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Abstract. A cell-free assay has been developed for the 
delivery of influenza virus neuraminidase to the 
plasma membrane. Two types of postnuclear superna- 
tant, which acted as donor and acceptor of the en- 
zyme, were prepared from baby hamster kidney cells. 
Donor preparations were obtained from cells infected 
with influenza virus and containing neuraminidase en 
route to the plasma membrane. Acceptor preparations 
were obtained from cells containing, bound to their 
plasma membranes, Semliki Forest virus with enve- 
lope glycoproteins bearing [3H]N-acetylneuraminic 
acid. Fusion between vesicles from these two prepara- 
tions permits access of the enzyme to its substrate, 
which results in the release of free [3H]N-acetylneur- 

aminic acid. This release was detected through the 
transfer of radioactivity from a trichloroacetic acid- 
insoluble to a trichloroacetic acid-soluble fraction. An 
ATP-dependent component of release was found, 
which appears to be a consequence of vesicle fusion. 
This component was enhanced when the donor was 
prepared from cells in which the enzyme had been 
concentrated in a compartment between the Golgi 
complex and the plasma membrane, which indicates 
that a specific exocytic fusion event has been recon- 
stituted. The extent of fusion is greatly reduced by 
pre-treatment of donor and acceptor preparations with 
trypsin, which points to the involvement of proteins in 
the fusion reaction. 

I 
r~ eukaryotic cells transport of proteins between or- 
ganelles is believed to be mediated by vesicles that bud 
off one compartment and fuse with another (Palade, 

1975). To avoid randomization of membrane components as 
a consequence of this extensive vesicular traffic, vesicles 
must be able to select and package proteins that are to be 
transported out of an organelle, leaving behind resident pro- 
teins, and then diffuse towards and fuse specifically with the 
target organelle. The elucidation of the molecular details of 
this protein transport system will require the reconstitution 
of its various components in cell-free preparations. This ap- 
proach has already yielded important information about the 
transport of membrane proteins through the Golgi complex 
(Balch et al., 1984a, b; Braell et al., 1984). In this paper we 
describe a cell-free assay for the final step in the intracellular 
transport pathway of a newly synthesized viral glycoprotein, 
that is, its delivery into the plasma membrane. 

In cells infected with influenza virus, the viral envelope 
glycoproteins, haemagglutinin and neuraminidase, are syn- 
thesized in large amounts (Rodriguez-Boulan and Pender- 
gast, 1980; Fuller et al., 1985) and are transported from their 
site of synthesis in the endoplasmic reticulum to the plasma 
membrane via the Golgi complex (Rodriguez-Boulan et al., 
1984; Rindler et al., 1984; Edwardson, 1984). They have, 
therefore, been used extensively as model plasma membrane 
proteins. We decided to exploit the enzyme activity of neur- 
aminidase in designing a cell-free assay for fusion of post- 
Golgi vesicles with the plasma membrane. 

Materials and Methods 

Cells and Virus 

Baby hamster kidney (BHK-21) cells were grown as monolayers in Glas- 
gow's minimum essential medium (GMEM) 1 supplemented with 10% 
newborn calf serum, 10 % tryptose phosphate broth, and 160 t~g/ml gentami- 
cin. All cells, medium, and supplements were supplied by Flow Laborato- 
ries, Rickmansworth, Herts. 

The WSN (H1N1) strain of influenza virus, initially obtained from Dr. 
S. C. Inglis (Department of Pathology, University of Cambridge, UK), was 
grown in fertile hens' eggs, purified by centrifugation on a continuous su- 
crose density gradient (15-60% wt/vol in 50 mM Tris-HCl, pH 7.4, 100 mM 
NaC1) for 2 h at 100,000 g and assayed by plaquing on Madin-Darby canine 
kidney (MDCK) cell monolayers. Stocks of virus were stored in liquid 
nitrogen. 

