Amthauer and Tsatsoulis BMC Genomics 2010, 11:340
http://www.biomedcentral.com/1471-2164/11/340

BMC
Genomics

RESEARCH ARTICLE Open Access

Classifying genes to the correct Gene Ontology
Slim term in Saccharomyces cerevisiae using
neighbouring genes with classification learning

Heather A Amthauer'’, Costas Tsatsoulis?

Abstract

Background: There is increasing evidence that gene location and surrounding genes influence the functionality of
genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight
into a gene’s functionality by informing us how its gene product behaves in a cellular context using three different
ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could

classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its
location in the genome and information from its nearest-neighbouring genes using classification learning.

Results: We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could
correctly classify Gene Ontology Slim terms of a gene given information regarding the gene’s location and
information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to
determine how many nearest neighbours should be included around each gene to provide better classification
rules. Our results show that by just incorporating neighbour information from each gene’s two-nearest neighbours,
the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches
over 80% with high accuracy (reflected in F-measures over 0.80) of the classification rules produced.

Conclusions: We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of
neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology
Slim information from neighbouring genes gives us insight into that gene’s functionality. This benefit is seen by
just including information from a gene's two-nearest neighbouring genes.

Background

Determining novel gene functionality is critical for
bringing a better understanding of how an organism
functions as a whole. Traditional biological approaches
to determining gene functions mainly focus on testing
specific hypotheses through well designed mutagenesis
experiments. However, methods of this kind suffer from
the high cost of labour and funds. With the proliferation
of protein and nucleic acid sequences catalogued in gen-
ome databases, the investigation of the function of a
gene and its encoded product often begins by compar-
ing its sequence with those of previously characterized
genes. But, the search for homologues does not always
reveal information about function. As noted by Alberts
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et al. [1] in the Saccharomyces cerevisiae genome, “30%
of the previously uncharacterized genes could be
assigned a putative function by homology analysis; 10%
had homologues whose function was also unknown; and
another 30% had no homologues in any existing data-
bases (the remaining 30% of the genes had been identi-
fied before sequencing the yeast genome).” Sequence
similarity alone cannot provide full function specificity
[2]. The predictions that emerge from sequence analysis
are often only a tool to direct further experimental
investigations.

Knowing the Gene Ontology Slim terms associated
with a gene give us insight into how its gene product
behaves in a cellular context using three different ontol-
ogies: molecular function, biological process, and cellu-
lar component. These terms describe where a gene
product is located or its association with cellular
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components, they describe its activity in biological pro-
cesses and the molecular functions it performs during
the biological processes. The Gene Ontology Slim give
an “overview of the ontology content” and are useful for
summarizing the results of Gene Ontology annotation
[3]. In the context of this paper the term function is
used to refer to all aspects and concepts described by
the Gene Ontology classifications. The Gene Ontology
comprises a set of well-defined terms with well-defined
relationships. The structure of Gene Ontology reflects
the current representation of biological knowledge as
well as serving as a guide for organizing new data [4].
The vocabulary is fluid and undergoes consistent revi-
sion. The intention of the Gene Ontology is to make
possible, in a flexible and dynamic way, the annotation
of homologous gene and protein sequences in multiple
organisms using a common vocabulary. It has become a
broadly accepted classification system for function
assignment.

Several studies have noted that gene location in higher
eukaryotic organisms is not random and suggest that
there may be patterns in gene location [5-14]. Several
research groups have further noted that genes with
related function are often located close to each other on
the chromosomes [15-19]. Also functional overlaps
(shared Gene Ontology terms) have been found between
clustered genes in yeast when examining spans of small
chromosomal distances (less than 10 kbp) [20]. These
studies suggest that the location of a gene and its sur-
rounding neighbourhood of genes have an influence on
its functionality, but none of these studies determined if
there are true patterns within a genome, and if we can
learn from these patterns. If there are patterns based on
how genes cluster/group within a genome, then we can
generate rules and relationships based on these patterns
through classification learning.

In this study, we analyzed if we could classify a gene
in Saccharomyces cerevisiae to its correct Gene Ontol-
ogy term using information about its location in the
genome and information from its nearest-neighbouring
genes using MultiBoositng with C4.5. This methodology
can assist researchers by expediting the process of deter-
mining the functionality of a gene by providing classifi-
cation rules that will determine a gene’s Gene Ontology
term.

