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Neurodegenerative diseases, namely Alzheimer’s (AD), Parkinson’s (PD), and
Huntington’s disease (HD) together with amyotrophic lateral sclerosis (ALS) and
multiple sclerosis (MS), devastate millions of lives per year worldwide and impose
an increasing socio-economic burden across nations. Consequently, these diseases
occupy a considerable portion of biomedical research aiming to understand mechanisms
of neurodegeneration and to develop efficient treatments. A potential culprit is cholesterol
serving as an essential component of cellular membranes, as a cofactor of signaling
pathways, and as a precursor for oxysterols and hormones. This article uncovers the
workforce studying research on neurodegeneration and cholesterol using the TeamTree
analysis. This new bibliometric approach reveals the history and dynamics of the teams
and exposes key players based on citation-independent metrics. The team-centered
view reveals the players on an important field of biomedical research.

Keywords: neurologic disease, bibliometric analyses, scientific impact, sterol, research evaluation, informetric,
scientometric, key opinion leader

INTRODUCTION

Neurodegenerative disorders devastate millions of lives worldwide and impose an increasing
socio-economic burden (Kalia and Lang, 2015; Feigin et al., 2017; Erkkinen et al., 2018; El-
Hayek et al., 2019). Research within the last decades has helped to clarify the mechanisms
underlying each disease and suggested new therapeutic approaches (Fu et al., 2018; Ga
et al., 2018; Jucker and Walker, 2018; Reich et al., 2018; Lassmann, 2019; Savelieff et al.,
2019; Schwartz et al., 2021). A decisive step is the identification of molecular culprits that
provoke or contribute to the dysfunction and degeneration of neurons. In the case of AD,
research focused on three targets: hyperphosphorylated forms of tau protein, proteolytic
fragments of amyloid precursor protein, and specific variants of apolipoprotein E (Long and
Holtzman, 2019). A prime target for PD-related research has been alpha synuclein (Rocha
et al., 2018), but other genes, as well as environmental factors, have come under scrutiny
(Deng et al., 2018; Bandres-Ciga et al., 2020; Blauwendraat et al., 2020). In the case of
amyotrophic lateral sclerosis (ALS), superoxide dismutase 1 has been investigated intensely
as it was the first gene shown to be mutated in familial forms of the disease (Rosen et al., 1993).
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TABLE 1 | Query terms used for the literature search in PubMed/MEDLINE.

Query term* Article count

(Q1 AND Q2) NOT Q3 4,775
(Alzheimer*[tiab]) AND Q2) NOT Q3 2,514
(Multiple sclerosis[tiab] AND Q2) NOT Q3 570
(Parkinson*[tiab] AND Q2) NOT Q3 459
((Lou Gehrig* disease[tiab] OR amyotrophic
lateral sclerosis[tiab]) AND Q2) NOT Q3

132

(Huntington*[tiab] AND Q2) NOT Q3 116

*Query term 1 (Q1): ((Pick’s disease[tiab] OR progressive supranuclear palsy[tiab]
OR tauopathy[tiab] OR tauopathies[tiab] OR neuronal ceroid lipofuscinosis[tiab] OR
hereditary spastic paraplegia[tiab] OR ataxia telangiectasia[tiab] OR creutzfeldt-
jacob[tiab] OR prion disease[tiab] OR frontotemporal dementia[tiab] OR fronto-temporal
dementia[tiab] OR polyglutamine disease[tiab] OR spinocerebellar ataxia*[tiab] OR
spino-cerebellar ataxia*[tiab] OR motor neurone disease[tiab] OR motor neuron
disease[tiab] OR motoneuron disease[tiab] OR Lou Gehrig* disease[tiab] OR amyotrophic
lateral sclerosis[tiab] OR huntington*[tiab] OR parkinson*[tiab] OR alzheimer*[tiab] OR
neurodegenerative[tiab] OR neurodegeneration[tiab] OR spinal muscular atrophy[tiab]
OR multiple system atrophy[tiab] OR multiple sclerosis[tiab] OR dementia[tiab]).
Query term 2 (Q2): (sterol OR cholesterol OR hydroxycholesterol OR hydroxy-cholesterol
OR oxysterol). Query term 3 (Q3): (review[pt] OR niemann-pick disease type c2[tiab] OR
niemann-pick type c2[tiab] OR niemann-pick disease type c1[tiab] OR niemann-pick type
c1[tiab] OR niemann-pick type c[tiab] OR niemann-pick disease type c[tiab]).

