
International  Journal  of

Environmental Research

and Public Health

Article

Event-Based Heat-Related Risk Assessment Model for
South Korea Using Maximum Perceived Temperature,
Wet-Bulb Globe Temperature, and Air
Temperature Data

Misun Kang, Kyu Rang Kim and Ju-Young Shin *

Applied Meteorology Research Division, National Institute of Meteorological Sciences, Seohobuk-ro 33,
Seogwipo 63568, Korea; misun0106@korea.kr (M.K.); kkr9@korea.kr (K.R.K.)
* Correspondence: jyshin83@korea.kr

Received: 17 March 2020; Accepted: 8 April 2020; Published: 11 April 2020
����������
�������

Abstract: This study aimed to assess the heat-related risk (excess mortality rate) at six cities,
namely, Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan, in South Korea using the daily
maximum perceived temperature (PTmax), which is a physiology-based thermal comfort index,
the wet-bulb globe temperature, which is meteorology-based thermal comfort index, and air
temperature. Particularly, the applicability of PTmax was evaluated using excess mortality rate
modeling. An event-based heat-related risk assessment model was employed for modeling the excess
mortality rate. The performances of excess mortality rate models using those variables were evaluated
for two data sets that were used (training data, 2000–2016) and not used (test data, 2017–2018) for the
construction of the assessment models. Additionally, the excess mortality rate was separately modeled
depending on regions and ages. PTmax is a good temperature indicator that can be used to model the
excess mortality rate in South Korea. The application of PTmax in modeling the total mortality rate
yields the best performances for the test data set, particularly for young people. From a forecasting
perspective, PTmax is the most appropriate temperature indicator for assessing the heat-related
excess mortality rate in South Korea.

Keywords: heat-related mortality; heatwave; wet-bulb globe temperature; perceived temperature;
maximum temperature

1. Introduction

The adverse effects of high atmospheric temperatures on human health have been reported in
many regions [1–5]. When people are excessively exposed to heat, the human body produces or absorbs
more heat than it dissipates. This excessive exposure can lead to the failure of the thermoregulatory
system of the human body [6]. Hence, this failure increases the internal temperature in the core of the
body, which is considered to be heat-related stress on the human body. Finally, the temperature in
the core body exceeds the threshold for optimal body comfort, performance, and health. For instance,
high body temperatures can lead to the loss of salt and water through sweating, causing increases in
cardiovascular diseases, such as coronary and cerebral thrombosis. Very high body temperatures also
damage cellular structures and the thermoregulatory system, ultimately leading to death [7].

Human thermal comfort results from the energy balance between the human body and the
environment [8]. Various factors, such as human physiology, psychology, and behavior, influence
human thermal comfort. The use of thermal comfort indices, such as the perceived temperature (PT),
physiological equivalent temperature, and universal thermal climate index, based on the heat exchange
between the human body and its thermal environment to evaluate the biometeorological conditions has
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been suggested [9–12]. These thermal comfort indices have been used to investigate the relationship
between heatwave events and human health and assess the heat-related risk to human health [13–16].
Several studies reported that the use of physiology-based thermal comfort indices is appropriate for
the assessment of heat-related as well as cold-related health risks [17–19].

The heat-related risk in South Korea has been assessed in many studies depending on various
factors, such as age, region, and the definition of a heatwave [20–22]. Although these studies were
carried out under different conditions, most of them employed the maximum air temperature as a
temperature indicator for the definition of a heatwave. Recently, thermal comfort indices based on
meteorological variables were tested as temperature indicators for the assessment of the heat-related
risk in South Korea. Heo et al. [23] evaluated the accuracy of the wet-bulb globe temperature (WBGT) in
assessing the heat-related excess mortality and reported that the WBGT could be used as a temperature
indicator for the heatwave in the assessment.

Global warming leads to changes in climatic conditions [24]. Particularly, the increment of air
temperature increases the frequency and magnitude of heatwave [25,26]. Change in the heat-related
risk may be different depending on which temperature indicator is used in heat-related risk assessment
because the climate change leads to changes in temperature, humidity, radiation, and wind speed,
which is related to heat-related stress. Thus, for accurate assessment of heat-related risk in climate
change, the temperature indicator that can consider various parameters influencing the heat-related
stress needs to be employed. Because the physiology-based thermal comfort index considers the
various parameters based on thermal regulation of the human body, this index may have a consistent
relationship with the heat-related mortality rate, even though the atmospheric environment is changed.
Hence, the application of the PT in heat-related risk assessment would be beneficial to estimate the risk
in changing the environment as well as a stationary environment. In addition, the thermal comfort
index based on the physiological heat exchange of the human body has not been employed for assessing
the heat-related risk in South Korea. Hence, the applicability of physiology-based thermal comfort
indices must be investigated to enhance our capacity in assessing the heat-related risk in South Korea.

The aim of this study was to assess the heat-related risk in South Korea using the thermal comfort
index, that is, the daily maximum PT (PTmax). Subsequently, the applicability of PTmax in the
heat-related risk assessment was evaluated. For comparison, the daily maximum air temperature
(Tmax) and daily maximum WBGT (WBGTmax) were used as a meteorological variable and a thermal
comfort index based on meteorological variables, respectively, in assessing the heat-related risk.
The event-based heat-related risk assessment model suggested by Dieter et al. [27] was employed for
modeling the heat-related risk. Because many studies focused on identifying the best predictor of
heat-related risk, the results of many studies might be sufficient from heat-related risk modeling or
forecasting perspectives [28]. In the current study, the performances of heat-related risk assessment
models using different temperature indicators for unseen data were evaluated to investigate the
appropriateness of the selected temperature indicator for the heat-related risk prediction. Additionally,
the mortality rate data were separately modeled depending on the region and age to identify their
heat-related impacts on the health risks. The current study would expand our knowledge and improve
our understanding of assessing the heat-related risk to human health in South Korea. In addition,
the results were good references for the selection of temperature indicators for the development of a
heat-related health warning system.

