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A semi exact solution for a metallic 
phase in a Holstein‑Hubbard 
chain at half filling with Gaussian 
anharmonic phonons
Debika Debnath, M. Zahid Malik & Ashok Chatterjee*

The nature of phase transition from an antiferromagnetic SDW polaronic Mott insulator to the 
paramagnetic bipolaronic CDW Peierls insulator is studied for the half‑filled Holstein‑Hubbard 
model in one dimension in the presence of Gaussian phonon anharmonicity. A number of unitary 
transformations performed in succession on the Hamiltonian followed by a general many‑phonon 
averaging leads to an effective electronic Hamiltonian which is then treated exactly by using the 
Bethe‑Ansatz technique of Lieb and Wu to determine the energy of the ground state of the system. 
Next using the Mott–Hubbard metallicity condition, local spin‑moment calculation, and the concept 
of quantum entanglement entropy and double occupancy, it is shown that in a plane spanned by the 
electron–phonon coupling coefficient and onsite Coulomb correlation energy, there exists a window in 
which the SDW and CDW phases are separated by an intermediate phase that is metallic.

The exotic superconducting behaviour in ceramic Cu-based  compounds1 has continued to elude a convincing 
theoretical paradigm that could consistently conform to all experimental observations. Though a large number of 
investigators have posed their faith in the electronic mechanism, there have also been quite a few advocates of the 
phonon  mechanism2–7 and this tribe has grown with time. The main objection against the phonon mechanism is 
as follows. In a strongly correlated system, if the electron–phonon (e-p) coupling is small, the minimum energy 
state will have the characteristics of a polaronic spin-density-wave (SDW) state that corresponds to an antifer-
romagnetic (AFM) Mott insulator. Naturally for the superconductivity to be driven by the phonon-mechanism, 
the e-p coupling needs to be adequately large compared to the electron–electron (e-e) repulsive Coulomb cor-
relation strength. A study by  Plakida8 has shown that the lattice instability and strong e-p interaction have a 
pivotal role in inducing high TC superconductivity. Interestingly, however, if the e-p coupling is strong, the ground 
state (GS) of the system is described by the bipolaronic charge-density-wave (CDW) which corresponds to a 
paramagnetic Peierls  insulator9,10.

The Holstein-Hubbard (HH) model is a suitable model to study the interplay between the e-e interaction and 
e-p interaction. A Monte-Carlo study by Fradkin and  Hirsch9 on this model has revealed that with increasing 
strength of the e-p coupling, the GS of the HH model makes a direct SDW-CDW transition. The prospect of the 
phonon mechanism as the cause of inducing pairing in high-temperature superconductors appears to have been 
impeded to a great extent by such observations.

Interestingly, the theoretical observation of Takada and Chatterjee (TC)10 in 2003 has thrown a new chal-
lenge in the field. TC have looked into the SDW-CDW transition in the one-dimensional (1D) half-filled HH 
model analytically in a more careful way. They have treated the phonon subsystem variationally and the effective 
electronic Hamiltonian exactly by the Bethe ansatz method of Lieb and Wu (LW)11. The principal premise of 
the investigation of TC is as follows. With the increase in e-p coupling, both the effective onsite e-e interaction 
energy (Ueff ) and the effective hopping energy (teff ) decrease and with Ueff  approaching zero, the system becomes 
so sensitive to the interplay between the relative strengths of these two energy scales that instead of going from a 
SDW phase to a CDW phase, the system prefers to settle in an intermediate phase which has been shown by TC 
to be metallic. This intriguing observation of TC has sparked off a lot of interest in this issue and naturally, a host 
of  investigations12–15 followed closely on the heels of the work of TC. Using the density matrix renormalization 
group (DMRG) technique, Clay and  Hardikar12,13 have not only demonstrated the existence of an intermediate 
metallic phase in concordance with the contention of TC but also suggested that this intermediate phase can 
exhibit superconductivity, which is an exciting result in the context of high-temperature superconductivity. 
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Feshke et al.14 have also implemented the DMRG method and established the occurrence of the metallic regime 
between the two insulating phases. They have also proved that intermediate metallic regime widens as the 
phonon frequency increases. Several other studies using the renormalization group (RG)  technique16, Monte-
Carlo  simulations17, exact numerical diagonalization and cluster perturbation  theory18 etc. have also shown the 
evidence of the intervening metallic phase between the SDW and CDW states.

