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Abstract

Genomic selection (GS) is being increasingly adopted by the tree breeding community. Most of the GS studies in trees are focused on
estimating additive genetic effects. Exploiting the dominance effects offers additional opportunities to improve genetic gain. To detect dom-
inance effects, trait-relevant markers may be important compared to nonselected markers. Here, we used preselected markers to study the
dominance effects in a Eucalyptus nitens (E. nitens) breeding population consisting of open-pollinated (OP) and controlled-pollinated (CP)
families. We used 8221 trees from six progeny trials in this study. Of these, 868 progeny and 255 parents were genotyped with the E. nitens
marker panel. Three traits; diameter at breast height (DBH), wood basic density (DEN), and kraft pulp yield (KPY) were analyzed. Two types
of genomic relationship matrices based on identity-by-state (IBS) and identity-by-descent (IBD) were tested. Performance of the genomic
best linear unbiased prediction (GBLUP) models with IBS and IBD matrices were compared with pedigree-based additive best linear unbi-
ased prediction (ABLUP) models with and without the pedigree reconstruction. Similarly, the performance of the single-step GBLUP
(ssGBLUP) with IBS and IBD matrices were compared with ABLUP models using all 8221 trees. Significant dominance effects were observed
with the GBLUP-AD model for DBH. The predictive ability of DBH is higher with the GBLUP-AD model compared to other models. Similarly,
the prediction accuracy of genotypic values is higher with GBLUP-AD compared to the GBLUP-A model. Among the two GBLUP models
(IBS and IBD), no differences were observed in predictive abilities and prediction accuracies. While the estimates of predictive ability with ad-
ditive effects were similar among all four models, prediction accuracies of ABLUP were lower than the GBLUP models. The prediction accu-
racy of ssGBLUP-IBD is higher than the other three models while the theoretical accuracy of ssGBLUP-IBS is consistently higher than the
other three models across all three groups tested (parents, genotyped, and nongenotyped). Significant inbreeding depression was observed
for DBH and KPY. While there is a linear relationship between inbreeding and DBH, the relationship between inbreeding and KPY is nonlin-
ear and quadratic. These results indicate that the inbreeding depression of DBH is mainly due to directional dominance while in KPY it may
be due to epistasis. Inbreeding depression may be the main source of the observed dominance effects in DBH. The significant dominance
effect observed for DBH may be used to select complementary parents to improve the genetic merit of the progeny in E. nitens.
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Introduction
Eucalyptus nitens is a temperate plantation tree species grown pre-
dominantly in Southern Australia and Chile. E. nitens is the sec-
ond most widely grown plantation hardwood species in Australia
(ABERES 2018). E. nitens is primarily grown to produce pulpwood
but it is increasingly being utilized for solid wood production.
While several studies have analyzed genetic parameters of
growth and wood (Borralho et al. 1997; Kube et al. 2002; Hamilton
and Potts 2008; Volker et al. 2008), a few studies have used geno-
mics to study genetic parameters and prediction accuracies in
E. nitens (Kláp�st�e et al. 2017, 2018, 2020; Suontama et al. 2019).

Genomic selection (GS) has become routine in animal breed-
ing, and it is increasingly being adopted by the tree breeding

community (Beaulieu et al. 2014; Isik et al. 2016; Grattapaglia et al.
2018; Thavamanikumar et al. 2020). Due to long generational
intervals in trees, GS is anticipated to have a large impact on tree
breeding. In addition to aiding in quality control in breeding pro-
grams, such as correcting for pedigree and clonal errors, the
main benefits of GS in tree breeding include increased accuracy
of the estimated molecular breeding values (MBVs), reduction of
breeding cycle through early selection and increased selection in-
tensity which will all lead to significant improvements in genetic
gain (Grattapaglia et al. 2018).

One of the methods used for the application of GS in tree
breeding is the genomic best linear unbiased prediction (GBLUP)
model. In GBLUP, the pedigree-based numerator relationship
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matrix (NRM) is replaced by the genomic relationship matrix
(GRM) for estimating breeding values. MBVs estimated with the
GBLUP will be more accurate as the GRM captures the realized
relationships between the individuals within a family and rela-
tionships among individuals from different families leading to in-
creased accuracy of the estimated MBVs (VanRaden 2008;
Goddard and Hayes 2009; Hayes et al. 2009). In most of the GS
studies in forest trees, GBLUP was mainly used to estimate addi-
tive effects (Resende et al. 2012; Müller et al. 2017; Suontama et al.
2019). However, dominance plays a significant role in the genetic
control of growth traits compared to wood traits. Several studies
in forest trees used GBLUP to estimate dominance effects
(Zapata-Valenzuela et al. 2013; de Almeida Filho et al. 2016, 2019;
Kláp�st�e et al. 2017). Mu~noz et al. (2014) have reported that the in-
clusion of nonadditive effects in the genomic model improved
the precision of genetic parameters of height in Pinus taeda.
However, Lenz et al. (2020) did not find significant dominance
effects using polycross and full-sib families with random
markers. Dominance effects, when present, can be utilized
through the cloning of target trees. Dominance can also be used
for mate allocation. However, in most of the studies where signif-
icant dominance effects are observed, the inclusion of them in
the prediction models did not result in the significant improve-
ment of the prediction accuracies (Bouvet et al. 2016; Resende
et al. 2017; Gamal El-Dien et al. 2018; Tan et al. 2018). Accuracies
of the models with the dominance effects will only be higher
than the additive models when the estimated dominance
effects are high (de Almeida Filho et al. 2016). In a recent study
(Thavamanikumar et al. 2020), we have identified significant
dominance effects for growth traits in Eucalyptus pellita (E. pellita)
using preselected markers. Higher estimates of predictive ability
were observed for growth traits when dominance effects were
included in the prediction model.

Single-step genomic best linear unbiased prediction (ssGBLUP)
models are increasingly being tested in forest trees (Cappa et al.
2017, 2019; Ratcliffe et al. 2017; Kláp�st�e et al. 2018; Callister et al.
2021). In ssGBLUP, the GRM of the genotyped samples is com-
bined with the NRM of the nongenotyped samples to generate H-
matrix for estimating breeding values. Thus, in ssGBLUP, infor-
mation gathered from all the individuals of the entire breeding
population is effectively used in the analysis (Legarra et al. 2009).
In contrast, estimation of the breeding values is restricted only to
the genotyped samples in GBLUP. In ssGBLUP, genomic relation-
ships of genotyped samples are projected onto nongenotyped
samples leading to higher accuracy of the breeding values esti-
mated with ssGBLUP compared to ABLUP. Several studies have
indicated higher accuracies with ssGBLUP (Aguilar et al. 2010;
Chen et al. 2011; Vitezica et al. 2011; Christensen et al. 2012). In
tree breeding, ssGBLUP can be used to estimate breeding values
of parents in environments where they were not progeny tested.
Recently, Callister et al. (2021) were able to establish the links be-
tween the two distinct breeding programs of Eucalyptus globulus
(E. globulus) with the combined H-matrix. For this, they used the
genotype data of a small number of parents from both the pro-
grams to develop a combined H-matrix. By using the H-matrix in
ssGBLUP they were able to estimate breeding values for parents
in environments where they were not progeny tested. However,
the application of ssGBLUP in tree breeding needs to be
approached cautiously. In animal breeding where ssGBLUP is be-
ing implemented, the pedigrees are deep and accurate pedigree
records are generally maintained. In contrast, most of the tree
breeding populations are shallow (Gamal El-Dien et al. 2016) and
pedigree errors are common (Mu~noz et al. 2014). This will limit

the application of ssGBLUP in tree breeding as pedigree going
back several generations with well-connected families and pedi-
gree without errors are important for implementing ssGBLUP.
Unrecognized or hidden relationships and pedigree errors among
the nongenotyped individuals in ssGBLUP will lead to low accu-
racy of the predicted breeding values (Kláp�st�e et al. 2018).