Semliki Forest virus (SFV), initially obtained from Dr. T. R. Hesketh 
(Department of Biochemistry, University of Cambridge, UK), was grown 
on BHK-21 cells. Cells (10 s at 50% confluence on 5 x 14-cm diam tissue 
culture dishes) were washed twice with Eagle's minimum essential medium 
containing 0.2 % (wt/vol) bovine serum albumin (BSA; Sigma, Poole, Dor- 
set) and 20 mM Hepes, pH 6.8, and infected with 0.01 plaque-forming units 
(pfu) of SFV/cell in the same medium for 1 h at 37°C. The medium was 
then replaced with 50 inl complete GMEM. After 15 h at 37°C the medium 
was harvested and centrifuged at 5,000 g for 30 min to sediment cell debris. 
SFV was sedimented by centrifugation at 60,000 g for 2.5 h and purified 
by centrifugation for 2 h at 100,000 g on a gradient consisting of 10-20% 
(wt/vol) sucrose in 50 mM Tris-HCl, pH 7.4, 100 mM NaCl above 25-50% 

1. Abbreviations used in this paper: DD-NANA, 2,3-dehydro-2-desoxy- 
N-acetylneuraminic acid; GMEM, Glasgow's modified Eagle's medium; 
NANA, N-acetylneuraminic acid; pill, plaque-forming unit; SFV, Semliki 
Forest virus; STM, sucrose, Tris, magnesium acetate. 

© The Rockefeller University Press, 0021-9525/86/11/1829/7 $1.00 
The Journal of Cell Biology, Volume 103, November 1986 1829-1835 1829 



(wt/vo') sucrose in the same buffer. Stocks of virus were stored in liquid ' 
nitrogen. 

Preparation of pH]SFV 
Preparation of [3H]SFV was as described above for SFV, except that the 
post-infection maintenance medium contained 5 mCi [3H]N-acetyl-o-man- 
nosamine (30 Ci/mmol; New England Nuclear, Stevenage, Herts). The en- 
velope glycoproteins of shed virions consequently contained [3H]N-acetyl- 
neurarninic acid ([3H]NANA) (Monaco and Robbins, 1973). 

Preparation of Donor Postnuclear Supernatant 
BHK cells (10 s at near-confluence on 3 x 14-cm diam tissue culture 
dishes) were washed twice with 30 ml GMEM containing 0.2% (wt/vol) 
BSA and infected with 10 pfu influenza virus/cell in the same medium for 
1 h at 37°C. The medium was replaced with GMEM containing 2% new- 
born calf serum. After a further 4 h at 37°C, the cells were either harvested 
at once or incubated for a further 1 h at 20°C. The medium was discarded 
and the cells were washed twice with 30 ml infection medium without virus 
and twice with 30 ml STM buffer (250 mM sucrose, 10 mM Tris-HC1, pH 
7.5, 1 mM magnesium acetate). The dishes were drained and the cells were 
scraped off using a rubber scraper. The cell suspension (volume '~2 nil) was 
homogenized in a Dounce homogenizer, and a postnuclear supernatant was 
prepared by centrifugation at 500 g for 5 min. Donor preparations were 
stored in 250 gl samples in liquid nitrogen. 

Preparation of Acceptor Postnuclear Supernatant 
BHK cells (10 s at near-confluence on 3 x 14-cm diam tissue culture 
dishes) were cooled to 4°C and washed twice at this temperature with 30 ml 
GMEM, pH 6.8, containing 0.2% (wt/vol) BSA. [3H]SFV (,',,2 x 106 dis- 
integrations per minute [dpm]) was then added in 15 mi of the above 
medium, and the cells were rocked gently for 2 h at 4°C. The binding 
medium was removed and the cells were washed twice with 30 mi of the 
above medium and twice with 30 ml of STM buffer, each time at 4°C. The 
dishes were then drained and the cells were scraped off, homogenized, and 
centrifuged as described above. A typical preparation contained 5 x 105 
dpm. Acceptor preparations were stored in 250-gl samples in liquid 
nitrogen. 

Determination of Acceptor Latency 
Samples of [3H]SFV (4,000-8,000 dpm) or acceptor preparation (50 gl) 
were incubated at 37°C for 2 h with either neuraminidase from Clostridium 
perfringens (Sigma Type V; 400 mU/ml), or influenza virus (4 x 107 
pfu/ml) in 250 gl of STM buffer containing 25 mM potassium chloride, 25 
mM Hepes-KOH, pH 7.0, 1.5 mM magnesium acetate, and 1 mM dithio- 
threitol (Sigma). In some cases incubation mixes contained 0.1% (wt/vol) 
Triton X-100. At the end of the incubation the tubes were cooled on ice and 
5 I~1 10% (wt/vol) Triton X-100 in 250 mM K2EDTA, pH 6.9 was added to 
solubilize the membranes. Protein was precipitated by the addition of 250 
~t120% (wt/vol) TCA. After 1 h on ice the tubes were centrifuged for 1 min 
in an Eppendorf microfuge and the superuatant fluids were removed. Radio- 
activity was counted by liquid scintillation spectrometry using 0.6 % (wt/vol) 
butyl PBD/70% (vol/vol) toluene/30% (vol/vol) Triton X-100 as scintillation 
fluid. All determinations were made in either duplicate or triplicate. 