This paper is organized as follows. In Section 2, the temperature indicators and mortality and
meteorological data used in this study are described, and the event-based heat-related risk assessment
model is introduced. The characteristics of the risk assessment model using different temperature
indicators for regions and ages are presented in Section 3. In Section 4, the applicability of PT in
assessing the heat-related risk in South Korea and the limitations of the current study are discussed.
Finally, the conclusions are presented in Section 5.
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2. Materials

2.1. Temperature Indicators

Because the PT is an unobservable variable, it must be calculated using meteorological variables
and assumed conditions. Additionally, it is often not measured at weather stations because the black
globe temperature is not regarded to be a standard element. Thus, empirical and physical estimation
models using other meteorological variables have been applied to obtain WBGT estimates [29–31].
The brief information of the employed temperature indicators is summarized in Table 1. Theoretical
background and the PT and WBGT equations are briefly described in the following subsections.

Table 1. Information of the employed temperature indicators.

Index (Unit) Perceived Temperature (◦C) Wet Bulb Globe
Temperature (◦C) Air Temperature (◦C)

Type Rationale Direct Direct

Measured of derived Derived Derived Measured

Thermophysiological model

Klima–Michel model
(KMM), parameterizations
derived from a two-node

model [32]

NA NA

The measure of assessment scale
Thermal perception;

thermophysiological stress,
directly linked to PMV-scale

NA NA

Input variables Ta, RH, wind speed, mean
radiant temperature, M Ta, RH Ta

Ease of interpretation Complex Moderate Simple

Reference
Jendritzky et al. [33]
Staiger, Laschewski,

and Grätz [12]

Yaglou and Minard [34]
Lee et al. [35] NA

PMV, Ta and RH indicate predicted mean vote, air temperature and relative humidity.

2.1.1. Perceived Temperature

The PT is a reference environment in which the perception of cold and/or heat is the same as
that under the actual conditions [12]. Perceived heat can be computed by using the comfort equation
suggested by Fanger [36], which is based on a complete heat budget model for the human body.
To determine the PT, the Klima–Michel model (KMM), which is a complete heat budget model for
human beings, is used for the assessment of the thermal physiology [33]. The reference person in the
KMM is a male who is 35 years old, 1.75 m tall, weighs 75 kg, wears clothes, and walks at a speed
of 4 km/h on flat ground. In this study, summer clothes (0.5 clo) were used because heat-related
risks often occur in summer. The PT considers not only meteorological parameters, such as the air
temperature, humidity, solar radiation, but also behavioral characteristics, such as activity and clothing
insulation, and body measurements, such as the metabolic rate, of the reference person. Because the
PT can emulate a complex system of heat perception for a human being with various parameters based
on the thermal physiology mechanism, the PT may be a good parameter for the representation of the
magnitude of heat-related events. The theoretical description of the PT is provided below.

The KMM is based on the heat balance equation for the human body in a two-node model given
by ASHRAE [37]:

M−W = (Cskin + Rskin + Eskin) + (Cres + Eres) + Sskin + Score (1)

where M (W·m−2), W (W·m−2), C (W·m−2), R (W·m−2), and E (W·m−2) are the metabolic rate of the
body, energy for mechanical work, convection, radiation, and evaporation, respectively. The metabolic
rate of the body provides energy to enable the body to do mechanical work, and the remainder of
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the energy is released as heat (i.e., M−W). Heat transfer can occur by convection (C), radiation (R),
and evaporation (E). On the right side of Equation (1), the first and second brackets represent the
heat exchange based on the skin and respiration, respectively. The parameters Sskin(W·m−2) and Score

(W·m−2) indicate the heat storage in the skin and core compartment, respectively. Under steady-state
conditions, Sskin and Score are equal to zero due to thermoregulation. When the internal heat production
equals the amount of heat exchanged with the environment and the external conditions are steady,
the predicted mean vote (PMV) can be calculated as follows:

PMV = α·
{
M−W− (Cskin + Rskin + Eskin) − (Cres + Eres)

}
= α·Lth (2)

where Lth (W·m−2) determines the thermal load. The thermal load is linearly rescaled via
α(= [0.303· exp(−0.036·M) + 0.0275]) to the dimensionless scale of perceived comfort. The PMV
equation proposed by Gagge, Fobelets, and Berglund [32] in the KMM is employed in the PT
(◦C) calculation. The PT in heat stress zone (PMV > 0) is translated from the PMV using the
following equation:

PT = 6.18·PMV + 16.83 (3)

When the value of PMV is equal to or less than zero, Equation (3) should be replaced with other
formulas. The detailed information and procedure for the computation of PT can be found in Staiger,
Laschewski, and Grätz [12] and Parsons [38].

2.1.2. Wet-Bulb Globe Temperature

WBGT (◦C) is an index that is calculated as the weighted average of air temperature, natural wet
bulb temperature, and black globe temperature [34] as follows:

WBGT = 0.7Tw + 0.2Tg + 0.1Ta (4)

where Tw (◦C), Tg (◦C), and Ta (◦C) are the natural wet bulb temperature, black globe temperature,
and air temperature, respectively. In this study, the empirical estimation model suggested by the Korea
meteorological administration (KMA) was used to obtain the WBGT for South Korea. This model
requires Ta and Tw, and has been known to perform well in the estimation of the WBGT in South
Korea [35]. The WBGT model proposed by the KMA is as follows:

WBGT = −0.2442 + 0.55399Tw + 0.45535Ta − 0.0022T2
w + 0.00278TwTa (5)

Tw in Equation (5) is calculated using the equation suggested by Stull [39], as seen below.

Tw = Ta tan−1
[
0.151977(RH + 8.313659)1/2

]
+ tan−1(Ta + RH) − tan−1(RH−

1.67633) + 0.00391838RH
3
2 tan−1(0.023101RH) − 4.686035,

(6)

where RH (%) is the relative humidity.