Methods

Classification Techniques

In classification learning, the learning system is pre-
sented with a set of classified examples. From these
examples, the system is expected to learn a way of clas-
sifying unseen examples [21]. We used a popular classi-
fication learning technique that combines MultiBoosting
[22] with the decision tree classifier C4.5 [23].
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MultiBoosting combines AdaBoost (a boosting techni-
que) [24] with wagging (a variant of bagging) [25] to
form decision committees. This technique “boosts” a
learning algorithm to a stronger learning algorithm by
taking advantage of AdaBoost’s high bias and variance
reduction and wagging’s strong variance reduction. It
has been shown that when using the C4.5 algorithm as
its base learning algorithm, MultiBoosting produces
superior decision committees [22].

In building decision trees, C4.5 determines which
attribute to split on given a set of examples with differ-
ent classes. This attribute is selected based on informa-
tion measured in bits [26]. For each attribute, the C4.5
algorithm calculates the information gain from splitting
the tree on that attribute. The best attribute has the
highest information gain. A decision node is created
that splits the dataset on that best attribute. The process
is repeated on the sub-trees of that node.

The versions of these algorithms that we used can be
found in WEKA (the Waikato Environment for Knowl-
edge Analysis). WEKA is open source software issued
under the GNU General Public License. It is a collection
of machine learning algorithms for data mining tasks.
WEKA contains tools for data pre-processing, classifica-
tion, regression, clustering, association rules, and visuali-
zation [21]. The WEKA version of MultiBoosting is
MultiBoostAB and the WEKA version of C4.5 is called
J48.

Classification experiments
Experiments were performed to establish if MultiBoos-
tAB using the J48 classifier could correctly classify Gene
Ontology Slim terms of a gene. Different neighbourhood
sizes were examined to determine how many nearest
neighbours should be included around each gene to pro-
vide better classification rules. As a baseline, the classifi-
cation process was performed using no neighbour
information. Also, the classification process was per-
formed using the entire genome, and then it was
repeated on each chromosome to examine if partition-
ing the classification process would yield better rules.
The classifier was trained using different neighbour-
hood attributes. A gene’s neighbourhood attributes were
determined by the attributes of its nearest neighbours
on both strands and both upstream and downstream to
the gene. The gene’s attributes that were used in the
training process were: its chromosome number (one,
two, three, four, five, six, seven, eight, nine, ten, eleven,
twelve, thirteen, fourteen, fifteen, sixteen, seventeen
(seventeen is the mitochondrial chromosome)), its start
position (in bp), its stop position (in bp) and its strand
(“W” for Watson and “C” for Crick), the gene’s Gene
Ontology aspect (ontology: cellular component (C), bio-
logical process (P), or molecular function (F)) and the
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gene’s Gene Ontology Slim term. The neighbour attri-
butes that were used for the training process were: the
neighbour’s number (1-10, with 1 representing the clo-
sest neighbour), the neighbour’s strand, the neighbour’s
distance (in bp) from the gene (determined from the
mid-point of each), the neighbour’s Gene Ontology
aspect, the neighbour’s Gene Ontology Slim term.

The size of the neighbourhood was determined by
how many nearest neighbours should be included. All
experiments were repeated using different sizes of
neighbourhoods. These neighbourhoods included infor-
mation from the nearest neighbours, the two-nearest
neighbours, the five-nearest neighbours on both strands
and both upstream and downstream from the gene, and
when analyzing the individual chromosomes, the ten-
nearest neighbours of each gene were also included.

The parameters for the MultiBoostAB algorithm using
the J48 classifier were set to use reweighting instead of
resampling because past experiments produced results
that suggested “reweighting is more effective than
resampling” [22]. The other settings were set to default
values.

Datasets

We used publicly available data pertaining to gene loca-
tion and Gene Ontology Slim terms available at the Sac-
charomyces Genome Database http://www.yeastgenome.
org/. The Saccharomyces cerevisiae genome was selected
for classification because of all the sequenced genomes, it
has the most ideal characteristics for a test case. The Sac-
charomyces cerevisiae genome shows a high amount of
clustering of genes that are involved in the same meta-
bolic pathway [9], and it shows clustering of essential
genes into regions of low recombination [27]. Incidences
of highly coordinated expression of linked genes have also
been found in yeast [8,28]. The files (SGD_features.
tab and go_slim mapping.tab) were obtained from
the Anonymous FTP site [29]. Information was extracted
from the files and formatted as comma-separated values
(CSV) files to be compatible with WEKA. A sample of
the file format can be seen in Table 1.