In most of the studies using GBLUP or ssGBLUP models, a GRM
based on identity-by-state (IBS) was used. Very few studies have
used genomic relationship matrices based on identity-by-descent
(IBD) to estimate genetic parameters. Models with an IBD matrix
use marker information to track haplotype blocks within the
known pedigree using linkage analysis. The accuracy of this
method depends on the extent of the family structure. One of the
advantages of this method is that it does not require dense
markers due to the limited number of recombinations that occur
between the generations (Vela-Avitúa et al. 2015). Mixed results
were observed comparing the prediction accuracies with IBS and
IBD relationship measures (Luan et al. 2012; Vela-Avitúa et al.
2015; Forneris et al. 2016). Vela-Avitúa et al. (2015) have observed
a higher accuracy of GS with the IBS matrix compared to the
models with the IBD matrix at a higher marker density. At lower
marker densities, however, the accuracy of IBS-GS declined while
the accuracy of IBD-GS remained stable. Luan et al. (2012) ob-
served similar accuracies between the two models using IBS and
IBD matrices. However, Forneris et al. (2016) have observed higher
accuracies of breeding value predictions with the IBD matrix in
ssGBLUP. In a recent study in Eucalyptus dunnii (E. dunnii), higher
breeding value accuracies with lower bias were observed for
growth and stem form using the ssGBLUP model with IBD com-
pared to the IBS matrix (Jurcic et al. 2021). The authors recom-
mend using ssGBLUP with an IBD matrix in open-pollinated
forest tree evaluations.

In a previous project (S. Southerton, S. Thavamanikumar, B.
Thumma, unpublished), we developed marker panels for several
species of Eucalyptus including E. nitens with preselected markers.
Markers associated with different traits such as growth and wood
traits were identified by sequencing samples from extremes of
trait distribution. Candidate markers with the potential associa-
tion with the traits were selected by comparing allele frequency
differences that are consistent across different populations.
Marker panels were developed with the selected candidate
markers and genotyped with the “Targeted genotyping by se-
quencing (TGS)” method. Thus, the marker panels developed
with the preselected markers consist of trait-relevant markers of
different traits.

In this study, we used preselected markers associated with
various wood and growth traits to compare the predictive perfor-
mance of the ABLUP, GBLUP, and ssGBLUP models in E. nitens. We
have tested the ability of the preselected markers to identify the
dominance effects of growth and wood traits. We have also com-
pared the prediction accuracies of GBLUP and ssGBLUP models
using IBS and IBD relationship matrices.

Materials and methods
Population data
A third-generation breeding population consisting of 8221 trees
from six progeny trials in Tasmania were used in this study
(Table 1). In total, 199 families from 330 parents were used in
this study. Of the 199 families, 139 were OP families and 60 were
CP families. Of the 60 CP families, 33 were polycrosses generated
with pollen pools (polymix). The number of trees per family
ranged from 5 to 69 with an average of 41 trees.
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From the total population of 8221 trees, 868 progeny from 172
families were genotyped. In addition, 547 parents of which 255
were the parents of the families used in this study were also gen-
otyped. In total, 1415 trees were genotyped. Trees for genotyping
were selected based on the criteria that they all have three traits
measured including growth and wood quality traits. Families
were selected based on the criteria that they have a minimum of
8 trees per family. The number of trees genotyped per family
ranged from 1 to 15 with an average of 5 trees per family.

Diameter at breast height (DBH-cm) was measured across all
the 8221 trees used in this study while wood density (DEN-kg/m3)
and kraft pulp yield (KPY-%) were measured only in 868
genotyped trees. Wood density (DEN) was measured using a
Resistograph tool (Downes et al. 2018). Wood core samples were
used to estimate KPY with Near Infra-Red spectral analysis
(Downes et al. 2010). DBH data from six trials and wood trait data
from three trials were used in this study (Table 1).

Preselection of markers and genotyping
In a previous project (S. Southerton, S. Thavamanikumar, B.
Thumma, unpublished), markers with potential association with
different traits of E. nitens were identified. For this, field trials con-
sisting of several first-generation families from three contrasting
sites were used as a discovery population for the identification of
the markers. In total, 400 to 600 trees from each trial were used.
The families used in these trials represent a cross-section of ge-
netic material used in E. nitens breeding programs in Australia.
DNA samples from trait extremes were pooled and subjected to
high throughput sequencing. Candidate genes affecting growth
and wood traits from earlier studies (Thumma et al. 2012;
Thavamanikumar et al. 2014) were used to capture the gene
regions before high throughput sequencing. The three most im-
portant traits in forest tree breeding i.e., DBH, pulp yield, wood
density were used in making the DNA pools. Pools were made
separately for each trait. Three biological replicates were made
from each pool. Thus, 18 pools per trait were used in high
throughput sequencing. Candidate markers showing the poten-
tial association with the traits were identified by comparing allele
frequencies of pooled samples from trait extremes. The markers
showing the highest differences between the pools were selected
as the potential candidate markers. To identify the markers that
are robust across different environments, markers with consis-
tent effects i.e., marker effects in the same direction across all tri-
als from different environments were selected. By analyzing
hundreds of thousands of variants, markers showing the largest

effect were selected for developing custom marker panels. The
selected markers include single nucleotide polymorphisms
(SNPs) as well as small biallelic INDELs. Thus, the E. nitens marker
panel consists of preselected markers associated with growth
and wood traits. Marker panels for genotyping were developed
with the probes to capture short genomic regions spanning the
selected candidate markers. As small genomic regions were se-
quenced, novel markers within the sequenced regions in addition
to the targeted markers will also be genotyped with this method.

TGS was used to genotype the captured genomic regions at
Gondwana Genomics Pty Ltd, Canberra. As specific regions were
used for sequencing, high coverage (>75x) is generally obtained
across the captured regions with this method. DNA from 868
progeny and 547 parents was used for genotyping with the E. nit-
ens marker panel. After filtering for markers with <90% call rate
and minor allele frequency of <0.01, 3514 markers were selected
for downstream analyses. On average each marker had 3% of
missing data. Missing marker genotypes were imputed based on
average genotype content.

Pedigree correction and reconstruction
We used the GRM from parental and progeny data to confirm or
to identify the pedigree errors. Some of the documented relation-
ships between the parents were corrected by the pedigree analy-
sis with the markers. Pedigree errors among the progeny were
corrected by identifying the right parents for some families.
Pedigree errors were identified by comparing the genomic rela-
tionship coefficients between the members of a family and the
documented parents. Individuals showing low relationship coef-
ficients compared to the average relationship coefficients of a
family and the documented parents were identified as errors. To
identify the paternal parents of polycrosses, genomic relationship
coefficients of a family were compared with those of the parents
within the pollen mix groups used for generating polycrosses.
Genomic relationship coefficients of 0.30–0.5 were used to con-
firm the parental and progeny relationships.

Inbreeding depression
Inbreeding was estimated using all the markers. Inbreeding was
estimated with the “het” function of the “PLINK” 2.0 package
(Purcell et al. 2007). To estimate inbreeding depression, linear and
quadratic regressions were performed with the phenotype data
and the estimates of inbreeding coefficients. To compare the best
fit between different models, a partial F-test was performed. All
these analyses were performed in R.