2.2. Study Area and Data

In the current study, the heat-related risk was assessed by using different temperature indicators
in six metropolitan cities in South Korea: Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan.
The population of each city is larger than one million people. The locations and populations of all
cities used in this study are described in Figure 1. The proportion of elderly people (>64 years) to
the total population in Seoul, Incheon, Daejeon, Gwangju, Daegu, and Busan is 14%, 17%, 14%, 12%,
13%, and 12%, respectively. The period from 2000 to 2018 was used in the current study due to
the availability of daily mortality data. Mortality and population data of each city were obtained
from the MicroData Integrated Service (http://mdis.kostat.go.kr/), which is affiliated with Statistics
Korea. Daily mortality and population data for South Korea are released annually by Statistics Korea.

http://mdis.kostat.go.kr/
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Daily mortality data, including the address, sex, age, time, place, and cause of death, are recorded in
the International Statistical Classification of Diseases and Related Health Problems [40,41].Int. J. Environ. Res. Public Health 2020, 17, x 5 of 20 
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Figure 1. Locations and populations of the six metropolitan cities in South Korea.

To calculate the PT and WBGT, the Ta, relative humidity (RH), dew point temperature, wind speed,
cloud amount, cloud type, and geographical information regarding the instrument were obtained from
meteorological stations in six cities. The hourly PT and WBGT were calculated using hourly observed
meteorological parameters. Maximum hourly temperature indicator data within a day were selected
for the identification of the temperature indicators: PTmax, Tmax, and WBGTmax.

2.3. Event-Based Heat-Related Risk Assessment Model

In this study, the concept of risk due to a hazardous event based on Dieter, Ute, Tobia, Steffen, Fred,
and Christian [27] was adopted. The risk (r) can be determined from the hazard (h) and vulnerability
(v). Hence, the risk due to a hazardous event can be represented by the following equation:

r = h·v, (7)

The hazard (h) can be quantified by using the mean magnitude rate of the hazardous event,
and the vulnerability (v) is defined as the product of the exposure of the elements at risk and the
sensitivity of the elements at risk exposed to the hazard. Hence, the vulnerability is given by:

v = e·s, (8)

where e and s are the exposure and sensitivity, respectively. Finally, the risk can be calculated as follows:

r = M·e·s, (9)

where M is the mean magnitude rate of the hazardous event. The detailed theoretical derivation of the
relationship among the risk, hazard, and vulnerability can be found in Dieter, Ute, Tobia, Steffen, Fred,
and Christian [27].
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The total mortality rate (p) is the total mortality (Ndeath) of a population (N) and consists of the
excess mortality rate (ph), which is the mortality rate related to a heatwave event, and base mortality
rate (p0), which is the mortality rate related to other reasons. This relationship is given by:

p =
Ndeath

N
= p0 + ph (10)

In the current study, the mean heat-related excess mortality rate (ph) over time, denoted as mean
mortality rate (10−6

·day−1), was used to express the heat-related risk. Unfortunately, the excess and
base mortality rates cannot be obtained from the observed mortality data due to complex death reasons.
However, they can be estimated from the relationships between p and selected temperature indicators.
In the current study, linear regression analysis was adopted to derive the relationships between p
and selected temperature indicators. This method was previously employed in Buchin et al. [42] and
Jänicke et al. [43] and yielded a good performance in analyzing the above-mentioned relationship.
The assumed regression model is as follows:

p = p0 + ph = p0 + M·α+ ε, (11)

where α , M, and ε are the slope of the linear regression model, magnitude of the heatwave event based
on the selected temperature indicator, and the error term, respectively. The excess mortality rate can be
expressed as:

ph = M·α (12)

As shown in Equation (12), M and α can be considered as the mean magnitude rate and sensitivity
in Equation (9), respectively. Because the mortality rate is used for the risk, the exposure term can only
be considered after the estimation of the excess mortality rate. Thus, the exposure term is excluded
from Equation (12).

A heatwave event is defined as consecutive days on which the value of the temperature indicator
(Tx) exceeds a certain threshold (Tth). Hence, the magnitude of the ith heatwave event (Mi) can be
computed as follows:

Mi = log10

[
1 +

∑di+Di−1

j=di
(Tx( j) − Tth)

]
, (13)

where di and Di indicate the starting time and duration of the ith heatwave event. In the current
study, a heatwave event was considered to occur when Tx exceeded Tth on three consecutive days.
Thus, Di is always larger than two. The mean total mortality rate (pi) is the total mortality rate over the
period, which is adversely affected by the heatwave event. The mean total mortality rate (pi) of a given
heatwave event is computed for the period, including the days of the event and a variable number of
lag days (L). Because heat-related mortality can occur after the heatwave event, the mortality during
lag days is considered when calculating pi. When the lag days of a previous heatwave event overlap
with the days of a current heatwave event, the overlapping days are accounted for in the current
heatwave event instead of the previous event. Therefore, the mean total mortality rate of the ith
heatwave event can be given by:

pi =
1

Di + Li

∑di+Di+L−1

j=di
p( j) (14)

The final equation is obtained by inserting Equations (13) and (14) into Equation (11). The final
equation for the heat-related risk assessment model is:

pi = p0 + Mi·α+ ε (15)

This risk assessment model contains four free parameters: α, p0, Tth, and L. These parameters
must be estimated for the construction of the risk assessment model. Various numbers (21–50 ◦C for
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Tth and 0–14 days for L) are tested to estimate Tth and L. The intervals between these numbers are one.
When Tth and L are predefined, α and p0 are estimated from the calculated Mi and pi using the ordinary
least squares method. All combinations of Tth and L are tested, and the coefficient of determination
(R2) and its p-values are calculated for each combination. The combination leading to the largest R2 is
selected for the heat-related risk assessment model by a given data set. The total mortality (Ndeath,i)
during the period, including the ith heatwave event and lag days, can be estimated as follows:

Ndeath,i = Ni·(Mi·α+ p0)·(Di + Li)·106, (16)

where Ni is the population during the period, including the ith heatwave event and lag days.
Based on the risk concept presented above, heat-related risk assessment models were built for

six South Korean cities (Seoul, Incheon, Daejeon, Daegu, Gwangju, and Busan). The PTmax, Tmax,
and WBGTmax were used as temperature indicators. The heat-related risk assessment models were
built using the observation data sets from 2000 to 2016, and their performances were evaluated
using the data sets from 2017 to 2018. Young (0–64 years) and elderly (>64 years) models were
separately constructed to investigate the relationships between selected temperature indicators and
the excess mortality rate depending on the age. Finally, the relationships between excess mortality and
magnitude of heatwave depending on the region and age in South Korea were examined using the
constructed models.