TAR DNA binding protein-43 (TDP-43) has become a target for
ALS- and frontotemporal dementia-related research, as it was
identified as a major component of ubiquitin-positive inclusions
(Neumann et al., 2006). Since then, other genes have come
under study as disease-causing alleles were identified in familial
forms of ALS (Chia et al., 2018; Mejzini et al., 2019). Huntingtin
has been at the center of attention as the long-sought gene
bearing Huntington’s disease (HD)-causing mutations (The
Huntington’s Disease Collaborative Research Group, 1993).
Repeat expansions similar to those induced by the Huntingtin
alleles cause neurodegeneration in numerous diseases including
ALS and frontotemporal dementia by combinations of distinct
molecular mechanisms (Malik et al., 2021; Schwartz et al.,
2021). Research on multiple sclerosis (MS) has focused on
immune and glial cells since chronic inflammation and
demyelination are known pathologic changes preceding
neurodegeneration (Faissner et al., 2019; Lassmann, 2019;
Voet et al., 2019).

Why should cholesterol play a role in these diseases?
Cholesterol is one of the most widely known and most studied
biological molecules due to its involvement in cardiovascular
and other diseases (Goldstein and Brown, 2015; Tall and
Yvan-Charvet, 2015; Gliozzi et al., 2021) and due to its
functions as a component of membranes in eukaryotic cells
(Yeagle, 1985), as a cofactor of signaling pathways and as
a precursor for steroid hormones (Miller and Auchus, 2011;
Prabhu et al., 2016). Notably, cholesterol is also converted
to biologically active oxysterols by specific enzymes or by
autoxidation (Mutemberezi et al., 2016; Wang et al., 2021). Given
the diverse functions of cholesterol, its cellular homeostasis
relies on a multitude of proteins and mechanisms (Ikonen,
2008; Luo et al., 2020). In the brain, cholesterol represents
a major building block due to the diversity and sheer mass
of membraneous structures. This includes highly branched
axons and dendrites of neurons (Elston and Fujita, 2014), fine
perisynaptic processes of astrocytes (Oberheim et al., 2009),

FIGURE 1 | Development of the workforce. (A) Annual counts of original
articles related to cholesterol and neurodegeneration (PubMed query shown
in Table 1). (B) Annual counts of authors contributing to the field per year. (C)
Mean number of authors listed on article bylines per year. (D) Annual counts
of authors entering (green bars) and exiting (red bars) the field per year based
on the first and last year of publication, respectively. Black and orange lines
indicate the sum of annual author counts. Gray bars indicate the number of
authors contributing single articles to the field (shown as negative and positive
values).

countless synaptic vesicles (Binotti et al., 2021), and the multi-
layered myelin sheaths surrounding axons (Schmitt et al.,
2015). Based on these considerations, disturbances of cholesterol
homeostasis seem likely to cause neuronal dysfunction and
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FIGURE 2 | Publication records of last authors. (A) TeamTree graph showing
the publication records of the last authors contributing to the field. Circles
connected by vertical gray lines represent for each author the years of
publications as the last author plotted against a chronologic author index with
alternating signs and author-specific colors to enhance visibility. Circle area
indicates publication count (PC) per year. Numbers indicate authors with
10 largest PCs (names indicated in panel D). (B) Number of authors entering
the field per year (orange) and of articles (black) published per year. (C) Left,
PCs per author indicating last and first author articles by positive and negative
values, respectively. Circle area indicates the average number of publications
per year. Right, relative frequency distributions of PC values shown on the left.
(D) Names of authors with largest PCs in the field.

