high cholesterol
level, high level of blood pressure, and physical inactivity [2].
In addition, prevalent HF symptoms include dyspnea
(shortage of breath), edema (swollen feet), fatigue, and
weakness.

With so many factors to be analyzed, HF management
becomes very complicated and even worse, particularly in
nations that lack appropriate diagnostic instruments and
medical experts [3, 4]. Furthermore, different tests are
recommended by health practitioners to diagnose HF
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disease. Some of these tests are electrocardiogram (ECG),
nuclear scan, angiography, and echocardiogram [5].
Among these tests, ECG is a noninvasive technique [6, 7].
But it is not very effective as it may lead to undiagnosed
symptoms of HF disease [5]. *is factor leads to angi-
ography, a sort of diagnosis used to verify instances of
heart disease. It is considered as the finest approach for HF
disease diagnosis. However, some problems are associated
with it such as its side effects, high cost, and requirement
of high level of technical expertise [8, 9]. *us, alternative
modalities are needed which can solve these problems. It
is therefore necessary to develop an efficient, intelligent,
medical decision-making support system with the prin-
ciples of data mining and machine learning.

In literature, various decision support systems with
regards to support vector machine (SVM), decision tree,
k-nearest neighbor (KNN), fuzzy logic based algorithms,
artificial neural network (ANN), and ensembles of ANN
have been suggested for the prediction of HF disease
[1, 2, 10–17]. Robert Detrano, who gathered HF-related
information for the Cleveland heart disease data, used
logistical regression to predict HF risk assessment,
achieving a classification precision of 77%. Newton
Cheung verified the feasibility of various classifiers in-
cluding C4.5, Naive Bayes, BNND, and BNNF algorithms
and achieved 81.11%, 81.48%, 81.11%, and 80.95%, re-
spectively, as HF risk prediction accuracies. Polat et al.
[18] used a decision support system that utilized artificial
immune system (AIS) and produced 84.5% of classifica-
tion accuracy. Özşen and Güneş [19] developed a modified
AIS and obtained an HF risk prediction accuracy of
87.43%. A model of neural network ensemble was pro-
posed by Das et al. [2] to enhance the classification
precision and obtained a percentage of 89.01 for HF
prediction accuracy. Samuel et al. [20] proposed an em-
bedded decision support scheme on the basis of ANN and
Fuzzy AHP and obtained a 91.10% HF risk classification
accuracy. Ali et al. suggested a machine learning method
by stacking and optimizing two SVMs together for im-
proved HF risk prediction and obtained HF prediction
performance of 92.22% [21]. Paul et al. have recently
established an adaptive weighted fuzzy system ensemble-
based model. *eir suggested model led to a 92.31% HF
prediction accuracy.

Inspired from the various decision support systems
proposed earlier and discussed above, we also attempted
to develop a new decision support system for HF risk
prediction with an aim to improve classification accuracy
and reduce computational cost or complexity. *e de-
cision support system developed in this study is named
χ2-GNB. *e χ2-GNB model uses χ2 statistical model to
rank features according to χ2 test score. To obtain an ideal
(i.e., optimal) number of the ranked features in this
paper, we exploit the forward best-first search approach.
*e performance of each of the generated subset of
features is evaluated using GNB model which is used as a
machine learning classifier. It is worth discussing that the
suggested χ2-GNB model utilizes a simple predictive
model but exhibits better efficiency than more complex

predictive models such as ANN and even ensembles of
ANNs. No prior research, to the best of our awareness,
addressed the hybridization of GNB model from the
family of Naive Bayes classifiers with χ2 model for the
detection of HF disease. Compared with other techniques
in the literature, the experimental findings of the sug-
gested method are promising in terms of HF risk pre-
diction accuracy.

*e remainder of the manuscript is constructed as
follows: Section 2 describes the materials (dataset) and the
suggested methods. Section 3 gives a discussion of metrics
used for evaluation and validation. Section 4 presents the
findings of experiments and discussion. Section 5, as the final
part, concludes the paper.