The root-mean-square error (RMSE) and normalized RMSE (NRMSE) were used as evaluation
criteria. Because the total mortality is the only observable variable related to the mortality rate,
the performance of the risk assessment model was evaluated based on the difference between the
observed and estimated total mortalities. The RMSE can be used to quantify the magnitude of the
error in the risk assessment. The NRMSE represents the relative error, that is, the RMSE of the mean
observed total mortality rate. Thus, the performances of different models with different free parameters
can be compared using the NRMSE. The RMSE for the jth temperature indicator can be calculated
using the following equation:

RMSEj =

√∑nh
i=1 Ndeath,i − N̂death,i, j

nh
, (17)

where N̂death,i, j and nh are the total mortality estimate of the ith heatwave event using the jth temperature
indicator and number of heatwave events, respectively. The NRMSE for the jth temperature indicator
can be calculated using the following equation:

NRMSEj =
nh∑nh

i=1 Ndeath,i

√∑nh
i=1 Ndeath,i − N̂death,i, j

nh
(18)

3. Results

3.1. Consideration of Regions in Risk Assessment Models

The relationship between PTmax and the heat-related mortality rate is shown in Figure 2.
The magnitude of the heatwave event based on PTmax correlated with the mean total mortality rate.
The threshold ranged from 38 to 45 ◦C. The lag days estimated for the six cities ranged from 2 to 14 days.
Based on R2, all regression lines were significant at the 10% level. The values ranged from 0.06 to 0.469.
Large variations of these parameters indicated that the relationships between PTmax and the mean
total mortality rate differed in different cities. This means that the heat-related risk with the same
magnitude might differ depending on the region. With the increase in the threshold, the correlation
became stronger. Because a higher threshold led to the selection of more intense heatwave events,
the adverse effects of the heatwave events on the people were more apparent than those related to
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a lower threshold. The relation between the R2 value and threshold overall supported this claim,
although they were weakly correlated.Int. J. Environ. Res. Public Health 2020, 17, x 8 of 20 
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Figure 3 presents the relationship between Tmax and the heat-related mortality rate for six cities.
The magnitude of the heatwave event based on Tmax correlated with the mean total mortality rate.
The estimated Tmax threshold ranged from 30 to 33 ◦C. The lag days ranged from 1 to 12 days. The R2

values of all regression lines were significant at the 15% level and ranged from 0.054 to 0.333. Similar to
the results for PTmax, the Tmax and the mean of total mortality rate were positively correlated until
the threshold was reached.
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Figure 4 presents the relationship between WBGTmax and the heat-related mortality rate for
the six cities. The magnitude of the heatwave event based on WBGTmax correlated with the mean
total mortality rate. The WBGTmax threshold ranged from 28 to 30 ◦C. The lag days ranged from
3 to 14 days. The R2 values of all regression lines were significant at the 15% level and varied from
0.028 to 0.339.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 20 
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***, **, and * indicate that the R2 estimates are significant at the 95%, 90%, and 85% levels, respectively;
NS indicates that the R2 estimate is insignificant based on the 85% significance level.

The estimates of the four free parameters, R2, and annual mean excess mortality rate (MEMR) for
the heat-related risk assessment models depending on the regional characteristics are presented in
Table 2.

Table 2. Estimated free parameters, coefficient of determination, and annual mean excess mortality
rate (MEMR) for the fitted heat-related risk assessment model depending on the regions during the
training period (2000–2016).

Indicator City Tth (◦C) L (Day) α (10−6 ·Day−1 ◦C) p0 (10−6 ·Day−1) R2 Annual MEMR
(10−6 ·Year−1)

The Number
of Events

PTmax

Seoul 38 2 0.59 9.63 0.097 *** 23.27 58
Incheon 44 3 1.51 10.18 0.465 *** 16.41 16
Daejeon 45 2 3.56 7.79 0.469 *** 22.36 14
Daegu 41 4 1.07 11.35 0.083 *** 37.66 57

Gwangju 41 14 1.13 10.08 0.126 *** 101.08 54
Busan 40 5 0.72 12.69 0.060 ** 30.08 46

Tmax

Seoul 31 7 0.57 9.79 0.066 ** 19.89 48
Incheon 30 1 0.65 10.88 0.054 * 11.70 41
Daejeon 32 8 1.38 9.58 0.190 *** 32.91 28
Daegu 33 1 2.14 10.27 0.333 *** 51.30 49

Gwangju 32 12 1.15 10.28 0.152 *** 57.19 45
Busan 30 5 0.90 12.75 0.100 *** 33.10 44

WBGTmax

Seoul 28 3 1.08 9.43 0.197 *** 18.34 28
Incheon 25 5 0.33 11.00 0.028 * 32.01 89
Daejeon 29 14 1.18 9.93 0.250 *** 31.48 25
Daegu 28 2 1.69 10.26 0.369 *** 65.33 50

Gwangju 30 8 1.86 10.57 0.329 *** 21.44 16
Busan 28 3 0.81 12.95 0.081 ** 20.10 37

Note that ***, **, and * indicate that the R2 estimates are significant at the 95%, 90%, and 85% levels, respectively;
NS indicates that the R2 estimate is insignificant based on the 85% significance level.