Tezuku et al.19 have studied the HH model with strong e-e and strong e-p interactions with DMRG. They have 
considered the region between the anti-adiabatic and adiabatic limits and observed that when the e-e and e-p 
interactions are of comparable strength, the pairing and CDW correlations are degenerate. They have furthermore 
shown that when the phonon energy scale is much higher than the e-p interaction scale and the electron–hole 
symmetry is broken, the on-site superconducting phase overlaps with CDW state and then the transition from 
SDW to CDW does not require any intermediate phase. In a modified study, Tezuka et al.20 have calculated the 
correlation functions with the real space dynamics. Though for the pure (un-doped) HH model, they have found 
a metallic region in between the SDW-CDW phases, for the doped HH model with broken electron–hole sym-
metry, they have found the pairing correlation to be more dominant.

Tam et al.21 have studied the 1D HH model at half-filling using renormalization group (RG) method. They 
have considered the e-p interaction and e-e interaction on the same footing and considered all the possible 
retardation effects of the phonon dynamics. Their study using mean-field RG suggests a direct transition from 
the CDW state to the SDW state.

The above studies suggest that more detailed analytical investigations are required to predict unequivocally 
the existence of the intermediate metallic phase at the CDW-SDW cross-over region. To that end, Chatterjee 
and  collaborators22–28 have carried out a few improved variational calculations and have shown that with every 
improvement of the variational wave function, the width of the intermediate metallic phase increases. This 
certainly lends a fair amount of credence to the original prediction of TC.

Chatterjee and Takada (CT)28 have also examined the problem in the presence of lattice anharmonicity. They 
have considered cubic and quartic phonon anharmonicities and have shown that the metallic phase becomes 
broader in the presence of lattice anharmonicity and thus the conjecture on the presence of the intervening 
metallic regime in the HH system is strengthened in the presence of anharmonic phonons. This work is of much 
importance because lattice anharmonicity has been found to play a crucial role in high Tc superconductors. In 
fact, it has been observed that apex oxygen has a substantial anharmonic motion in the cuprates and also the 
phonon anharmonicity makes a significant impact on the electronic structure of these  systems29–33.  Konior34 
has explained the importance of Gaussian phonon anharmonicity in the context of high Tc superconductors and 
have shown that in the presence of this anharmonicity, the hopping parameter reduces at a slow rate causing 
an enhancement in the polaron mobility and the polaron bandwidth, which is a favourable condition for the 
phonon mechanism to stake a claim for inducing pairing. Lavanya, Sankar and Chatterjee (LSC)25 have recently 
re-examined the work of CT with Gaussian anharmonic potential by applying in succession a number of unitary 
transformations followed by an averaging with a general many-phonon state and the Bethe ansatz technique. 
This gives a wider metallic phase.

The principal aim of the present paper is to further modify the variational wave function of the phonon 
sub-system used by LSC for the anharmonic HH system to obtain a better solution for the GS energy and the 
SDW-CDW phase diagram. This calculation can be considered as semi-exact as we have included rigorously all 
possible phonon processes including coherence and correlations while treating the phonon subsystem and solved 
the electronic part exactly with the help of the Bethe ansatz technique and LW’s solution. The GS energy, local 
spin moment, von Neumann entropy, the double occupancy parameter and the phase diagram at the SDW-CDW 
transition region have been obtained.

The Model
A one dimensional HH system with Gaussian phonon anharmonicity may be described by the Hamiltonian

with

 

where He describes the Hubbard Hamiltonian, Hp is the phonon Hamiltonian and Hep is the Holstein e-p interac-
tion. In Eq. (2), the parameter t  is the nearest-neighbour hopping integral, the operator c†iσ (ciσ ) creates (annihi-
lates) a spin-σ electron at the i–th site, niσ

(
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)

 being the corresponding electron occupation number and 
U  gives the onsite e-e interaction energy. In Eq. (3), b†i (bi) represents an operator that creates (annihilates) an 
optical phonon at site i with dispersionless frequency ω0,  �ap and γ measure respectively the strength and range 
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of the phonon anharmonicity. In Eq. (4),  g  is the on-site e-p coupling strength which can be written as: 
g =

√
αω0, where dimensionless α is referred to as the e-p coupling constant.