2. Materials and Methods

2.1. Dataset Description. *e University of California,
Irvine (UCI) provides an online repository for machine
learning from which the Cleveland heart disease dataset
was obtained for experiments in this paper. 297 samples
out of 303 samples contained in the dataset include no
missing values, whereas 6 cases possess missing features’
values. *e data, in its original form, have 76 features.
However, all the published research studies only refer to
13 of them. *ese commonly used 13 features are tabu-
lated in Table 1.

2.2. Proposed Method. *e suggested method, i.e., χ2-GNB
comprises two phases.*e first phase ranks features with the
use of the χ2 statistical model. Amidst each positive feature
fi and class, i.e., θ, χ2 statistics are calculated using the χ2
model. *at is, the model performs χ2 test which measures
dependence between each feature and class. *is approach,
therefore, identifies those features (attributes) that most
probably are not class-dependent. *us, these features (at-
tributes) are regarded as irrelevant for classification. *e
process of features selection itself is done in two phases.
Phase one deals with the raking of features based on the χ2
test score while the second phase considers the search for
ideal subset of features (attributes) from the available ranked
features. It is worth mentioning that the feature ranking
process is done using training data only, i.e., testing data are
kept aside in order to avoid bias. Prior to the ranking of
features and selection, data partitioning is performed. *e
features are ranked and selected on the basis of training data.
*e same attributes are also selected for the testing data
during the validation phase or testing process.*e process of
ranking the features follows the basis of χ2 test which is
expressed as follows.

For a classification that is binary in nature and contains τ
instances, a positive and a negative class (two classes), we can
construct Table 2 to compute the χ2 test score.

Eα � (α + β)
α + β
τ

. (1)

Similarly, Eβ, Eλ, and Ec can also be computed.
According to the general χ2 test formulation, we have
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Readers can refer to [22] more enlightenment on the use
of χ2 statistics for selecting and discretizing features. After
features ranking by the above χ2 test score, we need to search
the optimized subset of features based on the χ2 test. *is is
done by exploiting the forward best-first search algorithm.
*at is, first of all, we select solitarily, a feature having the
greatest χ2 test score and then use the GNB predictive model
to check its performance. In next iteration, we add another
feature into the subset of features according to the χ2 test
score and once more, a performance check is carried out
using the GNB model on the subset of features. *e same
process is repeated till the point where the constructed
subset of features approaches the full set of features. Lastly, a
selection of the subset is made as the optimal subset of
features showing the greatest performance. *e ideal (i.e.,
optimal) subset of features is given to GNB to generate the
best results. *e formulation of GNB model is as follows.

Naive Bayes (NB) is a set of supervised predictive
models known for their simplicity and effectiveness. *ese
models learn the probabilities of an object with certain

features belonging to a particular class or group, i.e., it is a
group of probabilistic predictive models. *ese models are
given the name “naive” because they make use of the naive
assumption of independence, i.e., the models make the
assumption that the occurrence of a certain feature is
independent of the occurrence of other features. An NB
model is based on Bayes theorem or rule, i.e., it evaluates
the probability that a given instance belongs to a certain
class. Given an instance X and a class label θ, using Bayes
theorem, we can express the conditional probability
P(θ | X) as a product of simpler probabilities using the
naive independence assumption:

P θ | f1, . . . , fn( 􏼁 �
P(θ)P f1, . . . , fn | θ( 􏼁

P f1, . . . , fn( 􏼁
, (3)

where (f1, f2, . . . , fn) denotes the features of the feature
vector X. According to the naive independence assumption,
we have

P fi | θ, f1, . . . , fi− 1, fi+1, . . . , fn( 􏼁 � P fi | θ( 􏼁. (4)

For all i, (3) will get the form:
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As for a given instance, P(f1, . . . , fn) is constant. *us,
we can use the following classification rule:
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For the estimation of the parameters in the NB model,
i.e., P(θ) and P(fi | θ), maximum a posteriori (MAP) es-
timation is commonly used. *e main idea is the same for
different Naive Bayes models. However, different Naive
Bayes models use different assumptions regarding the dis-
tribution of P(fi | θ). In case of the GNB model, the like-
lihood of the features is assumed to be Gaussian.