Cell-free Assay 
For standard assays 50 I.tl of donor preparation was mixed with 50 gl of ac- 
ceptor preparation (>10,000 dpm), 100 ltl of STM buffer, 25 gl of a solution 
containing 250 mM potassium chloride, 250 mM Hepes-KOH, pH 7.0, 15 
mM magnesium acetate and 10 mM dithiothroitol (Sigma), 10 Ixl of 25 mM 
2,3-dehydro-2-desoxy-NANA (Boehringer Mannheim GmbH, Mannheim, 
FRG), an inhibitor of neuraminidase (Meindl et al., 1974), and either 5 txl 
of an ATP-depleting cocktail (1,250 IU/rni hexokinase [Sigma Type C-300, 
from baker's yeast] in 250 mM glucose) or 7.5 gl of an ATP-generating 
cocktail (2.5 gl 100 mM ATP [Sigma, from equine muscle, disodium salt]), 
2.5 I~1800 mM creatine phosphate (Boehringer Mannheim GmbH), and 2.5 
~tl 700 IU/ml creatine phosphokinase (Sigma Type I, from rabbit muscle). 
The total volume of the mixture was made up to 250 I~1 with water. The mix- 
ture was incubated at 37*C, usually for 1 h. At the end of the incubation 
the tubes were cooled on ice and processed as above. All determinations 
were made in either duplicate or triplicate. 

Results 

Principle of the Assay 
Fig. 1 illustrates the principle of the cell-free assay. Two 
types of postnuclear supernatant, which acted as donor and 
acceptor of neuraminidase, were prepared from BHK-21 
cells. Donor preparations were obtained from cells infected 
with influenza virus, and containing neuraminidase en route 
to the plasma membrane. Acceptor preparations were ob- 
tained from cells containing, bound to their plasma mem- 
branes, SFV with envelope glycoproteins beating [3H]NANA. 
Fusion between vesicles from these two preparations permits 
access of the enzyme to its substrate, which results in release 
of free [3H]NANA. This release was detected through 
transfer of radioactivity from a TCA-insoluble to a TCA-solu- 
ble fraction. The NANA analogue 2,3-dehydro-2-desoxy- 

donor vesicle acceptor vesicle 

fused vesicle 

influenza 
neuraminidase 

[3HI.SFV 

[3 H] NANA 

Figure 1. Principle of  the cell-free assay. Two types of  postnuclear  
supernatant,  which act as donor  and acceptor  of  neuraminidase,  are 
prepared f rom BHK-21 cells. Donor  preparations are obtained from 
cells infected with influenza virus and containing neuraminidase en 
route to the plasma membrane.  Acceptor  preparations are obtained 
from cells containing, bound to their p lasma membranes ,  SFV with 
envelope glycoproteins bearing [3H]NANA. Fusion between vesi- 
cles f rom these two preparations results in access of  the enzyme to 
its substrate and release of  free [3H]NANA. This release is de- 
tected through transfer o f  radioactivity f rom a TCA-insoluble to a 
TCA-soluble fraction. Trivial release of  [3H]NANA as a conse- 
quence of  contact  between vesicles bearing externally exposed en- 
zyme and substrate is minimized by inclusion in the incubation mix 
of  D D - N A N A ,  an inhibitor o f  neuraminidase.  Vesicles are shown 
bearing outward-facing "recognition markers" that are presumed to 
mediate the specific fusion reaction. 
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NANA (DD-NANA), an inhibitor of neuraminidase, was in- 
cluded routinely in the assays, to prevent trivial release of 
[3H]NANA consequent on contact between vesicles bearing 
externally exposed enzyme or substrate. 

A similar approach has been used by Davey et al. (1985) 
in the cell-free reconstitution of an endocytic fusion event. 