Metrics

The performance of the classification process can be
evaluated by two metrics: percentage of correctly classi-
fied instances and the F-measure. The percentage of
correctly classified instances is a basic accuracy mea-
surement that can be determined by the following:

number of correctly classified instances
number of instances

Percent Correctly Classified =

The F-measure is a weighted harmonic mean of preci-
sion and recall. It is calculated in the following manner:
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Fopx (precision*recall)
(precision+recall)

Where precision and recall are calculated in the fol-
lowing manner

. number of correctly classified instances of class X
Precision (X) =

number of instances classified as belonging to class X

Recall (X) = number of correctly classified instances of class X

number of instances in class

In statistics, the F-measure is a measure of a test’s
accuracy, where an F-measure reaches its best value at
1.0 and worst score at 0.

Results and Discussion

Classifying Genes to Correct Gene Ontology Terms

The results of the experiments are based on averages of
ten different runs of each dataset being randomized and
then split for training and testing. The size of the data-
sets varied depending on what experiments were being
performed. The dataset that contained no neighbour
information contained 31554 instances. This number
increased as more neighbour information was included.
For instances where there was missing attribute values,
the missing values were substituted with a “?”. The
training sets were set to contain 66% of the instances
randomly selected from each dataset. In this analysis,
the classification of Gene Ontology Slim terms for all
three ontologies are combined. The MultiBoostingAB
algorithm using the J48 classifier generated different
trees for each data set it analyzed. The trees generated
for the individual chromosomes did share similar struc-
tures in that the root node was the Gene Ontology Slim
term for the given gene followed by start positions that
partitioned the chromosome and then the neighbouring
gene’s Gene Ontology Slim term.

The results of this study also showed that in classify-
ing genes to their correct Gene Ontology Slim term, the
inclusion of neighbour information from those genes is
beneficial (See Figure 1). By incorporating neighbour
information from each gene’s two-nearest neighbours,
the percentage of correctly classified genes increases to
over 80% for most chromosomes. A gene is considered
to be correctly classified if all of its Gene Ontology Slim
terms have been predicted. This phenomenon of having
the incorporation of neighbour information being bene-
ficial is also seen in the F-measures obtained by the
classifier (See Figure 2). Partitioning of the classification
process by chromosome produces better accuracy
results than using the classification results generated
when using information from the entire genome. By
incorporating neighbour information from each gene’s
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Table 1 File format information.
Chromosome Start Stop Strand Neighbour Neighbour  Distance Neighbour GO Neighbour GO GO GO Slim
Number number strand aspect Slim term aspect term
ten 18536 16767 C 1 W 2697 C plasma membrane C cellular
component
ten 18536 16767 C 1 W 2697 C plasma membrane F hydrolase
activity
ten 18536 16767 C 1 W 2697 C plasma membrane P biological
process
ten 18536 16767 C 1 W 2697 F transporter activity C cellular
component
ten 18536 16767 C 1 W 2697 F transporter activity F hydrolase
activity
ten 18536 16767 C 1 W 2697 F transporter activity P biological
process
ten 18536 16767 C 1 W 2697 p transport C cellular
component
ten 18536 16767 C 1 W 2697 p transport F hydrolase
activity
ten 18536 16767 C 1 W 2697 p transport P biological
process
ten 18536 16767 C 2 W 2697 ? ? C cellular
component
ten 18536 16767 C 2 W 2697 ? ? F hydrolase
activity
ten 18536 16767 C 2 W 2697 ? ? p biological
process

Shows the format of the data files that included neighbour’s Gene Ontology information and gene’s Gene Ontology information. The columns represent the

different values that were separated by commas. “?” represent unknown values.

two-nearest neighbours, the F-measures increase to over
0.80 for most chromosomes.

The inclusion of a neighbour’s Gene Ontology infor-
mation being beneficial in classifying genes to the cor-
rect Gene Ontology Slim term supports finding from
other studies. In a study by Fukuoka et al., they inves-
tigated Gene Ontology categories of gene pairs that
were considered highly correlated in chromosomal dis-
tance ranges between 0 and 20 kbp and between 980
and 1000 kbp. The results of the pairwise analysis of
Gene Ontology category showed that only highly corre-
lated pairs shared the same category and most of these
pairs were not duplicates, meaning the genes did not
share a common history; this was determined by
BLAST analysis [20].