Formulation
GS energy. In order to solve the Hamiltonian (1) we choose to seek a variational solution. First of all, we 
apply the modified Lang-Firsov transformation (LFT)35 with the generator

where η is the variational parameter that carries the information of the polaronic structure. For strong e-p 
interaction, η → 1 , and Eq. (5) generates the usual  LFT36 and gives a reasonable approximation for the anti-
adiabatic region in which the ion motion is much faster than the electron motion. This should work well for the 
narrow-band materials which are essentially strongly correlated systems. Because of the above transformation, 
the Hamiltonian H transforms to H1 = eR1He−R1 . To deal with the adiabatic regime where the electron motion 
is much faster than the ion motion, we perform the Takada-Chatterjee (TC)  transformation10 with the generator:

where we assume, hi = h , as all sites are equivalent. After the second transformation, the transformed Hamilto-
nian becomes: H2 = eR2H1e

−R2 . The above two transformations together can be generated by:

With η = 1, the transformation (7) represents the conventional LFT which gives exact results in the anti-
adiabatic limit, while for η = 0 , it takes care of the adiabatic limit. Thus both the anti-adiabatic and the adi-
abatic regions can be studied by considering: 0 < η < 1. Thus η can be called an adiabaticity parameter. It is 
important to note that Eq. (7) assumes the phonons associated with the electron to be in a coherence state. This 
is essentially a semi-classical approximation in which it is assumed that the phonons in the polaron cloud are 
independent of each other satisfying a Poissonian distribution. In other words, the phonons emitted or absorbed 
by the electrons are completely uncorrelated and in that sense, the present transformation is equivalent to the 
Hartree approximation.

The presence of Gaussian anharmonicity in the system introduces anharmonicity to infinite order and results 
in a finite lifetime of the phonons through phonon–phonon interactions. Furthermore, an electron undergoes 
a recoil motion while emitting a phonon. While undergoing a recoil motion, if the electron emits another pho-
non, then these two successively emitted virtual phonons will be correlated. Both the anharmonicity and the 
correlation effects of the phonons can be taken into account by considering squeezed phonons. Squeezing of the 
phonon vacuum state can be accomplished by the celebrated Bogoliubov transformation with the  generator10:

where the squeeze parameter αs is to be obtained variationally. The transformed Hamiltonian is now given by: 
H3 = eR3H2e

−R3 . The variational parameter αs has been considered by all investigators as independent of the 
electron concentration until 2019, when Malik, Mukhopadhyay and Chatterjee (MMC)26 considered the squeez-
ing of the phonon state to be partly dependent on electron density. According to MMC, the correlation between 
phonons emitted by the electrons may depend on the number of electrons available at a particular lattice site. 
Thus, to be more realistic, we next apply, a squeezing transformation with the generator:

where αd is the variational parameter. Correspondingly, the transformed Hamiltonian can be written as: 
H4 ≡ H = eR4H3e

−R4 .  It may be pointed out that in Eq. (8), phonon correlation and anharmonicity have been 
included at a mean-field level while Eq. (9) incorporates the fluctuations. The principal idea of performing a 
series of canonical transformation on H is to disentangle the electrons and phonons and if the disentanglement 
is accomplished, then the Hilbert space containing the electronic and phonon variables will become separable. 
In a simpler language, the purpose of the transformations is to obtain a transformed Hamiltonian in which the 
electron and phonon variables will be decoupled. However, the Hamiltonian H is still not exactly soluble but it 
is quite reasonable to assume that after performing the four canonical transformations with generators (5), (6), 
(8) and (9), the electrons and phonons are weakly entangled in the Hamiltonian H and therefore the eigenstate 
of H can be approximately written as the product of an electronic state |ψel� (hitherto unknown) and a phonon 
state |�ph� which has to be judiciously chosen. Thus the total wave function corresponding to the full Hamilto-
nian H  can be written as:
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As we have already mentioned, both adiabatic and anti-adiabatic effects have been incorporated in Eq. (10). 
In order to project out the effective electronic Hamiltonian, we have to eliminate the phonons from the prob-
lem. To accomplish that we need to take the expectation value of the Hamiltonian H in a suitable phonon state 
|�ph� . Usually a zero-phonon state is chosen for the averaging phonon state |�ph� . To make the calculation most 
accurate, we choose the averaging phonon state as:

where ϕn(x) is the n− th excited-state oscillator eigen function in 1D and the coefficients rn ’s are to be obtained 
variationally. The idea is to start the calculation with M = 0 and then keep on increasing the value of M till the 
energy converges. It may be noted that the canonical transformations performed on Hamiltonian H  by the 
generators given by Eqs. (5), (6), (8) and (9), followed by the averaging of the transformed Hamiltonian H with 
respect to the phonon state (11) is same as taking the expectation value of the Hamiltonian H with respect to 
the state

which is the variational state for the phonon sub-system. We choose units in which � = ω0 = 1,  ω0 
being the dispersionless phonon frequency. The effective electronic Hamiltonian can be defined as: 
Heff = �ψph|H|ψph� = ��ph|H|�ph�. The expressions for H1, H2, H3 and H4  are rather complicated and long. 
We therefore do not present their expressions here. Heff  assumes the following expression:

where
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 are the Hermite polynomials of degree ‘ k ’ and ‘ l  ’, respectively, and

The GS energy of the system described by the Hamiltonian Heff  can be obtained exactly at half-filling with 
the help of the Bethe ansatz method first implemented by  LW11. The LW solution has however been obtained 
for Ueff > 0.  We modify the solution to include the results for Ueff ≤ 010,38. The GS energy per electron (ε) is 
finally obtained as
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where

ε is finally minimized numerically with respect to the variational parameters to obtain the GS energy.

Average lattice displacement ( 〈x
i
〉 ), Entanglement Entropy (EE) and Local Spin Angular 

Momentum ( L
0
). In this sub-section we attempt to calculate a few interesting quantities such as the Average 

lattice displacement, Entanglement entropy and Local spin angular momentum L0 for the system under consid-
eration. These quantities give in general the physical properties of the system. The Entanglement entropy and 
Local spin angular momentum, in particular, provide information about the different phases that the system may 
possess. The numerical results for these quantities with respect to different physical parameters of the system will 
be presented in “Numerical results and discussion”.

The average lattice displacement is calculated with respect to the variational state |ψph� . The result is obtained 
as

In order to study the role of quantum correlation in phase transition, we calculate the von Neumann Entan-
glement entropy for the 1D HH Hamiltonian. Considering a set of four available states |0�, |↑�,|↓� and | ↑↓� , the 
single-site entanglement entropy is calculated as:

where ρr is called the reduced density operator and is given by

where

Using the Hellmann–Feynman theorem, we get

Thus all the occupation numbers can be calculated and the corresponding von Neumann entanglement 
entropy (Eϑ ) is evaluated.

The mean-square spin angular momentum per site ( L0 ) can be defined as:

where Si is the electron spin at site i  , and S2i = S2ix + S2iy + S2iz . Using S±i = Six ± iSiy , Szi =
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/4 and 
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where use has been made of Eq. (26).  L0 gives a measure of the spin magnetic moment and will be loosely referred 
to as the spin moment. For a completely un-correlated electron gas, we can write: �ni↑ni↓� = �ni↑��ni↓� , and the 
average spin moment per site ( L0 ) becomes equal to 0.375.

Numerical results and discussion
Ground State (GS) Energy. The single-site GS energy is determined by varying ε in the space of the vari-
ational parameters. The minimum value of ε  gives the GS energy. The results are shown in Fig. 1. The harmonic 
TC results (� = 0&γ = 0)10 are also plotted to show the effect of anharmonicity. It is clear that the lattice anhar-
monicity has a significant effect on the GS energy. We also show the results of the anharmonic case reported 
recently by Lavanya et al. (LSC)25. The LSC results have been obtained by using three canonical transformations. 
The present work uses an additional transformation namely the transformation given by Eq. (9). For � = 0.1 
and γ = 0.05 , we find that the new transformation (9) has only a marginal effect on the GS energy at small U . 
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However, at large U , some observable effect is evident. More importantly, as we will show later, it has a more 
discernible effect on the phase diagram. Here we would like to mention an important point. We know that in 
a variational calculation, an error in the trial wave function of order δ will give an error of the order δ2 in the 
energy. So, even a reasonable improvement in the wave function may not provide a sizable change in the energy. 
More importantly, here we are not so much interested in the energy but in the phase diagram. Our interest lies 
in examining whether with the improvement in the variational wave function, the width of the metallic phase 
broadens or shortens. If an improved variational calculation which obviously lowers the energy (by whatever 
amount) narrows the metallic phase, then the claim that an intermediate metallic phase exists at the cross-
over region of the CDW-SDW phases may be discounted. Our aim has been to show that with every improved 
variational calculation (which might improve the ground sate energy only marginally) the intermediate metallic 
phase widens. This certainly lends credence to the prediction of the existence of the intermediate metallic phase.