The temperature indicator leading to the largest R2 differed depending on the city. The use of
PTmax for the modeling of the excess mortality rate yielded the largest R2 among the three temperature
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indicators in Incheon and Daejeon. The R2 values were 0.465 and 0.469, respectively, and were
significant at the 5% level. The application of Tmax led to the best performance based on the R2

estimate when modeling the excess mortality rate in Busan. The R2 value was 0.100 and was significant
at the 5% level. WGBTmax yielded the largest R2 in Seoul, Daegu, and Gwangju. The R2 values were
0.197, 0.369, and 0.329, respectively, and significant at the 5% level.

To evaluate the performances of the heat-related risk assessment models using different
temperature indicators considering different regions in South Korea, the RMSE and NRMSE values of
the observed and estimated total mortality rates were calculated for all employed cities. The RMSE
and NRMSE values for the six cities during the training period are shown in Figure 5. Overall, the use
of WBGTmax led to the best performances based on the RMSE and NRMSE. The best temperature
indicator for the heat-related risk assessment might be the WBGTmax, except for Incheon, where PTmax
yielded the smallest RMSE and NRMSE values.

Int. J. Environ. Res. Public Health 2020, 17, x 10 of 20 

 

significant at the 5% level. WGBTmax yielded the largest R  in Seoul, Daegu, and Gwangju. The R  
values were 0.197, 0.369, and 0.329, respectively, and significant at the 5% level. 

To evaluate the performances of the heat-related risk assessment models using different 
temperature indicators considering different regions in South Korea, the RMSE and NRMSE values 
of the observed and estimated total mortality rates were calculated for all employed cities. The RMSE 
and NRMSE values for the six cities during the training period are shown in Figure 5. Overall, the 
use of WBGTmax led to the best performances based on the RMSE and NRMSE. The best temperature 
indicator for the heat-related risk assessment might be the WBGTmax, except for Incheon, where 
PTmax yielded the smallest RMSE and NRMSE values. 

 

Figure 5. Root-mean-square error (RMSE) and normalized RMSE of the observed and estimated 
annual total mortalities for (a) PTmax, (b) Tmax, and (c) WBGTmax for the six cities during the 
training period (2000–2016). 

These results did not represent the performances of the models for unseen data sets because of 
the data sets that were used to build the models. Thus, to evaluate the performances of the models in 
predicting the heat-related risk, the RMSE and NRMSE values of the test period were calculated. The 
results are presented in Figure 6. The numbers of the event for test period were eight for PTmax in 
Seoul, two for PTmax in Incheon, seven for PTmax in Daejeon, nine for PTmax in Daegu, nine for 
PTmax in Gwangju, seven for PTmax in Busan, four for Tmax in Seoul, two for Tmax in Incheon, six 
for Tmax in Deajeon, six for Tmax in Deagu, six for Tmax in Gwangju, four for Tmax in Busan, five 
for WBGTmax in Seoul, eight for WBGTmax in Incheon, five for WBGTmax in Deajoen, eight for 
WBGTmax in Deagu, six for WBGTmax in Gwangju, and six for WBGTmax in Busan, respectively. 
The RMSE and NRMSE values determined for the test period were much larger than those of the 
training period. If the relationship between the mortality and heatwave event was constant, the 
difference in the evaluation criteria between the two periods might be small. Large differences might 
indicate that the temporal variability in the relationship between the mortality and heatwave was 
large in South Korea. In contrast to the results obtained for the training period, the use of PTmax for 
the heat-related risk assessment overall led to the best performance based on the RMSE and NRMSE 
values for the test period. The performances of the models using WBGTmax were better than those 
obtained using Tmax. Based on the NRMSE, models using PTmax led to the best performances in 
Incheon, Daejeon, Daegu, and Busan. The application of WBGTmax in heat-related risk assessment 
models yielded the smallest NRMSEs in Seoul and Gwangju. Thus, PTmax and WBGTmax were 
appropriate temperature indicators that could be used for the assessment of the heat-related risk in 
South Korea. 

  

Figure 5. Root-mean-square error (RMSE) and normalized RMSE of the observed and estimated annual
total mortalities for (a) PTmax, (b) Tmax, and (c) WBGTmax for the six cities during the training period
(2000–2016).

These results did not represent the performances of the models for unseen data sets because of
the data sets that were used to build the models. Thus, to evaluate the performances of the models
in predicting the heat-related risk, the RMSE and NRMSE values of the test period were calculated.
The results are presented in Figure 6. The numbers of the event for test period were eight for PTmax
in Seoul, two for PTmax in Incheon, seven for PTmax in Daejeon, nine for PTmax in Daegu, nine for
PTmax in Gwangju, seven for PTmax in Busan, four for Tmax in Seoul, two for Tmax in Incheon, six for
Tmax in Deajeon, six for Tmax in Deagu, six for Tmax in Gwangju, four for Tmax in Busan, five for
WBGTmax in Seoul, eight for WBGTmax in Incheon, five for WBGTmax in Deajoen, eight for WBGTmax
in Deagu, six for WBGTmax in Gwangju, and six for WBGTmax in Busan, respectively. The RMSE
and NRMSE values determined for the test period were much larger than those of the training period.
If the relationship between the mortality and heatwave event was constant, the difference in the
evaluation criteria between the two periods might be small. Large differences might indicate that
the temporal variability in the relationship between the mortality and heatwave was large in South
Korea. In contrast to the results obtained for the training period, the use of PTmax for the heat-related
risk assessment overall led to the best performance based on the RMSE and NRMSE values for the
test period. The performances of the models using WBGTmax were better than those obtained using
Tmax. Based on the NRMSE, models using PTmax led to the best performances in Incheon, Daejeon,
Daegu, and Busan. The application of WBGTmax in heat-related risk assessment models yielded the
smallest NRMSEs in Seoul and Gwangju. Thus, PTmax and WBGTmax were appropriate temperature
indicators that could be used for the assessment of the heat-related risk in South Korea.
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3.2. Consideration of the Age in Risk Assessment Models