Table 1 Details of the breeding population used in this study

Families Trials

No. of trees OP CP Blythe Hudler Middlesex Kelatier Loudwater Myrtlebank

Parents Genotyped 255 184 NA NA NA NA NA NA NA
Nongenotyped 75 NA NA NA NA NA NA NA NA
Total 330 NA NA NA NA NA NA NA NA

Progeny Genotyped 868 112 60 201 398 269 NA NA NA
Nongenotyped 7353 139 57 1127 369 333 1506 1981 2037
Total 8221 251 117 1328 767 602 1506 1981 2037
Age (year, months) NA NA NA 18.6 8.8 14.9 3.8 8.9 3.9
Number of replicates NA NA NA 8 6 5 8 8 8
Number of rows NA NA NA 32 30 14 77 48 46
Number of columns NA NA NA 104 74 46 58 107 125
DBH-cm (SD) NA NA NA 20.6 (6.1) 17.8 (3.4) 16.3 (4.6) 11.6 (2.6) 16.4 (4.0) 9.6 (2.5)
KPY-%(SD) NA NA NA 52.4 (1.1) 53.0 (1.0) 50.2 (0.9) NA NA NA
DEN-kg/m3(SD) NA NA NA 489.4 (19.4) 462.4 (20.5) 493.3 (18.9) NA NA NA
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Statistical models
Phenotypic data of DBH, DEN, and KPY were adjusted to account
for the site and spatial effects. The phenotypic data were ad-
justed for structured environmental effects estimated from a
model that combined design effects (augmented with row and
columns within large design features) and spatial effects detected
using a separable two-dimensional auto-regressive model
(Dutkowski et al. 2002). To account for age differences between
the trials, trait data were standardized to zero mean and unit var-
iance. Adjusted and standardized phenotypes were used in all
subsequent analyses. Four models were used to estimate the ge-
netic parameters and breeding values. Two GBLUP models with
IBS and IBD relationship matrices and two ABLUP models based
on the documented pedigree, one with pedigree correction
(ABLUP-PR) and another without the pedigree correction (ABLUP)
were used to estimate the genetic parameters and breeding val-
ues in the genotyped trees. In addition, two single-step models
(ssGBLUP-IBS and ssGBLUP-IBD) and two ABLUP models (ABLUP-
PR with pedigree correction and ABLUP without the pedigree cor-
rection) with the DBH of all trees were also used.

The following individual tree mixed model with additive and
dominance effects was used to estimate the genetic parameters.

y ¼ Xl þ Za aþ Zddþ �

Where y is the phenotype adjusted for site and spatial effects,
l is the intercept, a is a vector of the random additive and d is a
vector of random dominance genetic effects of individual trees, e

is the vector of random residual effects. X; Za , and Zd are the in-
cident matrices relating to fixed and random additive and domi-
nance effects, a is distributed as a � N ð0;Ar2

aÞ where r2
a is the

additive genetic variance and A is the additive genetic relation-
ship matrix, d is distributed as d � N ð0;Dr2

dÞ where r2
d is the

dominance genetic variance and D is the average dominance ge-
netic relationship matrix e is distributed as e � N ð0; I r2eÞ
where I is an identity matrix and r2e is the residual variance. In
ABLUP, A and D matrices are the average NRM and dominance
relationship matrices derived from pedigree; in GBLUP, the A and
D matrices are replaced by GA and GD genomic relationship ma-
trices derived from the marker data; in ssGBLUP, the A matrix is
replaced by the H-matrix.

GBLUP:
Two types of genomic relationship matrices, i.e., IBS and IBD were
used in GBLUP. The IBS GRM is based on the VanRaden method
(VanRaden 2008) and it is calculated as,

GA ¼
WaW0

a

2
Pm

j¼1pjð1� pjÞj¼1
;

where Wa is a matrix of the SNP markers with Waij ¼ f2� 2pj;

1� 2pj;�2pjg, where Waij represents the elements of Wa matrix at
ith row and jth column. pj is the allele frequency of jth marker.

The IBD based GRM was obtained with the IBDLD v3.37 soft-
ware package (Han and Abney 2011). “GIBDLD” option was used
to estimate IBD GRM which uses marker information and the ge-
netic map without the pedigree information. IBDLD estimates the
IBD relationship matrix by accounting for linkage disequilibrium
(LD) between the markers using all markers (Han and Abney
2013). To estimate the LD pattern number of consecutive loci
(-ploci n) and distance (-dist k) were used jointly. For this, we
have used the default values of n¼ 10 and k¼ 2 cM. The physical

position of the markers was obtained by mapping the sequenced
regions to the E. grandis reference genome. As we do not have the
markers mapped on a genetic linkage map, we have converted
the physical position into an approximate genetic position by tak-
ing 1 Mb ¼ 1 cM.

GBLUP-AD
Marker-based dominance matrix was calculated according to
Vitezica et al. (2013) as,

GD ¼
WdW0

dP
jð2pjqjÞ2

;

where Wd is a matrix of the SNP markers with Wdij ¼ f�2pj
2;

2pjqj;�2qj
2g, where Wdij represents the elements of Wd matrix at

ith row and jth column. pj is the allele frequency of jth marker, qj

is 1 – pj.

Combined H-matrix
The combined H-matrix for ssGBLUP was obtained with the
HIBLUP software package (Yin et al. 2019). The IBS GRM (GA) based
on the VanRaden method and the average additive relationship
matrix from pedigree (A-matrix) were used for developing the
H-matrix. For H-matrix with IBD, the GRM from IBDLD was used.
A-matrix from an error-corrected pedigree was used to develop
the H-matrix.

The combined H-matrix for ssGBLUP was developed using the
following equation.

H ¼ A11 � A12A�1
22 A21 þ A12A�1

22 GwA�1
22 A21 A12A�1

22 Gw

GwA�1
22 A21 Gw

 !

For this, individuals were assigned to different groups based
on available information; the group with the subscript “1” repre-
sent individuals that only had pedigree information and the
group with the subscript “2” represent individuals that had only
genomic information. A11 and A22 represent relationships among
individuals within the group “1” and the group “2,” respectively,
A12 represents relationships among individuals between the
group “1” and “2”, and A21 is the transpose of A12.

To have the same scale between G and A22 the following ad-
justment was made to the G matriX.

Ga ¼ bGþ a

The adjustment factors b and a were derived from the follow-
ing equation (Christensen et al. 2012):

Avg:diagðGÞbþ a ¼ Avg:diagðA22Þ and
Avg:offdiagðGÞbþ a ¼ Avg:offdiagðA22Þ

Where: Avg.diag is the average of diagonals and Avg.offdiag is
the average of off-diagonal elements.

The rescaled Ga matrix was weighted (Aguilar et al. 2010) as
follows.

Gw ¼ 0:95Gaþ 0:05A22

The weighted Gw was used to develop the H-matriX
The additive relationship matrix and dominance matrix from

the pedigree were developed using AGHmatrix software (Amadeu
et al. 2016). Similarly, additive GRM (IBS) and dominance GRM
were also developed with the AGHmatrix package. All the
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relationship matrices developed with different packages were
used in the “SOMMER” package (Covarrubias-Pazaran 2016) to es-
timate genetic parameters and breeding values. Variance compo-
nents were estimated using restricted maximum likelihood
(REML) with Direct-inversion Newton-Raphson (NR) method.