Characterization of the Acceptor Preparation 

To permit an estimation of the efficiency of any vesicle fusion 
reaction, it was necessary to determine the percentage of the 
[3H]SFV in an acceptor preparation that was located within 
sealed vesicles, a figure that we term acceptor latency. 
Latency was determined by comparing the abilities of neur- 
aminidase to cleave [3H]NANA from [3H]SFV and from 
samples of acceptor preparation. Soluble neuraminidase 
from Clostridium perfringens was used to remove the possi- 
bility that unsealed vesicles, that were nevertheless able to 
exclude influenza virions, would give an artificially high 
value for acceptor latency. In a typical experiment neur- 
aminidase cleaved maximally 79 % of the total radioactivity 
from [3H]SFV and 68 % from a sample of acceptor prepara- 
tion. It was confirmed by chromatography on Bio-Gel P2 
(Bio-Rad, Watford, Herts; data not shown) that the radioac- 
tivity released was associated with NANA. The percentage 
of the total [3H]SFV in the acceptor preparation that is ex- 
posed to enzyme is, then, 100 × % cleavage from accep- 
tor/% cleavage from [3H]SFV, which equals 100 x 68/79, 
or 86%. Hence, 14% of the total [3H]SFV in this acceptor 
preparation is protected inside sealed vesicles. The mean 
latency value (+ SEM) obtained was 16 + 4% (n = 12). 

Influenza virion-bound neuraminidase could cleave max- 
imally only 61 + 2% (n = 4) of [3H]NANA from [3H]SFV. 
Since acceptor latency is 16 %, therefore, the maximum pos- 
sible fusion-dependent release of [3H]NANA will be ,o10% 
of the total. 

The observation that soluble neuraminidase, from C. per- 
fringens, is more effective than virion-bound enzyme sug- 
gests that steric hindrance of both enzyme and substrate is 
occurring. This idea is supported by the finding that both 
forms of enzyme cleaved off at least 90% of [3H]NANA in 
the presence of the detergent Triton X-100 (0.1% [wt/vol]). 
This effect of Triton X-100 renders it impossible to measure 
latency by comparing the cleavage produced by neurarnini- 
dase in the presence and absence of detergent. The near- 
complete cleavage produced by influenza neuraminidase in 

Table I. Results from a Typical Cell-free Assay 

Donor 

ATP-dependent ATP-dependent, influenza 
Release of release of neuraminidase-dependent 

ATP [3H]NANA (%) [3H]NANA (%) release of [3H]NANA (%) 

Blank - 0 . 0  + 0 . 2  - 

+ 0.7 + 0.2 0.7 + 0.2 - 

Donor - 10.8 + 0.3 - 

+ 15.3 -t- 0.4 4.5 + 0.4 3.8 + 0.4 

Samples of acceptor preparation were incubated at 37°C for 1 h with samples 
of either blank donor or donor preparations in the presence of either an ATP- 
depleting cocktail (-)  or an ATP-generating cocktail (+). Protein was precipi- 
tated by the addition of TCA, and the percentage of the total [3H]NANA 
released into the supernatant fluid was determined. Values are means 5: SEM 
of triplicate determinations. All of the ATP-dependent components of release 
of [3H]NANA are statistically significant (P < 0.01). 

the presence of Triton X-100 indicates, of course, that the 
specificity of the viral neuraminidase and the glycosylation 
of SFV in BHK-21 cells are complementary. 

The Cell-free Assay 

We expected that the fusion event in which we were in- 
terested would require energy. Consequently, donor and ac- 
ceptor preparations were incubated together in the absence 
and presence of ATE Table I shows the results obtained in 
a typical experiment. Donor prepared from influenza virus- 
infected cells gave both ATP-dependent and ATP-indepen- 
dent components of release of [3H]NANA. Blank donor, 
prepared from mock-infected cells, gave a small ATP-depen- 
dent component of release and no ATP-independent compo- 
nent. The ATP-dependent component of release given by the 
blank donor preparation was found to be time-dependent and 
sensitive to heat treatment of the extract (data not shown). 
At present the significance of this component is unclear. 