To investigate the relationship between the selected temperature indicator and excess mortality
rate of young and elderly people, the mortality rates were classified into young and elderly categories.
To focus on the heat-related impact of different ages, the data sets for the six cities were integrated into
the constructions of event-based heat-related risk assessment models. The estimates of the four free
parameters, R2, and annual MEMR depending on the age during the training period are presented in
Table 3. For each temperature indicator, the threshold estimates were identical for different ages (i.e.,
young and elderly), while the estimates of other free parameters (e.g., lag day, slope, and base mortality
rate) differed. The slopes obtained for the different temperature indicators were similar within an age
category. For instance, the slopes determined for the young and elderly people ranged from 0.16 to
0.2 and from 2.24 to 3.98, respectively. The slopes determined for elderly people were higher than
those determined for young people. The values of the slopes for elderly people were ~16 times those
of young people. This means that elderly people are more vulnerable to heat than young people in
South Korea. The base mortalities estimated for each age group were similar. The base mortality
estimates determined for the young and elderly people ranged from 4.31 to 4.33 and from 84.28 to
86.09, respectively. This indicated that heat-related risk assessment models with different temperature
indicators might yield reliable estimates of the base mortality rate. Based on r2, Tmax was the most
appropriate temperature indicator for the constructed model considering the age.

Table 3. Estimated free parameters, coefficient of determination, and annual mean excess mortality
rate (MEMR) for the fitted heat-related risk assessment model depending on the age for the training
period (2000–2016).

Indicator Age Tth (◦C) L (Day) α (10−6·Day−1 ◦C) p0 (10−6·Day−1) R2 Annual MEMR
(10−6 ·Year−1)

The Number
of Events

PTmax
0–64 38 7 0.16 4.31 0.031 NS 12.05 64
65+ 38 6 2.56 84.25 0.010 NS 184.5 64

Tmax
0–64 29 2 0.20 4.33 0.053 *** 13.41 83
65+ 29 13 3.98 85.09 0.027 * 479.22 83

WBGTmax
0–64 25 0 0.16 4.33 0.045 ** 14.58 80
65+ 25 7 2.24 86.09 0.014 NS 287.23 80

Note that ***, **, and * indicate that the R2 estimates are significant at the 95%, 90%, and 85% levels, respectively;
NS indicates that the R2 estimate is insignificant based on the 85% significance level.

The RMSE and NRMSE values determined for the training period for different ages are presented
in Figure 7. Overall, the risk assessment models using PTmax led to the best performances based on
the RMSEs and NRMSEs for each age category. For young people, the use of Tmax and PTmax yielded
the smallest RMSE and NRMSE, respectively. The application of PTmax and WBGTmax yielded
the smallest RMSE and NRMSE for elderly people, respectively. Although the models using PTmax
seemed to be the best based on the results, the difference in the performances of the employed models
was small.
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To evaluate the performances of the models in predicting the heat-related risk for unseen data sets,
the RMSE and NRMSE values of different temperature indicators during the test period were calculated
for different age groups. The results are presented in Figure 8. The numbers of the event for the test
period were nine for PTmax, nine for Tmax, and seven for WBGTmax, respectively. The patterns of the
RMSE and NRMSE obtained for the test period were similar to those of the training period, although
the RMSE and NRSME values determined for the test period were much larger than those of the other
period. Overall, risk assessment models using PTmax led to the best performance based on the RMSE
and NRMSE for each age group. The models using PTmax yielded the smallest RMSEs among the
employed models for all age groups. In addition, the model using PTmax for young people yielded the
smallest NRMSE. For elderly people, the model using Tmax led to the best performance based on the
NRSME. These results indicated that PTmax should be applied for the assessment of the heat-related
risk in South Korea, particularly for young people.Int. J. Environ. Res. Public Health 2020, 17, x 12 of 20 
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3.3. Consideration of the Region and Age in Risk Assessment Models

The mortality rates were classified into twelve groups considering regions (Seoul, Incheon,
Daejeon, Daegu, Gwangju, and Busan) and ages (young and elderly people) to examine the relationship
between the heat-related risk and heatwave depending on regions and ages in detail. The estimates of
the four free parameters, R2, and annual MEMR during the training period depending on regions and
ages are listed in Table 4.

Although the free parameter estimates varied with the regions and ages, regional characteristics
had a larger impact on the free model parameters. For instance, the thresholds of the models using
PTmax for young and elderly people ranged from 33–45 ◦C and from 32–41 ◦C, respectively. The lag day
and slope estimates seemed to be the most variable parameters in the constructed model. For example,
the lag days for the elderly people ranged from 1–14 days for PTmax, 1–14 days for Tmax, and 0–14 days
for WBGTmax. The lag day estimates covered the whole range of tested lag days. In addition, the slope
estimates based on Tmax for elderly people in Incheon and Busan were 14.03 and 1.7, respectively.
The slope value determined for Incheon was nine times that obtained for Busan. The r2 values of the
models for young people were higher than those calculated for elderly people. The r2 values of the
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models using PTmax, Tmax, and WBGTmax were insignificant in four, five, and six models with a 15%
significance level, respectively. Based on R2, PTmax was the most appropriate temperature indicator
considering regions and ages.

Table 4. Free parameters, coefficient of determination, and annual mean excess mortality rate (MEMR)
of the fitted heat-related risk assessment model depending on regions and ages for the training period
(2000–2016).