Narrow-sense heritability (h2) was estimated as
h2 ¼ r2

g =ðr2
g þ r2

d þ r2
e Þ. Where r2

g is additive genetic variance;
r2

d dominance variance; and, r2
e residual. Dominance to total var-

iance ratio (d2) was estimated as d2 ¼ r2
d =ðr2

g þ r2
d þ r2

e Þ.

Theoretical accuracy of breeding values
Theoretical accuracies of breeding values from ABLUP, ssGBLUP
models using all the trees were estimated with the following ex-
pression.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� PEV
r2

að1þ Fi Þ

s

Where PEV is the prediction error variance from diagonal ele-
ments of the matrix from the mixed model equation (Gilmour
et al. 1995), Fi is the inbreeding coefficient of the tree I, r2

a is the
additive genetic variance from ABLUP and ssGBLUP models.

Cross-validation tests
Cross-validation tests were performed to estimate the predictive
ability and prediction accuracies of breeding values estimated
with different models. Ten-fold cross-validation tests were per-
formed to estimate the predictive abilities and prediction accura-
cies. In 10-fold cross-validation, all samples were divided
randomly into ten folds. Samples from nine folds were used to
develop the prediction model (training samples) which was then
used to estimate the breeding values of the left-out fold (test
samples) without the phenotypes. Predictive ability was esti-
mated as the Pearson correlation between the predicted breeding
values and the adjusted phenotypes of the test samples.
Similarly, predictive accuracy was estimated as the Pearson cor-
relation between the predicted breeding values from cross-
validation with the estimated breeding values (EBVs) of test sam-
ples using marker and phenotype data of all the samples. This
process is repeated ten times and the average of the 10 folds is
used as the predictive ability and prediction accuracy of the
model. When estimating prediction accuracies of a model, the
predicted breeding values from cross-validation were correlated
with the breeding values estimated with the data (marker and
phenotype) of all the samples using that model.

Predictive ability and accuracies are estimated separately for
MBVs/molecular genetic values (MGVs) from GBLUP models and
EBVs/estimated genetic values (EGVs) from ABLUP models.
Breeding values estimated with GBLUP-IBS are indicated as
MBVs, MBVs with GBLUP-IBD are indicated as MBV_IBD, genetic
values with GBLUP-AD are indicated as MGVs and genetic values
estimated with the ABLUP-AD model are indicated as EGVs.

Predictive ability and accuracies of MBVs/MGVs are estimated
by correlating MBVs/MGVs from cross-validation tests with the
MBVs/MGVs estimated with all samples, respectively. Similarly,
predictive ability and accuracies of EBVs/EGVs are estimated by
correlating EBVs/EGVs from cross-validation tests with the EBVs/
EGVs estimated with all samples, respectively.

Analysis of variance (ANOVA) was performed to test the differ-
ences in predictive ability and prediction accuracy of different
models. A Tukey’s multiple comparison test was performed to
identify the significant differences between different models. A

significance level of a ¼ 0.05 was used to test the differences be-
tween different models.

Results
Pedigree correction and reconstruction
GRM was used to identify pedigree errors and to reconstruct pedi-
gree by identifying paternal parents of OP and polycross families.
Sixty out of 868 trees showed pedigree errors. In total 133 individ-
uals from 19 families were assigned paternal parents thus con-
verting them into full-sib families. Without the pedigree
reconstruction, these families would have been treated as half-
sib families. Pedigree corrected progeny were used in all the
downstream analyses.

Genetic parameters of GBLUP and ABLUP models
using 868 genotyped trees
The estimates of genetic parameters are lower with the increased
utilization of genomic information (Table 2). Genetic parameters
estimated with ABLUP are higher for all traits compared to
GBLUP using the 868 genotyped trees. Between the two ABLUP
models, the estimates of genetic parameters are higher for
ABLUP without pedigree reconstruction compared to ABLUP-PR
with pedigree reconstruction. The highest difference between
ABLUP and GBLUP is observed for KPY. The heritability of KPY
with ABLUP is 0.93 without the pedigree reconstruction, 0.70 with
pedigree reconstruction while the heritability estimated with
GBLUP is 0.30.

Dominance effects estimated with the GBLUP-AD model is sig-
nificant for only DBH among the three traits (Table 2). For this
trait, the magnitude of additive and dominance variances are
equal with the GBLUP-AD model. The Akaike information criteria
(AIC) of GBLUP-AD is lower than the GBLUP-A model for DBH in-
dicating the better fit of the model with the dominance effects
compared to the additive model.

Among the three traits, DEN had higher dominance effects
with ABLUP-PR (pedigree reconstruction). Even though high dom-
inance was observed with ABLUP (without the pedigree recon-
struction), it was associated with high standard error (Table 2).
The model fit with dominance effects has not changed compared
to the additive only model for the ABLUP while it has improved
marginally for the ABLUP-PR model. Dominance effects with
GBLUP-AD are low for DEN (Table 2).

We also estimated the genetic parameters with GBLUP using
the IBD GRM. Only additive effects are estimated with the IBD
matrix. For DBH, the genetic parameters estimated with IBD are
similar to the IBS matrix. For DEN and KPY the additive effects
and heritability estimates with IBD are slightly lower than the IBS
matrix (Table 2).

Inbreeding depression
Inbreeding among the genotyped samples was estimated with
the PLINK package. Inbreeding depression was estimated by lin-
ear regression between the inbreeding coefficients and the phe-
notype data. There is a significant negative relationship between
inbreeding and DBH (Table 3). Similarly, there is a significant
negative relationship between inbreeding and KPY. However,
there is a nonsignificant positive relationship between inbreeding
and DEN. These results suggest inbreeding depression for DBH
and KPY. To test the linearity between inbreeding and the pheno-
types, quadratic regression was performed. The quadratic coeffi-
cient was not significant for DBH indicating the linear
relationship between inbreeding and DBH. However, for KPY
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there is a significant quadratic coefficient indicating nonlinearity
of the relationship between inbreeding and KPY (Table 3).
Significant quadratic regression between inbreeding and KPY
indicates epistasis as a significant factor contributing to the in-
breeding depression in this trait. To compare the best fit between
linear and quadratic regression models for each trait, a partial
F-test was performed. The partial F-test is not significant for DBH
while it is significant for KPY (Table 3). This indicates that the
linear regression is the best fit for DBH while the quadratic re-
gression is the best fit for KPY.

To study the effect of inbreeding on dominance, dominance
deviations from the GBLUP-AD model were correlated with the
inbreeding. While DBH and KPY had a negative relationship
with inbreeding, DEN had a positive relationship (Table 3).

These results suggest trees with high DBH and KPY are less in-
bred.

Predictive abilities and prediction accuracies
of GBLUP and ABLUP models using 868
genotyped trees
Predictive ability indicates the ability of a model to predict the
phenotypes while prediction accuracy indicates the ability of a
model to predict the breeding values. For DBH, the predictive abil-
ity with the GBLUP-AD model is the highest compared to other
models (Figure 1). Among the other four models, the predictive
ability is similar. For DEN and KPY, predictive ability among dif-
ferent models is similar. While high dominance was observed for
DEN with ABLUP models, it, however, did not result in higher pre-
dictive ability compared to the additive models. The predictive
ability of GBLUP models with IBD and IBS matrices are the same
for DBH while they are lower for GBLUP-IBD for DEN and KPY
(Figure 1). However, none of these differences were significant
with Tukey’s test at a significance level of a ¼ 0.05.