DD-NANA, an inhibitor of neuraminidase, was included 
routinely in the assays. Any release occurring in the presence 
of DD-NANA should be a consequence of enzyme-substrate 
interaction within a compartment from which the inhibitor 
is excluded, provided that its concentration is sufficient to 
saturate the enzyme. In the absence of DD-NANA, the small 
ATP-dependent component of release of [3H]NANA was 
superimposed on a large background release of 30-60 % of 
the total radioactivity, and so was difficult to measure repro- 
ducibly. The ATP-independent release of [3H]NANA given 
by donor preparations appears to be a result of incomplete 
inhibition of externally exposed enzyme by the DD-NANA. 
This component of release increases linearly over the 1-h in- 
cubation period, and its magnitude at the end of this period 
falls progressively as the concentration of DD-NANA is in- 
creased (data not shown). At a concentration of 5 mM DD- 
NANA, the highest that can reasonably be achieved, ATP- 
independent release falls to ,o8%. 

Table H shows the pooled results from ten cell-free assays. 
As can be seen, the ATP-dependent component of release of 
[3H]NANA given by donor preparations is approximately 
fourfold greater than that given by blank donor preparations. 

The ATP-dependent, Influenza 
Neuraminidase-dependent Component of Release of 
ffH]NANA Is a Consequence of Vesicle Fusion 

The inclusion of the detergent Triton X-100 in the incubation 
mix, at a concentration (0.1% wt/vol) that should lyse vesi- 
cles, abolished the ATP-dependent, influenza neuramini- 
dase-dependent component of release of [3H]NANA given 
by donor preparations but did not affect that given by blank 
donor preparations (Fig. 2). This result indicates that the 
ATP-dependent, influenza neuraminidase-dependent com- 
ponent of release of [3H]NANA is a consequence of vesicle 

Table II. Pooled Results from Ten Assays 

ATP-dependent, influenza 
ATP-dependent release of neuraminidase-dependent 

Donor [3H]NANA (%) release of [3HINANA (%) 

Blank 1.2 + 0.2 

Donor 5.1 + 0.5 3.9 + 0.5 

See footnote to Table I. 
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Figure 2. Effect on ATP-de- 
pendent release of free [3H]- 

NANA of the presence of Tri- 
ton X-100 in the incubation 
mix. Incubations were carried 
out as usual either in the ab- 
sence or the presence of Tri- 
ton X-100 (0.1% wt/vol). Pro- 
tein was precipitated by the 
addition of TCA, and the val- 
ues of the ATP-dependent 
components of release of free 
[3H]NANA were calculated. 
Values are means + SEM from 
five separate experiments. 

fusion. Further evidence that this is indeed the case was ob- 
tained from an experiment in which the release of 
[3H]NANA given by a standard preparation was compared 
with that given by blank preparations to which enzyme and 
substrate had been added at the start of  the incubation (Table 
III). A statistically significant ATP-dependent, influenza 
neuraminidase-dependent component of  release was given 
only by a combination of standard donor and acceptor prepa- 
rations. Hence, enzyme and substrate must be present within 
sealed vesicles. 

7~me-course of the ATP-dependent, Influenza 
Neuraminidase-dependent Component of Release 
of PHINANA 
The time-course of the ATP-dependent, influenza neur- 
aminidase-dependent component of release of [3H]NANA 
is shown in Fig. 3. The time-course has a distinct sigmoid 
shape. This may reflect the need for a finite time for the vesi- 
cle populations to fuse together and deliver enzyme to sub- 
strate. The relationship between the time-courses of release 
and of vesicle fusion is at present unclear, although the time- 
course of the action of  enzyme on substrate clearly contrib- 
utes significantly. 
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Figure 3. Time-course of the ATP-dependent, influenza neuramini- 
dase-dependent component of release of [3H]NANA. Samples of 
acceptor preparation were incubated at 37°C for various times with 
samples of either blank donor or donor preparations in the presence 
of either an ATP-depleting cocktail or an ATP-generating cocktail. 
Protein was precipitated by the addition of TCA, and the values for 
the ATP-dependent, influenza neuraminidase-dependent compo- 
nent of release of free [3H]NANA at the various times were calcu- 
lated. Values are means + SEM from four separate experiments. 

Specificity of the Fusion Reaction 

If  the component of release of free [3H]NANA that is de- 
pendent on both influenza virus and ATP does indeed repre- 
sent a membrane fusion event that is normally responsible 
for the delivery of influenza neuraminidase to the plasma 
membrane, then it should show specificity. In other words, 
only post-Golgi vesicles from the donor preparation should 
fuse with plasma membrane vesicles from the acceptor prep- 
aration. We set out to establish whether there was any evi- 
dence for this specificity. 