Indicator City Age Tth (◦C) L (Day) α
(10−6·Day−1·◦C)

p0
(10−6·Day−1)

R2 Annual MEMR
(10−6·Year−1)

The Number
of Events

PTmax

Seoul

0–64

36 7 0.25 3.60 0.049 *** 24.45 89
Incheon 36 7 0.11 4.43 0.006 NS 39.42 89
Daejeon 45 1 1.65 2.20 0.413 *** 45.08 14
Daegu 36 12 0.26 4.31 0.033 ** 11.53 102

Gwangju 33 4 0.29 3.75 0.044 *** 59.74 150
Busan 36 6 0.38 4.90 0.106 *** 9.11 86
Seoul

65+

36 3 7.26 68.97 0.045 *** 520.67 89
Incheon 38 14 3.92 86.61 0.013 NS 411.38 61
Daejeon 41 2 3.88 79.60 0.007 NS 148.29 57
Daegu 33 8 3.06 83.72 0.014 NS 628.42 121

Gwangju 35 1 4.63 84.86 0.022 ** 572.93 132
Busan 32 4 4.01 83.23 0.025 ** 600.03 114

Tmax

Seoul

0–64

30 1 0.25 3.74 0.037 ** 8.71 78
Incheon 26 1 0.19 4.39 0.022 ** 21.82 149
Daejeon 28 2 0.33 3.70 0.038 *** 33.75 132
Daegu 35 3 0.54 4.29 0.155 * 4.07 15

Gwangju 28 2 0.26 3.91 0.026 ** 33.68 145
Busan 27 5 0.16 5.27 0.026 * 17.80 90
Seoul

65+

30 3 5.29 74.40 0.018 NS 230.24 78
Incheon 31 10 14.03 85.09 0.095 NS 269.04 22
Daejeon 29 14 6.31 80.63 0.030 ** 972.44 110
Daegu 33 1 8.22 80.75 0.023 NS 197.06 49

Gwangju 31 9 4.22 86.38 0.018 NS 298.85 64
Busan 26 7 1.70 89.11 0.066 NS 273.97 106

WBGTmax

Seoul

0–64

25 0 0.12 3.81 0.019 NS 8.91 94
Incheon 23 3 0.06 4.50 0.068 *** 10.23 94
Daejeon 26 3 0.46 3.51 0.096 *** 35.35 73
Daegu 26 14 0.24 4.45 0.042 ** 35.58 77

Gwangju 23 3 0.29 3.75 0.068 *** 62.89 101
Busan 25 13 0.18 5.24 0.036 * 25.62 66
Seoul

65+

26 3 0.57 79.90 0.016 NS 32.94 94
Incheon 24 7 1.45 91.31 0.005 NS 222.42 100
Daejeon 26 3 2.32 83.88 0.005 NS 179.98 73
Daegu 25 14 3.71 83.43 0.031 ** 719.90 94

Gwangju 25 0 3.33 88.92 0.012 NS 362.73 100
Busan 24 4 2.30 87.47 0.010 NS 304.89 76

Note that ***, **, and * indicate that the R2 estimates are significant at the 95%, 90%, and 85% levels, respectively;
NS indicates that the R2 estimate is insignificant based on the 85% significance level.

The RMSE and NRMSE values based on different temperature indicators for different regions and
ages during the training period are presented in Figure 9. Heat-related risk assessment models using
PTmax and Tmax for the two age categories overall showed the best performances based on the RMSE
and NRMSE values. For young people, the application of PTmax yielded the smallest RMSE in two
cities and the smallest NRMSE in four cities, respectively. The models using Tmax yielded the smallest
RMSE and NRMSE values in three cities for elderly people. Based on the NRMSE, WBGTmax should
be applied as a temperature indicator in the assessment model.

The RMSE and NRMSE values based on different temperature indicators for different regions and
ages for the test period are presented in Figure 10. In contrast to the results of the heat-related risk
assessment models for different regions and ages during the training period, the models using PTmax
overall led to the best performances based on the RMSE and NRMSE. For young people, the application
of PTmax yielded the smallest RMSE in four cities and the smallest NRMSE in three cities, respectively.
The models using PTmax yielded the smallest RMSE in four cities and the smallest NRMSE in two
cities for elderly people, respectively. The application of Tmax yielded the smallest RMSE and NRMSE
values in two cities for young people. For elderly people, the models using Tmax yielded the smallest



Int. J. Environ. Res. Public Health 2020, 17, 2631 14 of 19

RMSE in two cities and the smallest NRMSE in three cities, respectively. Based on the results for the
test period, heat-related risk assessment models using WBGTmax yielded the worst performances
among the models for South Korea using temperature indicators.Int. J. Environ. Res. Public Health 2020, 17, x 14 of 20 
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people for the test period (2017–2018).

4. Discussion

The results of this study were used to determine the applicability of PTmax for heat-related risk
assessment. The results showed that PTmax was an appropriate temperature indicator that could
be used to assess the heat-related risk in South Korea. Overall, PTmax was the most appropriate
temperature indicator for the assessment based on the results obtained for all cases during the test
period. The heat-related risk assessment model using PTmax also showed good performance during
the training period. During the training period, PTmax might be the most appropriate temperature
indicator based on the RMSE and NRMSE, except for regional modeling. In contrast to the RMSE and
NRMSE obtained for the training period, PTmax was the most appropriate temperature indicator in



Int. J. Environ. Res. Public Health 2020, 17, 2631 15 of 19

one case considering regions and ages based on R2. Based on the R2 value for the training period,
the most appropriate temperature indicators differed depending on the cases.

From a forecasting perspective regarding heat-related risk assessment, the consistent performance
of the model in the future, that is, for unseen data, is crucial. Thus, a model that consistently yields
a good performance is considered to be a good model for the assessment of the heat-related health
risk. The results obtained for the test period indicated the consistent performance of the employed
risk assessment models. As mentioned above, heat-related risk assessment models using PTmax
showed good performances in the prediction of the total mortality in all cases during the test period.
These results supported the future application of PTmax, which yielded a good precision in assessing
the heat-related risk. Therefore, PTmax could be applied as a temperature indicator for the assessment
of the heat-related health risk in South Korea.