Significant differences between GBLUP and ABLUP models
were observed for prediction accuracies (Figure 2). However, be-
tween the two GBLUP models (with IBS and IBD matrices) there
are no significant differences. For all traits, accuracies with pedi-
gree reconstruction (ABLUP-PR) have improved over the ABLUP
model. The significant dominance effect observed for DEN with
the ABLUP-AD (with ABLUP-PR) model (Table 2) did not result in
higher accuracy (Figure 2). The high genetic effects observed
with the ABLUP-AD model (Table 2) did not result in high

Table 2 Genetic parameters using 868 genotyped trees

Model Trait GBLUP-IBS GBLUP-IBD ABLUP-PR ABLUP

Value SE Value SE Value SE Value SE

DBH
A Additive 0.17 0.04 0.17 0.04 0.41 0.09 0.45 0.10

Residual 0.59 0.04 0.60 0.04 0.40 0.07 0.36 0.08
h2 0.23 0.05 0.22 0.05 0.50 0.10 0.56 0.11
AIC 808 815 820 820

A 1 D Additive 0.11 0.04 0.41 0.10 0.45 0.12
Dominance 0.12 0.04 0.00 0.17 0.00 0.23
Residual 0.50 0.05 0.40 0.14 0.36 0.19
h2 0.16 0.05 0.50 0.12 0.56 0.13
d2 0.16 0.05 0.00 0.21 0.00 0.29
AIC 787 820 820
DEN

A Additive 0.32 0.06 0.27 0.06 0.51 0.13 0.70 0.15
Residual 0.78 0.06 0.84 0.05 0.61 0.10 0.42 0.12
h2 0.29 0.05 0.24 0.04 0.46 0.10 0.62 0.11
AIC 809 816 812 796

A 1 D Additive 0.30 0.06 0.36 0.13 0.61 0.17
Dominance 0.10 0.05 0.50 0.31 0.32 0.36
Residual 0.69 0.07 0.25 0.26 0.19 0.29
h2 0.28 0.05 0.32 0.11 0.55 0.14
d2 0.09 0.05 0.45 0.27 0.29 0.32
AIC 805 808 795
KPY

A Additive 0.31 0.06 0.29 0.05 0.81 0.15 1.09 0.18
Residual 0.73 0.05 0.79 0.05 0.34 0.11 0.09 0.13
h2 0.30 0.05 0.27 0.04 0.70 0.11 0.93 0.11
AIC 784 805 805 781

A 1 D Additive 0.29 0.06 0.81 0.17 1.09 0.22
Dominance 0.03 0.04 0.00 0.24 0.00 0.34
Residual 0.71 0.06 0.34 0.21 0.09 0.25
h2 0.28 0.05 0.70 0.12 0.93 0.15
d2 0.03 0.04 0.00 0.21 0.93 0.15
AIC 783 805 781

Table 3 Coefficients of linear and quadratic regression between
inbreeding and phenotypes of different traits; correlation
between inbreeding coefficients and dominance deviation of
different traits

Trait Linear
regression

Quadratic
regression

Partial
F-test

DBH �2.09*** �1.76NS 3.34NS

KPY �1.06*** �4.23*** 13.26***

DEN 0.16NS 0.31NS –
Correlation between dominance deviation and inbreeding
DBH �0.71
KPY �0.61
DEN 0.23

*** P< 0.0001; NS, not significant.
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predictive ability or accuracy indicating the inflation of genetic
parameters estimated with the ABLUP model.

Accuracy of predicting breeding values (MBVs)
and total genotypic values (MGVs) with
additive only (A) and additive and
dominance (A 1 D) models
Next, we tested the accuracy of predicting MBVs and MGVs with
an additive model (A) and additive and dominance model (AþD).
Accuracy was estimated by correlating MBVs and MGVs esti-
mated using all samples with MBVs/MGVs from cross-validation
tests using additive (A) and additive and dominance (AþD) mod-
els. While there are significant differences between the models,
the difference in the accuracy between the A and AþD models
for MGVs is higher than MBVs (Figure 3). This indicates that the
accuracy of predicting total genotypic values (MGVs) with the ad-
ditive and dominance model (AþD) will be higher than the addi-
tive model while the accuracy of predicting breeding values
(MBVs) will only be slightly better with the additive (A) model
compared to the additive and dominance (AþD) model.

Comparison of pairwise relationship coefficients
of IBS and IBD matrices
The pair-wise relationship coefficients of the IBS matrix had
higher dispersion than those of the IBD matrix (Table 4). For
unrelated individuals, the lowest pair-wise relationship coeffi-
cients were zero with IBD while they were negative with the IBS
matrix. The average of the diagonals was close to one with IBD

while it is higher than one with the IBS matrix. Similarly, the
standard deviations of diagonals and off-diagonals were lower
with IBD compared to the IBS matrix.

Genetic parameters with ssGBLUP and
ABLUP models
In addition to GBLUP, we also used the ssGBLUP model to esti-
mate genetic parameters with all 8821 genotyped and nongeno-
typed trees. Only DBH was used in the ssGBLUP model as data of

Figure 1 Predictive abilities of different models among 868 genotyped trees. ABLUP-AD for DEN is based on ABLUP-PR; ABLUP-AD for DBH, GBLUP-AD
for DEN, GBLUP-AD, and ABLUP-AD for KPY are not shown as the dominance effects were close to zero for these traits.

Figure 2 Predictive accuracies of different models among 868 genotyped trees. Accuracies with different letters indicate significant differences with
Tukey’s test at a significance level of a ¼ 0.05. ABLUP-AD for DEN is based on ABLUP-PR; ABLUP-AD for DBH, GBLUP-AD for DEN, GBLUP-AD, and
ABLUP-AD for KPY are not shown as the dominance effects were close to zero for these traits.

Figure 3 MBV and MGV accuracies with additive only (A) and additive
and dominance (AþD) models. Accuracies with different letters
indicate significant differences with Tukey’s test at a significance level
of a ¼ 0.05.
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DEN and KPY was not available for nongenotyped trees. Genetic
parameters were estimated with the two relationship matrices
(IBS and IBD) in ssGBLUP. In addition to ssGBLUP, a pedigree-
based ABLUP model was also fitted. The ssGBLUP models had
better model fit compared to ABLUP models as indicated by the
lower AIC values of the ssGBLUP models. Between the two
ssGBLUP models, ssGBLUP-IBS had a better model fit (Table 5).
Higher heritability was observed with the ssGBLUP model using
the IBS matrix compared to the other three models (Table 5).
Heritability estimates of DBH with the ABLUP models using all
trees (Table 5) were considerably lower than those with 868 gen-
otyped trees (Table 2). Among the two ABLUP models, heritability
estimates with the ABLUP-PR model are slightly higher than the
ABLUP model.

Predictive abilities and prediction accuracies of
ssGBLUP and ABLUP models using 8821 trees
Cross-validation tests were performed to test the performance of
ssGBLUP and ABLUP models using all 8821 trees. To reduce the
influence of several nongenotyped trees and to compare the
results from GBLUP analysis, tests were performed within the 868
genotyped trees. Prediction accuracies of ssGBLUP-IBD are signifi-
cantly higher than the other three models (Figure 4). Prediction
accuracies of ABLUP models with all 8821 trees (Figure 4) are
considerably higher than those with 868 genotyped trees
(Figure 2). The predictive ability of ssGBLUP models is slightly
higher than the ABLUP models (Figure 4). Between the two
ssGBLUP models, however, estimates of the predictive ability are
similar (Figure 4).