degeneration. The mechanisms of cholesterol homeostasis in
brain cells are probably distinct from those operating in the
rest of the body (Dietschy, 2009; Pfrieger and Ungerer, 2011;
Zhang and Liu, 2015; Mahley, 2016; Moutinho et al., 2016;
Yoon et al., 2016; Hussain et al., 2019). Possible implications
of cholesterol and derived molecules in neurodegenerative
diseases have been reviewed elsewhere (Martín et al., 2014;
Zarrouk et al., 2014; Leoni and Caccia, 2015; Doria et al.,
2016; Arenas et al., 2017; Chang et al., 2017; Testa et al.,
2018; Zarrouk et al., 2018; Adorni et al., 2019; Griffiths and
Wang, 2019; Hussain et al., 2019; Jeong et al., 2019; Jin et al.,
2019; Loera-Valencia et al., 2019; Petrov and Pikuleva, 2019;
Segatto et al., 2019; Blauwendraat et al., 2020; González-Guevara
et al., 2020; McFarlane and Kędziora-Kornatowska, 2020; Sáiz-
Vazquez et al., 2020; Dai et al., 2021; Duong et al., 2021;
Feringa and van der Kant, 2021; García-Sanz et al., 2021;
Pikuleva and Cartier, 2021; Samant and Gupta, 2021). This
article shows the workforce driving research in the field using
original research articles obtained from MEDLINE (Table 1) and
a new bibliometric approach (Pfrieger, 2021; https://github.com/
fw-pfrieger/TeamTree). Bibliometric analyses of other aspects
can be found elsewhere (Guido et al., 2015; Barboza and Ghisi,
2018; Zhang et al., 2020; Du et al., 2021; Li et al., 2021;
Rizzi et al., 2021). Articles related to Niemann-Pick type C
disease were excluded from the analysis as this rare lysosomal
storage disorder is directly linked to perturbed cholesterol
transport (Loftus et al., 1997; Naureckiene et al., 2000; Vanier,
2010).

FIGURE 3 | Genealogic relations in the field. (A) TeamTree graph showing
genealogic relations among authors. Circles and gray lines indicate
ancestor-offspring connections based on first author-last author pairs on
article bylines. Connections of authors with the 10 largest offspring count
(OC) values are shown in color (names indicated in panel G). Circle area
indicates OC value. The signs of author indices of offspring and of ancestors
were adjusted to the first-generation ancestor. (B–E) Quantitative data
showing for individual last authors, the number of offspring (B) the number of
articles published together with offspring (PCoff; circle area indicates average
PC per year) (C), the generation of authors (AG) starting with AG = 1 for first
ancestors (D) and the family size (FS) of individual first-generation ancestors
comprising all offspring across subsequent generations (E). (F,G) Family trees
(F) and names (G) of authors with 10 largest OC values (indicated by circle
area).

DEVELOPMENT OF THE WORKFORCE
CONTRIBUTING TO THE FIELD

The earliest publications date back to the 1950s when three
groups investigated the cholesterol content in tissues and body
fluids of patients with dementia (Mori and Barucci, 1951;
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FIGURE 4 | Collaborative connections in the field. (A) TeamTree graph
showing collaborations between last authors (out; negative author index) and
(non-first) co-authors (in; positive author index) on article bylines. For out- and
in-degree connections an author lists other authors as co-authors and an
author is listed as a co-author, respectively. Connections of authors with
10 highest connection count (CC) values (in+out) are shown in color (names
indicated in panel E). Circle areas indicate CCout and CCin values of these
authors. (B,C) Left, counts of collaborators (B) and of collaborative articles
(C) per author. Circle area indicates PCannu. Right, relative frequency
distributions of parameters shown on the left. (D,E) Network (D) and names
(E) of authors with 10 largest CC values. Symbol areas (D) indicate CC values
normalized to the maximum. Circles and rectangles represent family and
non-family authors, respectively.