The high consistency of the performance of the heat-related risk assessment model indicated that
the model might properly respond to heat-related mortality variability. Due to the complex mechanism
of mortality, predicting the heat-related mortality is a difficult task [44–47]. The possible reason for
the adequate response of PTmax to varying heat-related mortalities is that the PT is based on the
heat budget model (namely KMM) for human beings. Because Tmax and WBGTmax do not consider
physiological characteristics of people, the heat-related risk assessment model may be overfitted to the
employed data sets, where one or several parameters illustrate meteorological conditions. On the other
hand, PTmax successfully represents the magnitude of heat stress on people because it accounts for
the interactions among meteorology, environment, and thermal physiology. Thus, the application of
PTmax in the heat-related risk assessment model may successfully reveal the relationship between the
heat-related risk and magnitude of the heatwave event. For instance, the heat-related risk assessment
model using PTmax for young people showed the best performance based on the results presented in
Figures 7 and 8. The performance was better than that for elderly people. Because the reference person
in the KMM, which is the heat budget model used for the PT, was 35 years old, the model using PT
might yield good performance for young people. This result supported the claim that PT successfully
revealed the relationship between the excess mortality rate and magnitude of the heatwave event due
to the use of the heat budget model.

In the current study, additional meteorological variables, other than the exclusion of Tmax,
WBGTmax, and PTmax, were not considered when modeling the mortality rate. A number of factors
affect the mortality rate [48–50]. To clearly extract the heat-related impact on the mortality rate,
the effects of other factors on the mortality rate should be removed [51]. Thus, only the overall
relationship between the mortality rate and magnitude of the heatwave event could be identified in
the current study. The current study focused on identifying the applicability of PTmax and comparing
the use of PTmax, WBGTmax, and Tmax for the assessment of the heat-related risk in South Korea.
The identification of the detailed relationship between the magnitude of heatwave and mortality
rate was beyond the scope of the current study. Therefore, the performances of the heat-related
risk assessment models using the employed temperature indicators presented in the current study
might change when additional variables, such as air pollution and relative humidity, are included in
the model.

To obtain the PT, a number of parameters, such as the air temperature, dew point temperature,
relative humidity, wind speed, cloud amount, cloud type, and geographical information, is required.
Data on the cloud amount and cloud type are often not observed at weather stations. Thus, the PT cannot
be adopted for the heat-related risk assessment in many regions. In the current study, the performances
of the risk assessment models using Tmax and WBGTmax were comparable with those using PTmax,
although the models using PTmax showed a slightly better performance. When meteorological
variables used for the PT are unavailable at a given location, Tmax and WBGTmax are good alternatives
for the assessment of the heat-related risk in South Korea. Based on the results of the current study,
the PT would be the best temperature indicator to express heat-related stress for Koreans. To enlarge
our capacity to assess heat-related stress and risk for Korean, many meteorological variables, such as
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temperature, wind speed, relative humidity, shortwave radiation, and longwave radiation, should be
recorded with a high network density. Installing a compact weather station would be a good manner
to obtain this information, particularly in urban areas [52].

The spatial heterogeneity of heat-related stress within the employed cities is largely based on the
results of the current study, particularly to the lag day and slope estimates. There is a number of factors
influencing the lag day, which represents how long the heatwave impacts on mortality, and slope
estimate, which represents sensitivity to heat-related stress. Although the main driver to make the
large spatial heterogeneity may be the climate condition, many factors, such as climatic conditions,
altitude, urbanization, facility, and public health, are associated with the spatial heterogeneity of the
heat-related risk [53]. Particularly, the local impacts, such as urbanization and facility, may be critical
factors for determining the lag day and slope estimates [54]. In South Korea, Hong et al. [55] reported
that the urban heat island in Seoul was correlated with socio-economic development, and this heat
island would aggravate heatwave events. The study areas in the current study were metropolitan
cities in South Korea and had different characteristics of urbanization and facility. Thus, these local
impacts may lead to the large spatial heterogeneity of heat-related stress in South Korea.

Based on the results obtained for cases considering the age, the use of PTmax in the heat-related
risk assessment model led to a good performance. The possible reason for this is that the PT in this
study was based on the KMM and thus the age of 35 years. The sensitivity to the heat-related stress of
elderly people differs from that of young people [56,57]. To explain the heat stress on elderly people,
the PT should be tuned for this age group. Matzarakis et al. [58] introduced the Klima–Michel senior
model (KMSM) with a changed age, weight, and activity. The reference person was 75 years old,
1.75 m tall, weighed 70 kg and performed an activity equivalent to walking at a speed of 1 km/h.
For elderly people, the PT should be calculated using the KMSM and applied for the assessment of the
heat-related risk in South Korea. The parameters in the KMM were evaluated for the Korean people,
and it was found that the parameters used in the KMM were applicable for young Koreans because
the difference in metabolic rates from the two parameter sets was small. However, the parameters
in the KMSM have not been evaluated for the elderly Koreans. The feasibility of the parameters
in the KMSM should be evaluated before the application of KMSM into PT calculation for elderly
Koreans. Thus, the application of KMSM in the PT model remains for further study. In addition,
a methodology assessing the heat-related risk by concurrently considering two different types of PTs
should be developed to improve our understanding of the heat-related risk.

5. Conclusions

In the current study, the heat-related risk in South Korea was assessed using PTmax, WBGTmax,
and Tmax. The relationships between the heat-related risk and heatwave depending on different
temperature indicators were examined for different regions (Seoul, Incheon, Daejeon, Gwangju, Daegu,
and Busan) and ages (young and elderly) in South Korea. The applicability of PTmax in assessing
the heat-related risk in South Korea was investigated using the results of the current study, and the
performances of the heat-related risk assessment models using PTmax were compared with those
obtained using WBGTmax and Tmax.

The PTmax was considered to be a good temperature indicator that could be used for the
assessment of the heat-related risk in South Korea. Risk assessment models using PTmax showed
the best performances based on the RMSE and NRMSE values and could be used for future data sets.
Particularly, the model using PTmax for young people yielded the best performance, which might be
due to the fact that the reference person in the heat budget model used to determine the PT was 35 years
old. This would explain why the PT appropriately revealed the relationship between the magnitude of
heatwave events and the heat-related mortality rate and responded to varying heat-related mortalities.
The relationship between the heatwave event and heat-related mortality rate largely varied depending
on the regions in South Korea, while that depending on different ages was relatively consistent.
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Regional characteristics of the heat-related impact on the health risk should be considered to obtain
reliable results when assessing the heat-related risk in South Korea.
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