Theoretical accuracies among different models
using 8821 trees
DBH data of all 8821 trees were used to compare the theoretical
accuracies among the four models (ssGBLUP-IBS, ssGBLUP-IBD,
ABLUP-PR, and ABLUP). Among all the four models, ssGBLUP-IBS
had the highest accuracies among all three groups of trees
(parents, genotyped, and nongenotyped—Table 6). Accuracies of
ABLUP models are lower than the ssGBLUP models. Between the
two ABLUP models, accuracies were higher (for genotyped and
nongenotyped trees) with pedigree reconstruction (ABLUP-PR)
compared to the model without pedigree reconstruction (ABLUP).
Accuracy improved among all three groups (parents, genotyped,
and nongenotyped trees) with the genomic models. Between the
two genomic models, ssGBLUP-IBS had higher accuracies across
all three groups compared to ssGBLUP-IBD. Theoretical accuracy
of nongenotyped trees with ssGBLUP-IBS is the highest compared
to the other three models (ssGBLUP-IBD, ABLUP-PR, and ABLUP)
and among the three models, the accuracies are similar.

Discussion
Detection of significant dominance effects of DBH
with preselected markers
In this study, we observed significant dominance effects for DBH
with the GBLUP model using preselected markers. There is a con-
current improvement in the model fit with GBLUP-AD compared
to the additive effects only model (Table 2). While not significant,
there is a trend for higher predictive ability with the GBLUP-AD
model compared to models with only the additive effects
(Figure 1). In addition, the prediction accuracy of total genotypic
values (MGVs) is higher with the GBLUP-AD model (Figure 3).
These results are similar to those observed in E. pellita in our pre-
vious study (Thavamanikumar et al. 2020). However, the domi-
nance effects observed in this study are in contrast to the results
from other genomic studies in E. nitens (Kláp�st�e et al. 2017, 2018,
2020; Suontama et al. 2019). Kláp�st�e et al. (2017) did not observe
dominance effects for DBH using sib-ship reconstructed pedigree.
However, they did not use the GBLUP model with the GRM which
captures realized relationships among the individuals within a
family and between families. In other studies of E. nitens that
implemented GBLUP, dominance effects were not estimated.

Preselected markers containing trait-relevant markers may
have contributed to detecting dominance effects and higher ac-
curacy of predicting phenotypes and total genotypic values of
DBH in this study. In a previous study (Thavamanikumar et al.
2020), we observed significant dominance effects influencing
growth traits in an OP population of E. pellita with the preselected
markers. LD between a marker and the causal variant determines
the additive and dominance effects observed for the marker
(Aliloo et al. 2016). The additive variance observed at the marker
depends upon the square of the correlation between the marker
and the causal variant (r2), while the dominance variance ob-
served at the marker depends on the r4 between the marker and
causal variant. Thus, for detection of dominance effects markers
that are in high LD with the causal variants are required (Wei
et al. 2014). The accuracy of the models with the functional
markers would persist across many generations (Habier et al.
2010).

Several studies have shown that the inclusion of dominance
and trait-relevant markers improve prediction accuracies (Da
et al. 2014; Beaulieu et al. 2014; Liu et al. 2019). Causal or trait-
associated markers are important for the identification of domi-
nance effects. Lenz et al. (2020) did not observe significant domi-
nance effects using polycrosses and full-sib crosses in white
spruce. While they suggested that the reason for the lack of dom-
inance effects may be due to the small size of the population, an-
other reason may be due to the un-selected markers used in their
study. The accuracy of predicting total genetic values with causal
markers is higher with a small number of causal markers than
several random markers distributed across the genome (Da et al.
2014). Ramstein et al. (2020) have found that the inclusion of
dominance and genic regions enriched with functional markers
in prediction models improve prediction accuracies in maize
hybrids. Low prediction accuracy was observed by excluding rele-
vant markers and including irrelevant markers (Lippert et al.
2013). Kláp�st�e et al. (2020) have also shown higher accuracy of
predicting traits in E. nitens and Pinus radiata using preselected
markers. While these studies demonstrate the advantage of using
trait-relevant markers in genomic predictions, identifying such
markers is time-consuming and requires a large effort. We used
high throughput methods and a discovery population consisting
of trials from different sites and environments to detect trait-

Table 4 Pair-wise relationship coefficients of IBS and IBD
matrices

IBS IBD

Avg 0.002 0.023
AvgDig 1.156 1.003
AvgOffDiag 0.001 0.023
stdDiag 0.098 0.025
stdOffDiag 0.074 0.045

Avg, average of all coefficients; AvgDig, average of diagonals; AvgOffDiag,
average of off-diagonals; stdDiag, standard deviation of diagonals; stdOffDiag,
standard deviation of off-diagonals.
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relevant markers. The marker panels used in this study consist
of trait-relevant markers of different traits selected from
thousands of markers by sequencing trait extreme samples from
several trials.

Relationship between inbreeding depression and
dominance
DBH and KPY showed significant inbreeding depression (Table 3).
Of these two traits, DBH had higher inbreeding depression. Other
studies have also shown inbreeding depression of growth traits in
E. nitens (Hardner and Tibbits 1998; Kláp�st�e et al. 2017). Inbreeding
depression depends upon directional dominance and epistasis.
Inbreeding depression or heterosis occurs due to directional dom-
inance (Falconer and Mackay 1996). A trait should be influenced
by dominance effects resulting in dominance variance to exhibit
inbreeding depression (Howard et al. 2017; Doekes et al. 2021).
Directional dominance is when the phenotypes of heterozygous
individuals differ from homozygous individuals in a consistent
direction. For fitness-related traits inbreeding depression is nega-
tive i.e., fitness is reduced with the increased homozygosity
(Yengo et al. 2017). Inbreeding depression of DBH may be due to
directional dominance as indicated by the significant negative
linear relationship between inbreeding and DBH (Table 3).
Inbreeding depression in KPY may be influenced more by epista-
sis as indicated by the significant negative quadratic relationship
between inbreeding and KPY (Table 3).

Dominance variance increases with increased inbreeding.
Populations with high levels of inbreeding show a large propor-
tion of the phenotype variation arising from dominance effects
(Falconer and Mackay 1996). Misztal et al. (1997) identified higher
inbreeding depression was associated with higher levels of domi-
nance in cattle. There are two hypotheses explaining the inbreed-
ing depression due to directional dominance. One is the partial

dominance hypothesis in which deleterious recessive alleles
which are masked under heterozygous condition are exposed
with increased inbreeding leading to inbreeding depression.
Another hypothesis is overdominance. Under this hypothesis the
heterozygous condition itself is advantageous and this advantage
decreases with increasing inbreeding leading to inbreeding de-
pression (Crow and Kimura 1970; Charlesworth and Willis 2009).

It has been suggested to use inbreeding as a covariate in the
genomic model to reduce the inflation of dominance variance
(Vitezica et al. 2018). Inclusion of the inbreeding in the GBLUP-AD
model as a fixed covariate reduced the dominance variance close
to zero while not affecting the additive variance in this study
(data not shown). Predictive ability with inbreeding in the GBLUP-
AD model is lower (0.26—data not shown) than without the in-
breeding (0.35—Figure 1). These results contrast with those of
Xiang et al. (2016) who observed higher predictive ability with in-
breeding in the genomic model compared to the model without
the inbreeding. These results indicate that the dominance effects
observed for DBH in this study are entirely due to inbreeding de-
pression. The higher predictive ability of the GBLUP-AD model in
this study may be mainly due to directional dominance effects of
inbreeding depression. Including inbreeding in the genomic
model absorbs the mean dominance across all loci leading to un-
derestimation of the dominance. The dominance observed after
accounting for inbreeding represents deviations of dominance
effects of individual loci from mean dominance effects across all
loci (Xiang et al. 2016; Doekes et al. 2020). This indicates that the
dominance effects observed in this study are mainly due to mean
dominance effects across the loci.