Average lattice displacement. A plot of the average lattice displacement (〈xi〉) versus the e-p coupling 
constant ( α) is shown in Fig. 2. One can see that the magnitude of 〈xi〉 is a decreasing function of α . For the 
harmonic case, Eq. (22) yields  �xi� = −

√
2α . The negative value of 〈xi〉 signifies that the lattice displacement 

takes place in the opposite direction of the polaronic motion leading to a mass renormalization of the electron.

Broadening of the metallic phase. The variations of the effective hopping integral (teff ) and the effec-
tive onsite e-e interaction energy (Ueff ) are respectively studied in Fig. 3a,b with respect to the onsite Coulomb 

Figure 1.  Single-site GS energy (ε) vs. onsite Coulomb energy (U). TC result corresponds to the harmonic 
 case10. ‘LSC’ refers to the result of Lavanya et al.25 obtained for the anharmonic case with three canonical 
transformations. “Present” refers to the result for the anharmonic case obtained by including the effect of the 
new transformation with the generator R4 in the present work.

Figure 2.  Average lattice displacement ( < xi > ) vs. e-p interaction coefficient ( α ). ‘LSC’ refers to the result of 
Lavanya et al.25 obtained for the anharmonic case with three canonical transformations. “Present” refers to the 
result for the anharmonic case obtained by including the effect of the new transformation with the generator R4 
in the present work.
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energy ( U) for the different strengths of the e-p coupling strength (α) . As expected, for α = 0 , teff  becomes equal 
to the bare Hubbard hopping parameter t  and Ueff  becomes equal to the Hubbard U . As α increases, teff  decreases 
and with the increase in U , it gradually increases and saturates to the Hubbard value. At small values of U , 
the effective attractive onsite e-e interaction induced by the e-p interaction overcomes the repulsive Coulomb 
interaction U and therefore Ueff  becomes negative, i.e., attractive. The lattice is then unstable against the Peierls 
transition in which bound states of singlet bipolarons form on every alternate site leading to an insulating phase 
called the CDW state. On the contrary, when U is larger compared to α , the repulsive onsite electronic interac-
tion wins, and the polarons cannot hop from one site to the other and consequently the GS of the system is given 
by the AFM mott-insulator state which is also known as SDW. Figure 3a shows that in the weak e-p interaction 
regime, the variation of teff  and Ueff  with U is continuous. But for higher values of α, discontinuous jumps occur 
in the behaviour of  teff  and Ueff . The discontinuous jump corresponds to a direct CDW-SDW transition.

In order to examine the nature of the transition between the two phases observed in Fig. 3a,b, the quantity, 
( dteff /dU) is plotted in Fig. 4 with respect to U  for α = 0.5, 0.8 and 1.0 . The double-peak structure in (dteff /dU) 
is clearly evident. One can also observe that the peaks grow in height and shift towards larger values of U  with 
increasing α.  Furthermore, the new transformation used in the present calculation broadens the width between 
the two peaks in Fig. 4. Corresponding to the peak values of the  (dteff /dU) vs U plot, the phase diagram is drawn 
in the (α − U) plane. This is shown in Fig. 5. The intermediate phase satisfies the condition: 4teff ≥ Ueff  , which is 
the signature of a metallic or a conducting phase. The metallic phase is flanked by the SDW phase on the left and 
the CDW phase on the right. The figure shows that the intermediate metallic phase appearing at the CDW-SDW 
cross-over region is now wider compared to that predicted by  LSC25. It is important to emphasize that it is not 
important by how much the present modified variational wave function broadens the width of the intermediate 

Figure 3.  (a) Effective hopping parameter ( teff ) vs on-site Coulomb interaction strength ( U) ; (b) Effective 
e-e interaction energy Ueff  vs on-site Coulomb interaction strength (U) . “LSC” refers to the result for the 
anharmonic case obtained by Lavanya et al.25 using three canonical transformations. “Present” refers to the 
result obtained for the anharmonic case obtained by including the effect of the new transformation with 
generator R4 in the present work.