Accuracy of the Classification of Genes to Specific Gene
Ontology Slim terms

To see the effect on the accuracy of classification for
each Gene Ontology Slim term using information from
the entire genome, the F-measures obtained by the Mul-
tiBoostAB algorithm using the J48 classifier for each
Gene Ontology Slim term can be examined. Most of the
Gene Ontology Slim terms benefited from the addition
of neighbour information (See Figures 3, 4 and 5). Based
on the results, the inclusion of neighbour information

beyond each feature’s two-nearest neighbours did not
drastically increase the accuracy of classification of
genes to their correct Gene Ontology Slim terms. When
no neighbour information is included, Gene Ontology
Slim terms that represent broader functionalities, biolo-
gical process, molecular function, have higher accuracy
scores compared to that of Gene Ontology Slim term of
cellular component, meaning the classifier was able to
classify genes that belonged to these broader Gene
Ontology Slim terms better. The four Gene Ontology
Slim term groups that obtained the lowest F-measures
(did not achieve an F-measure above 0.5) are: anatomi-
cal structure morphogenesis, cell cortex, cellular bud
and site of polarized growth, meaning the inclusion of
neighbour information did not improve the classification
process for genes belonging to these Gene Ontology
terms as much as it did for the genes belonging to other
terms.

Classification of Genes to Gene Ontology Slim Terms
Removing Gene Location

A series of experiments was performed to determine if a
gene could be classified to its Gene Ontology Slim term
when given only neighbour information for training.
The attributes that were used for the training process
were: the neighbour’s number, the neighbour’s strand,
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Figure 1 Percent of Correctly Classified Genes to Gene Ontology Slim Terms. Percent of correctly classified genes to Gene Ontology Slim
terms for the entire genome and the individual chromosomes (chromosome seventeen represents the mitochondrial chromosome) using the
MuliBoostAB algorithm using the J48 classifier.
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entire genome and the individual chromosomes (chromosome seventeen represents the mitochondrial chromosome) using the MuliBoostAB
algorithm using the J48 classifier.
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Figure 3 Accuracy of the Classification of Genes to Biological Process Gene Ontology Slim Terms. F-measures obtained using the
MultiBoostAB algorithm using the J48 classifier for the individual Gene Ontology (GO) Slim terms.
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Figure 4 Accuracy of the Classification of Genes to Cellular Component Gene Ontology Slim Terms Continued. F-measures obtained
using the MultiBoostAB algorithm using the J48 classifier for the individual Gene Ontology (GO) Slim terms continued.
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Figure 6 Percent of Correctly Classified Genes to Gene Ontology Slim Terms. Percent of correctly classified genes to Gene Ontology Slim
terms for the entire genome with and without the inclusion of the gene'’s location using the MuliBoostAB algorithm using the J48 classifier.
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Figure 7 F-measures of Classified Genes to Gene Ontology Slim Terms. F-measures of classified genes to Gene Ontology Slim terms for the
entire genome with and without the inclusion of the gene’s location using the MuliBoostAB algorithm using the J48 classifier.

the neighbour’s distance (in bp) from the gene, the
neighbour’s Gene Ontology aspect, the neighbour’s
Gene Ontology Slim term, the gene’s Gene Ontology
aspect and the gene’s Gene Ontology Slim term. With-
out the gene’s location for training, the percentage of
correctly classified genes to their correct Gene Ontology
Slim term is reduced to below 30% (See Figure 6). The
accuracy of the classification is poor, obtaining F-mea-
sures below 0.025 (See Figure 7).

Conclusions

In this study, the effect of information from neighbour-
ing genes influencing a gene’s Gene Ontology Slim
terms was examined using classification learning. We
confirmed that knowing the Gene Ontology Slim infor-
mation from a gene’s surrounding genes allows the Mul-
tiBoostAB algorithm using the J48 classifier to correctly
classify a gene’s Gene Ontology Slim term over 80% of
the time. These classification results are obtained by just
including Gene Ontology Slim information from each
gene’s two-nearest neighbours. This study demonstrates
that there are true patterns within the yeast genome.
We can generate rules based on these patterns through
classification learning that can provide us with more
insight to how genes cluster within a genome. Since
other genomes (e.g. Homo sapiens, Caenorhabditis ele-
gans, Drosophila melanogaster, Arabidopsis thaliana)

exhibit clustering patterns [5-19], this methodology
should translate to those other genomes that are anno-
tated. The optimal neighbourhood size incorporated for
each genome would have to be established through
experimentation.
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