Correlation between dominance deviation and inbreeding pro-
vides a better estimate of the effect of dominance on inbreeding
depression (Aliloo et al. 2016). There is a strong negative correla-
tion between dominance deviations from the GBLUP-AD model

Table 5 Genetic parameters estimated using 8821 genotyped and nongenotyped trees

ssGBLUP-IBS ssGBLUP-IBD ABLUP-PR ABLUP

Value SE Value SE Value SE Value SE

Additive 0.57 0.06 0.28 0.04 0.26 0.04 0.23 0.04
Residual 0.95 0.05 1.17 0.04 1.19 0.04 1.21 0.04
h2 0.38 0.04 0.19 0.03 0.18 0.03 0.16 0.03
AIC 7839 7843 7880 7891

Figure 4 Predictive ability (PA) and prediction accuracies (ACC) among different models using DBH data of all 8821trees. Bars with different letters
indicate significant differences between the models with Tukey’s test at a significance level of a ¼ 0.05.
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and inbreeding coefficients for DBH and KPY in this study
(Table 3). Similar results were also reported by Aliloo et al. (2016)
for milk production traits in dairy cows. These results suggest
that the trees with poor performance have gained less from dom-
inance while trees with higher performance gained more from
dominance. Therefore, selection based on dominance effects
should identify the better performing trees.

Bias of the genetic parameters estimated by
ABLUP models
A high dominance ratio (d2) was observed for DEN with the
ABLUP-PR model while the estimated dominance effect was low
with the GBLUP-AD model (Table 2). However, the high domi-
nance effect of the ABLUP-PR model did not result in higher pre-
dictive abilities (Figure 1) or higher prediction accuracies
(Figure 2) using dominance effects in the prediction model.
Kláp�st�e et al. (2017) have also observed high dominance effects
for tangential air shrinkage of wood with sib-ship reconstruction
in E. nitens. They did not see improvement in the model fit or pre-
cision of genetic parameters with the dominance relationship
matrix in the model. Dominance effects with ABLUP models are
not widely used as pedigree relationships are not sufficient. Large
full-sib families are required for accurate estimates of the domi-
nance. Moreover, prediction of dominance with pedigree infor-
mation is cumbersome as it typically involves complex
computations (Vitezica et al. 2013). Munoz and Sanchez (2014) in-
dicated that estimation of genetic parameters with pedigree mod-
els is biased and genetic marker data should be used to partition
additive and dominance effects.

Genetic parameters of DBH estimated with the ABLUP model
using all 8821 (Table 5) trees are significantly lower than those
estimated with 868 genotyped trees (Table 2). While the predic-
tive ability has not improved, there is a large improvement in the
prediction accuracy of DBH with ABLUP using all 8821 trees
(Figure 4). This shows that the genetic parameters are overesti-
mated with ABLUP using a small population with a few individu-
als per family compared to a large population with more
individuals per family. Several studies have shown overestima-
tion and low accuracy of the genetic parameters estimated with
the ABLUP model (Mu~noz et al. 2014; de Almeida Filho et al. 2019;
Lenz et al. 2020). In tree breeding, most of the breeding popula-
tions are made up of shallow pedigrees with minimal connec-
tions between the families spanning only a few generations.
Genetic parameters estimated with ABLUP models in such popu-
lations will be biased as only the higher-level relationships are
utilized based on the pedigree information. On the other hand,
the GRM used in the GBLUP captures the Mendelian segregation
term among the individuals within a family as well as the hidden
relationships between the families leading to higher accuracy of
the genetic parameters and breeding values estimated with the
GBLUP. The GBLUP, therefore, captures the contemporary as well
as historical relationships leading to the high accuracy of the ge-
netic parameters (Grattapaglia et al. 2018).

In several studies, the prediction accuracy of GBLUP is esti-
mated by correlating MBVs with the EBVs of ABLUP. While this

may be valid in animal breeding where deep pedigrees spanning
several generations are used and the pedigree errors are minimal,
this may not be useful in tree breeding with shallow pedigrees
and several pedigree errors. Benchmarking the prediction accu-
racy of MBVs from GBLUP with less accurate EBVs will lead to bi-
ased estimates of the accuracy. This bias was highlighted by
Kláp�st�e et al. (2018) in an OP population of E. nitens leading to a
recommendation of benchmarking MBV accuracies of GBLUP
with pedigree corrected EBVs of ABLUP. Even though this may re-
sult in better accuracies compared to those estimated without
the pedigree correction, these accuracies are still biased. Pedigree
reconstruction can only capture higher-level relationships such
as half-sibs or full-sibs of a family, but within family Mendelian
segregation term and lower-level relationships or the hidden rela-
tionships between families are not captured. Under these condi-
tions, we propose benchmarking MBVs/EBVs from cross-
validation with the MBVs estimated using all the samples used in
the study as GRM captures all kinds of relationships including
the hidden relationships. The MBVs estimated with all samples
used in a study will therefore be closer to the true breeding val-
ues. In a recent study, Lenz et al. (2020) employed this approach
to estimate the accuracies in white spruce.

Theoretical accuracy of ssGBLUP and ABLUP
models
Among all the four models using 8821 trees, ssGBLUP-IBS had the
highest heritability (Table 5). While the estimates of heritability
with ssGBLUP-IBS are higher than GBLUP-IBS, they are slightly
lower for ssGBLUP-IBD compared to the GBLUP-IBD model
(Tables 2 and 5). However, the predictive abilities and prediction
accuracies of ssGBLUP models with 8821 trees (Figure 4) are simi-
lar to that of GBLUP models with 868 genotyped trees (Figure 1).
While the ssGBLUP model did not result in higher predictive abil-
ity or higher prediction accuracy compared to GBLUP, there is a
steady increase in the theoretical accuracy of ssGBLUP compared
to the GBLUP models (data not shown). Among the four models
(ssGBLUP-IBS, ssGBLUP-IBD, ABLUP-PR, and ABLUP), ssGBLUP-IBS
had the highest theoretical accuracy among the three groups of
the samples (parents, genotyped, and nongenotyped, Table 6).
With ssGBLUP-IBS, accuracy has improved even in nongenotyped
samples whereas the accuracy among the nongenotyped samples
is similar between the other three models (ssGBLUP-IBD, ABLUP-
PR, and ABLUP). The high heritability of ssGBLUP-IBS may reflect
the improvement in the theoretical accuracy of DBH with
ssGBLUP-IBS compared to the other three models. We observed
similar results in an OP population of E. pellita (Thavamanikumar
et al. 2020). These results are in contrast to the results of a study
using an OP population in E. nitens (Kláp�st�e et al. 2018). In their
study, no improvement in theoretical accuracy was observed
among the parents and nongenotyped samples with ssGBLUP
models compared to the ABLUP model. The lack of improvement
in the accuracy was attributed to the pedigree errors and unde-
tected hidden relationships among the nongenotyped samples.
Higher theoretical accuracy of parents and nongenotyped sam-
ples with ssGBLUP-IBS in this study may be due to higher and

Table 6 Theoretical accuracies of different models using DBH data all 8821 trees

Group ssGBLUP-IBS ssGBLUP-IBD ABLUP-PR ABLUP

Parents 0.88 0.82 0.78 0.78
Genotyped 0.77 0.67 0.58 0.54
Nongenotyped 0.67 0.56 0.55 0.53
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more accurate estimates of heritability estimated with the prese-
lected markers.