P fi | θ( 􏼁 �
1
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2

2σ2θ
􏼠 􏼡, (7)

where the parameters σθ and μθ are estimated using max-
imum likelihood. In this paper, the performance of GNB is
estimated on the HF disease dataset. To further enhance the
performance of GNB, χ2 model is hybridized with it.

3. Evaluation Metrics and Validation Methods

3.1. Validation Methods. In this section, a binary classifi-
cation problem is considered with two classes of diagnosis,
i.e., healthy and patients who are prone to potential HF
disease. Different studies have been conducted on the
Cleveland heart disease dataset, and methods that achieved
accuracies between 50% and 92.2% are reported in the lit-
erature. Most of these studies like [2, 23, 24] made use of a
validation known as holdout, with a split of 70–30, i.e.,
training the proposed model with 70% dataset, and for the

Table 2: Table to compute χ2 test score.

Positive
class

Negative
class Total

Feature fi occurs α β α + β � μ
Feature fi does not
occur λ c λ + c � τ − μ

Total α + β � ω β + c � τ − ω τ
*e sum of instances comprising feature fi is denoted by μ, the sum of
instances without feature fi is denoted by τ − μ, the sum of instances that
are positive is expressed as ω, and the sum of instances that are negative are
represented by τ − ω. Let the observed values be α, β, λ, and c with the
expected values Eα, Eβ, Eλ, and Ec. Based on the hypothesis that the two
events are independent, the expected value can be evaluated as follows:

Table 1: Commonly used HF features of the dataset.

Feature
no. Feature description Feature

code
1 Age (AGE) f1
2 Sex (SEX) f2
3 Chest pain type (CPT) f3
4 Resting blood pressure (RBP) f4
5 Serum cholesterol (SCH) f5
6 Fasting blood Sugar (FBS) f6
7 Resting electrocardiographic results (RES) f7
8 Maximum heart rate achieved (MHR) f8
9 Exercise induced angina (EIA) f9
10 Old peak (OPK) f10
11 Peak exercise slope (PES) f11

12 Number of major vessels colored by
fluoroscopy (VCA) f12

13 *allium scan (THA) f13
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purpose of testing, 30% of the dataset is utilized. *e
methodology adopted in this paper for data portioning is the
same as aforementioned.

3.2. Evaluation Metrics. *e robustness of the proposed
model is evaluated in this paper using different evaluation
metrics including accuracy, specificity, sensitivity, and
Matthews coefficient of correlation (MCC). *e percentage
of subjects that are classified correctly represents accuracy in
the training or testing dataset, sensitivity on the other hand,
and carries information about patients that are classified
correctly, whereas the correctly classified healthy subjects
denote specificity.

Accuracy �
TP + TN

TP + TN + FP + FN
. (8)

Here, the count of true positives is expressed as TP, the count
of false positives is expressed as FP, the count of true
negatives is expressed as TN, and the count of false negatives
expressed as FN:

sensitivity �
TP

TP + FN
,

specificity �
TN

TN + FP
,

MCC �
TP × TN − FP × FN

�����������������������������������
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

􏽰 .

(9)

MCC is the measure of quality of binary classification in
machine learning. It can assume any value between the range
of − 1 and 1, where − 1 shows the disagreement in total
between prediction and observation, 1 shows a prediction
that is perfect, and 0 refers to classification not more than a
random prediction.