Since the production of acceptor involves the binding of 
[3H]SFV to BHK-21 cells at 4°C, a temperature at which no 

Table III. Dependence of the Release of Free 13H]NANA on the Position of Enzyme and Substrate Relative to 
Vesicle Membranes 

ATP-dependent, influenza 
neuraminidase-dependent 

Donor Acceptor ATP-dependent release of [3H]NANA (%) release of [3H]NANA (%) 

Blank Acceptor 1.6 + 0.7 - 
Blank + influenza virus Acceptor 2.4 + 0.7 0.8 _+ 1.0 
Donor Acceptor 5.9 + 1.2 4.3 ± 1.4 

Blank Blank + [3H]SFV 3.0 + 0.9 - 
Blank + influenza virus Blank + [3H]SFV 0.3 + 2.6 - 2 . 7  _ 2.8 
Donor Blank + [3H]SFV 0.8 _ 1.0 - 2 . 2  ___ 1.3 

Reactions were carried out using standard donor and acceptor preparations, and also blank donor preparations to which was added, at the start of the incubation, 
influenza virus (of neuraminidase activity equal to that of the standard donor), and blank acceptor preparations to which was added [3H]SFV (containing an equal 
amount of radioactivity to that of the standard acceptor extract). Samples were incubated together in pairs, as shown, at 37°C for 1 h. Protein was precipitated 
by the addition of TCA, and the values for ATP-dependent release of free [3H]NANA given by the various pairs were calculated. Values are means + SEM of 
triplicate determinations. Of the ATP-dependent, influenza neuraminidase-dependent components of release of [3H]NANA, only that given by the standard com- 
bination of donor and acceptor is statistically significant (P < 0.01). 
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endocytosis occurs (Fries and Helenius, 1979), radiolabeled 
virions in these preparations will be bound exclusively to the 
plasma membrane. However, there is no simple way of ob- 
taining a donor preparation containing influenza neuramini- 
dase exclusively in post-Golgi vesicles. Instead, an attempt 
was made to concentrate neuraminidase in a compartment 
late in the transport pathway. Such a preparation would be 
expected to give an enhanced ATP-dependent release of free 
[3H]NANA for a given amount of neuraminidase activity. 
The procedure used to obtain this preparation is based on the 
observation (Matlin and Simons, 1983; Rodriguez-Boulan et 
al., 1984; Fuller et al., 1985; Griffiths et al., 1985) that incu- 
bation of enveloped virus-infected cells at 20°C causes an ar- 
rest in the transport of the viral envelope glycoproteins in a 
reticular, membrane-limited compartment on the trans side 
of the Golgi complex. Specifically, cells were infected with 
influenza virus at 37°C for 5 h and then cooled to 20°C for 
1 h before homogenization. In addition, a donor preparation 
was obtained from ceils to which influenza virus had been 
bound for 2 h at 4°C. This preparation will contain influenza 
neuraminidase bound exclusively to the plasma membrane, 
and would be expected to give little or no ATP-dependent re- 
lease of free [3H]NANA. 

The neuraminidase activities of these two new donor 
preparations, and of a standard 37°C donor preparation, 
were determined by measuring the initial rates of release of 
[3H]NANA from [3H]SFV in the presence of 0.2 % (wt/vol) 
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Figure 4. Specificity of the fusion reaction. In addition to the stan- 
dard blank donor and donor preparations, postnuclear supernatants 
were prepared from infected cells that had been incubated at 37°C 
for 5 h and then at 20°C for 1 h, and from cells to which influenza 
virus had been bound for 2 h at 4°C. Samples of the donor prepara- 
tions, containing equal amounts of enzyme activities and with their 
protein concentrations balanced by the addition of BSA, were in- 
cubated with samples of acceptor preparation at 37°C for 1 h. A 
sample of blank donor preparation was also included. Protein was 
precipitated by the addition of TCA, and the ATP-dependent release 
of [3H]NANA was determined. Values are means of duplicate de- 
terminations which differed by <10 %. 