Theoretical accuracies reflect how much an individual’s
breeding value improves with more data (Bijma 2012), while the
prediction accuracies reflect the ability of the model to predict
samples without the phenotype data. The similar prediction ac-
curacy within the genotyped samples of ssGBLUP models com-
pared to the GBLUP models may be due to the small proportion of
genotyped samples compared to the total samples in ssGBLUP
and the usage of a population with a shallow pedigree with mini-
mal connectedness between the families. Another important fac-
tor could be pedigree errors. While pedigree errors in genotyped
samples have been corrected, errors among nongenotyped sam-
ples may lead to biased estimates. In animal breeding where
ssGBLUP is widely used pedigree errors are generally low.
Moreover, genotype data from several thousand animals is avail-
able. Under these conditions ssGBLUP yields higher accuracy
compared to GBLUP. Therefore, the accuracy of ssGBLUP in tree
breeding may be improved by increasing the proportion of the
genotyped samples and using breeding populations with deep
pedigrees spanning several generations with several families.
Ratcliffe et al. (2017) have shown increased improvement in the
model fit, precision of genetic parameters, and breeding value ac-
curacy with the increased proportion of the samples genotyped.

Performance of ssGBLUP models with IBS and
IBD matrices
In a recent study, Jurcic et al. (2021) have shown that implemen-
tation of a ssGBLUP with IBD relationship matrix resulted in bet-
ter performance compared to a ssGBLUP model with IBS GRM in
E. dunnii. Higher predictive ability was observed with IBD com-
pared to the IBS matrix for DBH and stem straightness. They ad-
vocate the use of the IBD matrix in ssGBLUP analyses in OP tree
evaluation. In this study, we compared the performance of the
IBD and IBS matrices with GBLUP and ssGBLUP models. The pre-
dictive ability of IBS is higher than IBD with both GBLUP
(Figure 1) and ssGBLUP (Figure 4) models even though these dif-
ferences are not statistically significant. However, while the pre-
diction accuracy is similar between the two matrices with GBLUP,
there is a significant improvement in the prediction accuracy of
the ssGBLUP-IBD model compared to the ssGBLUP-IBS model
(Figure 4). Heritability and the theoretical accuracies estimated
with ssGBLUP-IBS are higher than those with the ssGBLUP-IBD
model. Moreover, the precision of the ssGBLUP-IBS model is bet-
ter than the ssGBLUP-IBD model (Table 5). However, the disper-
sion of pair-wise relationship coefficients of ssGBLUP-IBD is lower
than the ssGBLUP-IBS model (Table 4). While the high heritability
of ssGBLUP-IBS, low dispersion of relationship coefficients of
ssGBLUP-IBD and high prediction accuracy of ssGBLUP-IBD model
are similar to the results of Jurcic et al. (2021), there is however no
difference between the two models in predictive ability with both
GBLUP (Figure 1) and ssGBLUP (Figure 4). The discrepancy in the
performance of the models with IBD in the current study and the
previous study may be due to the type of population and the type
of markers used in the two studies. The breeding population used
in this study consisted of parents and progeny from both CP and
OP families while in the previous study an OP population was
used. Parents of the progeny are also genotyped in this study. IBS
based GS tracks information from many generations of pedigree
leading to higher accuracy of IBS compared to IBD which is re-
stricted to the documented pedigree (Luan et al. 2012). The rela-
tively deep pedigree used in our study may be the reason for the
better performance of the IBS matrix. Another issue may be LD or

the marker-trait associations (functional variants) captured by
the markers which leads to higher accuracy of IBS over IBD in GS
models (Vela-Avitúa et al. 2015). The functional markers within
the marker panel used in the current study may have contributed
to improved performance of the IBS matrix over the IBD matrix in
terms of predictive ability of GBLUP and ssGBLUP models; and the
theoretical accuracy of the ssGBLUP model.

Applications of dominance effects in tree
breeding
Detection of significant dominance effects has practical implica-
tions in tree breeding. In tree species that can be vegetatively
propagated, whole genotypic values which include both additive
and dominance effects can be used in selection to transfer them
to the next generation (de Almeida Filho et al. 2019). Dominance
is also crucial for selecting complementary parents to exploit het-
erosis (de Almeida Filho et al. 2016). In species such as E. nitens
where vegetative propagation is difficult, dominance can be used
to select complementary parents for crossing. Optimal mate allo-
cation involves selecting complementary parents to improve the
genetic merit (which includes both additive and dominance
effects) of the progeny. Simulation studies have shown substan-
tial improvement in selection response with mate allocation
techniques based on genomic models with dominance effects.
However, the extra response is only observed in the first genera-
tion of mating and thereafter it is not further improved but main-
tained (Toro and Varona 2010). Mate allocation methods
employing nonadditive effects will reduce the inbreeding in the
progeny (Aliloo et al. 2017). In E. nitens controlled crossing be-
tween individual parents is difficult. Therefore, a polycross mat-
ing system is used to generate CP families with a pollen mix
(polymix) collected from several parents. Even when full-sib
crosses are possible, no advantage is found with full-sib crosses
compared to polycrosses (Lenz et al. 2020). The total genotypic
values (MGVs) of the parents may be used for generating CP fami-
lies with improved progeny performance. In this study, among
the top ten parents with the highest MGVs for DBH, one parent
(maternal) has genotyped progeny. All the progeny derived from
this parent have high MGVs (data not shown) indicating the in-
heritance of the dominance effects by the progeny. Controlled
crossing among the top parents with the highest MGVs should,
therefore, result in progeny with high MGVs and improved ge-
netic performance.

Conclusions
In this study, we observed significant dominance effects control-
ling DBH with preselected markers containing trait-relevant
markers. Higher predictive abilities and higher total genotypic
value accuracies were observed using prediction models with
dominance effects. The performance of the models with IBS and
IBD relationship matrices was similar within the genotyped sam-
ples using GBLUP. The prediction accuracy of IBD in ssGBLUP was
higher than IBS. However, the theoretical accuracy of the
ssGBLUP model with the IBS matrix is higher than the ssGBLUP
model with the IBD matrix and ABLUP models. Improvement in
theoretical accuracy was observed for nongenotyped samples
and parents with the ssGBLUP-IBS model compared to other
models. Significant inbreeding depression was observed for DBH
and KPY. A linear relationship was observed between inbreeding
and DBH while a nonlinear quadratic relationship was observed
between inbreeding and KPY. This suggests that directional domi-
nance contributes to the inbreeding depression of DBH while
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epistasis may be an important factor contributing to the inbreed-
ing depression of KPY. The dominance effects observed for DBH
in this study are mainly due to inbreeding depression. The signifi-
cant dominance effect of DBH observed in this study may be used
in mate allocation programs to select complementary parents to
generate superior progeny.

Data availability
The pedigree and trait data used in this study are in
Supplementary Table S1. The marker genotype data used in this
study are in Supplementary Table S2. Supplementary material is
available at figshare: https://doi.org/10.25387/g3.15170883.
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Kláp�ste J, Suontama M, Dungey HS, Telfer EJ, Graham NJ, et al. 2018.

Effect of hidden relatedness on single-step genetic evaluation in

an advanced open-pollinated breeding program. J Hered. 109:

802–810.
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