Figure 4.  dteff /dU  vs. onsite e-e inetraction U for different e-p interaction strengths α = 0.5, 0.8, 1.0 . “LSC” 
refers to the result for the anharmonic case obtained by Lavanya et al.25 using three canonical transformations. 
“Present” refers to the result obtained for the anharmonic case obtained by including the effect of the new 
transformation with generator R4 in the present work.
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region, that the improved variational calculation widens the metallic phase is itself a result of great significance. 
The reason is simple. If a modified variational wave function predicts a narrower intermediate phase, it will have 
a disastrous effect on the prediction of the existence of a metallic region (MR) because one may then argue that 
the metallic phase may as well collapse if a more improved variational calculation is performed. That with every 
improved variational calculation, the metallic phase widens is indeed an encouraging result.

In Fig. 6, we plot (dteff /dU) with U  for larger values of α. We find that the double peak structure almost 
disappears as α increases and one can observe from Fig. 6 that for α > 2 , only a single peak structure appears.

This indicates the absence of any intermediate phase for large α.
Figure 7a,b illustrate respectively the behaviour of teff  and Ueff  as a function of α . As α → 0, teff → t . Thus 

at low α, the system GS is in the SDW phase. As α increases, teff  gradually decreases and finally falls off to zero. 
Figure 7b tells us that corresponding Ueff  becomes maximally negative. This indicates the formation of massive 
singlet bipolarons giving rise to the CDW phase. Here also we see that for large U , SDW-CDW transition is 
again direct.

The phase boundaries of the (α − U) phase diagram can also be verified by plotting ( dteff /dα) with respect 
to the e-p interaction coefficient α . This is shown in Fig. 7c. The peak-like structure is again obtained in the 
( dteff /dα) vs α plot for different U  values and the peak width for the present result is broader than that of the 
LSC result. This again proves the intermediate metallic phase is widened.

Figure 5.  Phase diagram in the ( α − U) plane. TC refers to result for the harmonic case obtained by Takada 
and  Chatterjee10. “LSC” refers to the result for the anharmonic case obtained by Lavanya et al.25 using three 
canonical transformations. “Present” refers to the result obtained for the anharmonic case obtained by including 
the effect of the new transformation with generator R4 in the present work. MR refers to the metallic region.

Figure 6.  dteff /dU  vs. onsite e-e inetraction U for different e-p interaction strengths ( α = 2.0, 2.5, 3.0) . “LSC” 
refers to the result for the anharmonic case obtained by Lavanya et al.25 using three canonical transformations. 
“Present” refers to the result obtained for the anharmonic case by including the effect of the new transformation 
with generator R4 in the present work.
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Double occupancy (d) and EE (Eυ). In Fig. 8a,b, we plot respectively the double occupancy (d) and quan-
tum EE (Eν) as a function of α. The entanglement entropy (EE) gives a measure of the accessible states the system 
can have. Obviously then, the maximum in EE would correspond to a conducting state. It is observed that for 
certain combinations of α and U , Eν has maxima and for other values Eν becomes very small. Small values of 
EE correspond to insulating states. When the e-p interaction becomes strong compared to the e-e interaction, 
the electrons form pairs and the double occupancy parameter d reaches the maximum value of 0.5 driving the 
system to the CDW state. For d < 0.5 , the formation of a polaronic SDW state takes place. Similar behaviour is 
observed in Fig. 9a,b when we plot the double occupancy (d) and quantum EE (Eν) with respect to U for different 
values of e-p interaction ( α).

In order to unravel the effect of e-p and e-e interaction simultaneously, we plot 3D graphs in Fig. 10. Fig-
ure 10a shows that between the SDW and CDW phases, there lies a region where the value of d neither cor-
responds to the SDW region with d = 0 nor to the CDW region with d = 0.5. Therefore, the effect of e-p and 
e-e interactions has been found simultaneously on d and Eν. This intermediate cross-over region corresponds 
to the metallic phase. In Fig. 10b, the peak of EE ( Eν) lies over the metallic region (MR) in the (α − U) plane. 
Therefore, the peak denotes the metallic phase.