Triton X-100. Protein concentrations were determined by the 
method of Bradford (1976). Samples of these donor prep- 
arations, containing equal amounts of neuraminidase ac- 
tivity, and with protein concentrations balanced by addi- 
tion of BSA, were then subjected to the usual fusion assay. 
The values obtained for ATP-dependent release of free 
[3H]NANA are shown in Fig. 4. The release produced by 
the 20°C donor was almost double that given by the 37°C do- 
nor and approximately fivefold greater than that given by the 
plasma membrane donor. In this particular experiment the 
blank donor gave no ATP-dependent release. Hence, the de- 
gree of release produced depends on the position of neur- 
aminidase within the cell, as would be expected of a specific 
fusion event. There was no correlation between the amount 
of protein contained in the donor samples and the ATP- 
dependent release of [3H]NANA produced. For example, 
the 37°C donor sample contained 20% more protein than the 
20°C donor sample but had less activity in the assay. Hence, 
the variation in donor activity observed is not simply a con- 
sequence of differences in the amounts of postnuclear super- 
natant used. In addition, there was no indication of a 
position-dependence of the ATP-independent component of 
release (data not shown), a result that would be expected of 
a trivial effect unrelated to fusion. 

EJ~ciency o f  the Fusion Reaction 

The ATP-dependent, influenza neuraminidase-dependent 
component of release of [3H]NANA produced after a 2-h 
incubation at 37°C amounts to 5.7 % of total (Fig. 3). Given 
that the latent releasable [3H]NANA represents 10% of to- 
tal, fusion is •57% efficient at its end-point. Except where 
stated, the results presented in this paper were obtained using 
donor preparations obtained from cells in which intracellular 
transport of neuraminidase was blocked in the trans Golgi 
reticulum by incubation at 20°C for 1 h. As is shown in Fig. 
4, fusion is less efficient if this procedure is not adopted. 

Fusion Requires Proteins 

It was expected that vesicle fusion would require the pres- 
ence of proteins both on the c2¢toplasmic surface of the vesi- 
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Figure 5. Trypsin sensitivity 
of the fusion reaction. Incuba- 
tion mixes were treated with 
either trypsin-TPCK (Sigma 
Type XIII; 100 p.g/ml) or 
trypsin-TPCK plus soybean 
trypsin inhibitor (Sigma; 100 
lag/ml) for 1 h at 4°C. Soybean 
trypsin inhibitor was then 
added to trypsin-treated sam- 
pies, and all samples were in- 
cubated at 37°C for 1 h as 
usual. Protein was then pre- 
cipitated by addition of TCA, 
and the ATP-dependent re- 
lease of [3H]NANA was de- 
termined. Values are means + 
SEM of triplicate determina- 
tions. 
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cles themselves and in the cytosol. To test this prediction the 
effect of trypsin treatment of the preparations on the fusion 
reaction was investigated. Mixed donor and acceptor prepa- 
rations were treated with trypsin-TPCK (100 txg/ml) at 4°C 
for 1 h. Soybean trypsin inhibitor (100 Ixg/ml) was then added 
and the preparations were incubated at 37°C for 1 h as usual. 
The results obtained are shown in Fig. 5. Trypsin treatment 
caused an 84 % reduction in the size of the ATP-dependent, 
influenza neuraminidase-dependent component of release of 
[3H]NANA, which indicates that proteins are involved in 
the fusion reaction. Since crude postnuclear supernatants 
were used in this experiment, it is not possible at present to 
discriminate between proteins bound to the vesicle mem- 
branes and those free in the cytosol. 

Discussion 

In this paper we describe a cell-free assay for the insertion 
of influenza virus neuraminidase into the plasma membrane 
which exploits the enzyme activity of this glycoprotein. En- 
zyme and substrate (SFV with envelope glycoproteins con- 
raining [3H]NANA) have been placed in separate popula- 
tions of vesicles and fusion between the two populations has 
been monitored by the appearance of the product, free 
[3H]NANA. The assay has revealed two influenza neur- 
aminidase-dependent components of release of [3H]NANA, 
one ATP-independent and the other ATP-dependent. Only 
the latter component appears to be associated with vesicle fu- 
sion. Since vesicle-mediated intracellular transport of pro- 
teins is known to be a highly specific, energy-dependent pro- 
cess (Palade, 1975), we are encouraged by our identification 
of a fusion reaction that requires the presence of ATP in the 
incubation mix and that is sensitive to the position of neur- 
aminidase in the cells from which the donor preparation is 
obtained. 