4. Experimental Results and Discussion

4.1. Experiment No. 1: Performance of the Proposed χ2-GNB
Model. In this section, the experimental results of the
proposed χ2-GNB are reported and discussed. After feature
ranking by χ2 test, we obtained different subset of features.
*ese subsets of features are applied sequentially to GNB
predictive model for classification. *e best accuracy of
93.33% is achieved on testing data with subset of features
having n � 9, i.e., 9 features. As can be seen in Table 3, a
training accuracy of 84.05% is achieved for the (optimal)
subset of features, while sensitivity and specificity are re-
ported to be 87.80% and 97.95%, respectively. From the
perspective of machine learning, the ideal (optimal) subset of
features apart from enhancing performance of the GNB
model also decreases the complexity of the GNBmodel. *is
thereby, leads to a reduction in the GNB models training
time. Moreover, the subset of features with n � 9 includes
f2, f3, f7, f8, f9, f10, f11, f12, and f13. *e classification
results achieved for different subsets of features are reported
in Table 3. *e last row in the table represents the case when

no features are selected, i.e., all the features are applied to the
GNB model, and the prediction accuracy of 90% is achieved.
Hence, it proves that the developed χ2-GNBmodel enhances
the potential of GNB model by 3.3%.

To get information about the statistics of correctly
classified healthy subjects, patients and misclassification rate
and confusion metrics are drawn in Figures 1 and 2 for
training data and testing data, respectively. *e horizontal
class labels denote the predicted labels, while the vertical
labels represent true labels. *e testing data contain 90
samples out of which 41 are patients and 49 are healthy
subjects. From the confusion matrix, the proposed model
can correctly detect 36 patients, thus yielding sensitivity of
87.80% which is in accordance with sensitivity reported in
Table 3. Similarly, out of 49 healthy subjects, the proposed
method is capable of correctly classifying 48 subjects. Hence,
the proposed method yields specificity of 97.95%.

*e training data consist of 207 samples out of which 96
are patients and remaining are healthy subjects. *e pro-
posed model correctly classifies 76 patients, while 20 patients
are misclassified. On the other hand, 98 healthy subjects are
correctly classified, while 13 are misclassified.

4.2. Experiment No. 2: Comparative Study of the Proposed
χ2-GNB Model with Other State-of-the-Art Ensemble Models
and Support Vector Machines. To prove how effective the
χ2-GNB method is, we perform a study by comparing it with
other existing models of machine learning. *ese existing
models encompass the support vector machine (SVM) with
RBF and linear kernel and the ensemble models.*e extra tree,
often referred to as the randomized decision tree, Adaboost,
and the random forest (RF) are the ensemble models that are
considered for the comparison purposes. With the use of grid
search algorithm, these models are therefore searched for the
ideal (optimal) values of their hyperparameters. Table 4
presents the performance of each optimized model.

In Table 4, the number of trees in the forest is denoted
by Ne, a hyperparameter for the RF model. In case of
Adaboost, the highest number of estimators for which
termination occurs in boosting is denoted by the hyper-
parameter Ne. Extra tree as an ensemble model makes use

Table 3: Results of different subsets of features for the heart disease
dataset.

n Acctest Acctrain(%) Spec. (%) Sens. (%) MCC

1 78.88 75.36 81.63 75.60 0.573
2 88.11 78.26 79.59 82.92 0.622
3 84.44 81.64 89.79 78.04 0.686
4 86.66 79.71 91.83 80.48 0.732
5 86.66 80.19 93.87 78.04 0.734
6 86.66 80.67 89.79 82.92 0.730
7 90.00 82.12 91.83 87.80 0.798
8 90.00 83.57 93.87 85.36 0.799
9 93.33 84.05 97.95 87.80 0.868
10 90.00 81.64 93.87 85.36 0.799
11 90.00 82.60 93.87 85.36 0.599
12 90.00 84.05 93.87 85.36 0.799
13 90.00 82.12 93.87 85.36 0.799
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of averaging to enhance the accuracy of prediction and
uses the number of randomized decision trees as a
hyperparameter. With regards to extra tree, the number of
trees used is represented by the hyperparameter Ne. In
terms of SVM, constant of the soft margin is denoted by C,
and Gaussian Kernel width is denoted by G. Lastly, in the
table, the size of the ideal (optimal) subset of features
selected by the χ2 statistical model, in case of the χ2-GNB,
is represented by n � 9. It is clearly proved in the table that,
with respect to performance, the proposed approach

outperforms the different existing models (i.e., the SVM
model with linear and RBF kernel and the ensemble
models).