Mott–Hubbard (MH) criterion in 3D plots. We have already emphasized that for a metallic state the 
bandwidth follows the criterion: 2zteff ≥ Ueff  . In Fig. 11, we present a 3D representation of |Ueff | and 4teff  with 
respect to U and α . The figure displays a region of (α,U) where the condition: 4teff ≥ Ueff  is satisfied. This is the 
metallic phase. There are two other regions in the (α − U) plane where this condition is not satisfied and those 
are insulating phases.  Among them the phase where Ueff > 0 corresponds to the SDW phase and the one where 
Ueff < 0 corresponds to the CDW state.  In order to look into the metallic region by the Mott–Hubbard crite-
rion more directly, 4teff  is plotted in Fig. 12, with respect to Ueff  and the region that satisfies the Mott–Hubbard 
condition is indicated by the dotted line. It is observed that the region satisfying the Mott–Hubbard criterion is 

Figure 7.  (a) Effective hopping parameter ( teff  ) vs. e-p interaction coefficient (α) for different values of U ; (b) 
Effective e-e interaction ( Ueff  ) vs. e-p interaction coefficient ( α) for different values of U; (c) (dteff /dα ) vs. α for 
different values of U . “LSC” refers to the result for the anharmonic case obtained by Lavanya et al.25 using three 
canonical transformations. “Present” refers to the result obtained for the anharmonic case obtained by including 
the effect of the new transformation with generator R4 in the present work.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12305  | https://doi.org/10.1038/s41598-021-91604-6

www.nature.com/scientificreports/

more extended in the present work than the LSC result, which again confirms the broadening of the intermedi-
ate metallic region.

Local Spin Moment. The local spin moment (L0) is calculated using Eq. (28) and plotted in Fig. 13 with 
respect to α and U  and in Fig. 14, the contour plots for constant L0 are drawn in the (α − U) plane. Both the 
figures indicate the presence of an intermediate metallic phase which is consistent with the phase diagram. The 
contour plot in LSC’s work predicts a metallic region (MR) to lie between L0 = 0.25 and L0 = 0.50 while the 
present calculation shows an extended metallic region (MR) that lies between L0 = 0.15 and L0 = 0.60. One can 
make the same observation from the local spin moment calculation that re-establishes the broadening of the 
intermediate metallic region between the CDW and SDW regions.

Conclusion
The nature of SDW-CDW transition has been studied in a 1D half-filled Holstein-Hubbard model with Gauss-
ian phonon anharmonicity by improving the variational calculation of Lavanya et al.10. Using a number of uni-
tary transformations performed in succession followed by a generalized many-phonon averaging an effective 
electronic Hamiltonian is obtained. The phonon-subsystem has been treated in a semi-exact way. The effective 
electronic Hamiltonian has been solved exactly using the Bethe ansatz technique to obtain the ground state 

Figure 8.  (a) Double occupancy parameter (d)  vs. e-p interaction coefficient (α) for different values of U ; (b) 
Entanglement entropy (Eν) vs. e-p interaction coefficient (α) for different values of U . “LSC” refers to the result 
for the anharmonic case obtained by Lavanya et al.10 using three canonical transformations. “Present” refers to 
the result obtained for the anharmonic case obtained by including the effect of the new transformation with 
generator R4 in the present work.

Figure 9.  (a) Double occupancy parameter (d)  vs. onsite Coulomb interaction energy (U) for different values 
of α ; (b) Entanglement entropy ( Eν) vs. e-e Coulomb interaction energy (U) for different values of α . “LSC” 
refers to the result for the anharmonic case obtained by Lavanya et al.10 using three canonical transformations. 
“Present” refers to the result obtained for the anharmonic case obtained by including the effect of the new 
transformation with generator R4 in the present work.
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Figure 10.  (a) 3D plot of double occupancy parameter (d) vs. e-p interaction coefficient (α) and e-e interaction 
coefficient (U) ; (b) 3D plot of Entanglement Entropy (Eυ) vs. α and U . MR refers to the metalic phase.

Figure 11.  Study of the Mott–Hubbard (MH) criteria for the metallic region : 3D plots of 4teff  and |Ueff |  with 
respect to α and U.

Figure 12.  Broadening of Mott–Hubbard (MH) region (MR): 4teff  vs Ueff .
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energy. The hopping integral and the Coulomb correlation are renormalized by the e-p interaction and phonon 
anharmonicity. Using the Mott–Hubbard criterion we have shown that the present modified approach broadens 
the width of the intermediate metallic phase reported by Lavanya et al.10. The same conclusion has been drawn 
from the calculation of the local spin moment. Finally, a study of the quantum entanglement entropy and the 
double occupancy parameter reconfirms the existence of a wider intermediate metallic region at the SDW-CDW 
transition region.
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