The only information available so far about the donor com- 
partment is that it appears to be situated late in the transport 
pathway of neuraminidase. Incubation of influenza virus- 
infected cells at 20°C could cause a concentration of neur- 
aminidase in genuine vesicles that are competent to fuse 
with the plasma membrane only at 37°C. Alternatively, the 
homogenization procedure could artificially generate fusion- 
competent vesicles from the budding reticular network of 
membranes observed on the t rans  face of the Golgi complex 
in these cells (Griffiths et al., 1985). Answers to questions 
such as these must await the further characterization of the 
cell-free vesicle fusion reaction. 

Under the conditions used at present, donor preparations 
cannot bring about the complete release of latent [3H]NANA. 
The most likely explanation of this incomplete release is that 
the amount of neuraminidase present in fusion-competent 
vesicles in a typical donor preparation is limiting. An in- 
crease in the amount of donor preparation used in the assay 
is unlikely to solve this problem because this will increase 
not only the number of fusion-competent donor vesicles, but 
also the number of competing unlabeled plasma membrane 
target vesicles. What is required is an increase in the percent- 
age of the total neuraminidase that is contained in fusion- 
competent vesicles. Such an increase is apparently produced 
(Fig. 4) by blocking the intracellular transport of newly syn- 
thesized neuraminidase in the trans Golgi reticulum by incu- 
bation of cells at 20°C. It should be possible to produce a 

further increase by exploiting the observation (Matlin and Si- 
mons, 1983; Rodriguez-Boulan et al., 1984; Fuller et al., 
1985; Griffiths et al., 1985) that re-warming 20°C-blocked 
cells causes the rapid (5-30 min) appearance of the proteins 
at the cell surface. By choosing the correct time of incubation 
at 37°C a donor preparation further enriched in neuramini- 
dase-containing, fusion-competent vesicles could in princi- 
ple be obtained. At present, we are investigating the efficacy 
of this procedure. 

A problem with the assay reported here is the production 
by blank donor preparations of a significant, and variable, 
ATP-dependent component of release of free [3H]NANA. A 
similar finding has been reported by Davey et al. (1985), who 
suggest that this component is caused by enzymes, other than 
neuraminidases, released during the homogenization. We 
are attempting to circumvent this problem by reconstituting 
the incubation mix from individual membrane preparations 
supplemented with cytosol preparations. Preliminary experi- 
ments indicate that conditions can be obtained in which all 
of the ATP-dependent component of release depends also on 
the presence of influenza neuraminidase. The use of mem- 
brane fractions supplemented with cytosol will eliminate 
some of the problems with experimental design that have 
been encountered using crude postnuclear supernatants. For 
example, in comparisons between the activities of different 
donor preparations, both membrane and cytosol protein con- 
centrations of the preparations should ideally be equalized. 
However, this is impossible when crude postnuclear super- 
natants are used. In addition, the use of fractionated donor 
and acceptor preparations would make possible a more com- 
plete study of the requirements of the vesicle fusion reaction 
for cytosolic components and for proteins expressed on the 
cytoplasmic surfaces of the vesicles. 

An advantage of the use of influenza neuraminidase as a 
model protein in these studies is the fact that this glyco- 
protein is known to be delivered asymmetrically to the 
plasma membrane of epithelial cells in culture. For exam- 
ple, in MDCK cell monolayers influenza envelope glycopro- 
teins are delivered almost exclusively to the apical surface, 
whereas vesicular stomatitis virus G is delivered almost ex- 
clusively to the basolateral surface (Rodriguez-Boulan and 
Sabatini, 1978; Rodriguez-Boulan and Pendergast, 1980). It 
has been demonstrated by two different techniques (Rindler 
et al., 1984; Fuller et al., 1985) that these proteins reside in 
the same membrane domain until at least the trans cisternae 
of the Golgi complex. This raises the possibility that vesicles 
budding from the trans Golgi can package separately pro- 
teins destined for the two domains of the plasma membrane 
of the epithelial cell and then fuse specifically with the appro- 
priate domain to deliver their cargo. Using the cell-free assay 
reported here it may be possible to determine whether post- 
Golgi vesicles containing influenza neuraminidase do indeed 
fuse specifically with the apical domain of the plasma mem- 
brane of MDCK cells, and if this is the case to elucidate the 
molecular basis of this specificity. However, it will be neces- 
sary first to devise methods for binding the target substrate, 
[3H]SFV, separately to both surfaces of MDCK cell mono- 
layers. 
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