Further, two more metrics, i.e., receiver operating
characteristic (ROC) curve and area under the curve (AUC)
are used to conduct more investigations on the effective-
ness of the χ2-GNBmodel. For different thresholds, the true
positive rate (TPR) versus the false positive rate (FPR) is
displayed graphically by the ROC chart. *is indicates that
an ideal ROC curve of the plot is one that resides at the top-
left corner of the graph. More precisely, we can state that
the larger the area under the curve of the ROC chart, the
better the developed model [25]. Figure 3 displays the ROC
chart of the χ2-GNB model and other models of machine
learning. From the chart in Figure 3(a), the χ2-GNB model
indicates a 0.955 area under the curve (AUC). An opti-
mized Adaboost model has a 0.925 AUC as depicted in
Figure 3(b), whereas a 0.929 AUC as shown in Figure 3(c) is
indicated by the optimized extra tree model. Furthermore,
from Figure 3(d), the random forest model (optimized)
indicates an AUC of 0.935. With the support vector

Table 4: Experimental results of other optimized machine learning
models.

Model Hyperparameters Acctest Spec. Sens. MCC

SVM (linear) C � 0.055 90 93.87 85.36 0.799
SVM (RBF) C � 5, G � 0.2 90 93.87 85.36 0.799
Adaboost Ne � 4 88 89.79 87.80 0.776
Extra tree Ne � 11 88 89.79 87.80 0.776
Random forest Ne � 50 88 93.87 82.92 0.777
Proposed n � 9 93.33 97.95 87.80 0.868

Class 0

Class 1

Class 0 Class 1

Tr
ue

 la
be

l

Predicted label

98

76

13

20

Figure 1: Confusion matrix of training data.
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Figure 2: Confusion matrix of testing data.
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machine (SVM), the linear kernel indicates a 0.949 AUC,
whereas the RBF kernel indicates an AUC of 0.936 as
displayed, respectively, in Figures 3(e) and 3(f ). It is clearly
proven as shown in the ROC charts that the χ2-GNB ap-
proach outperforms the other existing optimized ensemble
and SVM approaches.

4.3. Comparison of the Proposed Method with Other Well-
Known Machine Learning Methods Proposed Earlier. In this
section, we compare our results in terms of HF disease
detection accuracy with the results of previously proposed
methods in literature. Table 5 briefly discusses other
methods developed for HF risk prediction and compares
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Figure 3: ROC charts of the χ2-GNBmodel and optimized SVM and ensemble models. ROC chart of the (a) proposed model, (b) Adaboost
ensemble model, (c) extra tree ensemble model, (d) random forest, (e) linear SVM model, and (f) SVM (RBF) model.
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their accuracies with the model developed in this study. It
can be seen that the newly developed model shows better HF
risk prediction accuracy than many of the previous methods.

5. Conclusion

In this paper, on the basis of χ2 statistical model and GNB,
we proposed a feature-driven decision support system for
HF disease prediction. It was shown that the newly de-
veloped model, i.e.,χ2-GNB, enhanced the performance of
the conventional GNB model. In order to evaluate the ro-
bustness of the χ2-GNB model, six evaluation metrics were
used, i.e., sensitivity, accuracy, specificity, ROC, AUC, and
MCC. It was observed that the proposed model improved
the performance of GNB model by 3.33%. Moreover, a
comparative analysis based on prediction accuracy between
the χ2-GNB model and other previously reported methods
was carried out. It was shown through experimental results
that the χ2-GNB model outperformed the state-of-the-art
ensemble models, support vector machines and many
previously proposed methods.
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