Scanu et al., 1955) and MS (Chiavacci and Sperry, 1952; Poser
and Curran, 1958). The number of articles published per year
remained relatively low until the 1990s and increased thereafter.
Since 2000, the annual count of articles has grown linearly
reaching around 300 articles per year in 2020 (Figure 1A). The
number of authors listed on the article byline grew in parallel,
however at a much stronger pace reaching more than 2,000 per
year within the last years (Figure 1B). The strong expansion
of the workforce was due to an increasing number of authors
per article (Figure 1C). Notably, the expansion of the field was

FIGURE 5 | Author ranking based on the TeamTree product. (A) Graph
showing the TeamTree product (TTP) of individual last authors in the field
represented by their author indices. This new metric takes into account
publication records, offspring training and mentorship, and collaborative
connections. Numerically, it represents the product of PC (last author
articles) × OC × CC. Circle sizes indicate TTP values normalized to the
maximum. Colored circles and numbers indicate authors with 10 highest
values. Their names are shown on the right. Gray circles with colored border
indicate authors with TTP values above zero. (B) Log10(TTP) values and their
relative frequency distribution. (C) Scatterplots with circles representing
individual authors (indicated by color; different from panels A,B) with their TTP
values (log10) plotted against the total number of citing articles (left; Cit. Ct.;
log10 values) and their H indices (middle) and with their H indices plotted
against the total number of citing articles (right; log10 values). Numbers
represent correlation coefficients [Spearman’s rho values; two-sided test;
n = 126; S = 90,803 (left)/47,558 (middle)/75,414 (right); p < 10−10].
Citation-related parameters were calculated from bibliographic records
obtained by a Web of Science query (Clarivate Analytics).

mainly driven by authors contributing single articles, as their
number grew steadily. The balance of authors publishing in the
field for more than 1 year has become negative within the last
years, but the number of authors leaving the field within the last
years is inherently inaccurate (Figure 1D).

PUBLICATION RECORDS, FAMILY
RELATIONS, AND COLLABORATIVE
CONNECTIONS IN THE FIELD

More information about the workforce can be drawn by
analyzing the authors on specific positions of the article byline,
which indicate the roles and contributions of authors (Claxton,
2005; Marušić et al., 2011). A total of ∼3,100 authors was
listed on the last byline position of articles identifying these
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FIGURE 6 | Development of the disease-specific workforce. Line plots
showing counts of original articles (orange) and of the contributing authors
(black) per year related to cholesterol and the indicated diseases. AD,
Alzheimer’s disease; MS, multiple sclerosis; PD, Parkinson’s disease; ALS,
amyotrophic lateral sclerosis; HD, Huntington’s disease.

FIGURE 7 | Workforce composition and overlap across selected diseases.
(A) Fractions of authors contributing single articles compared to the total
workforce (Sgl.), of collaborating authors among last authors (Col.) and of
authors with family ties among last authors (Fam.) in indicated fields (AD,
Alzheimer’s disease; MS, multiple sclerosis; PD, Parkinson’s disease; ALS,
amyotrophic lateral sclerosis; HD, Huntington’s disease). Black circles and
lines indicate mean and standard deviation (n = 5), respectively. (B) Histogram
showing the fraction of last authors that contributed articles to the indicated
number of fields. (C) Diagram showing connections between two diseases
that are established by last authors contributing to both fields. Names and
colored lines indicate the last authors with the highest number of connections
(n = 6). Circle size represents the number of connections normalized to the
maximum (AD; 160 links).

authors as principal investigators in the field. This corresponds
to 10% of the total workforce. The development of the field
with respect to these contributors is shown in Figure 2A
using TeamTree graphs. In this type of scatterplot, the years
of publication are plotted against a chronologic index assigned
to each author (Pfrieger, 2021). The number of last authors
entering the field per year has grown steadily during the
last two decades (Figure 2B). The total publication counts
of individual last authors reached up to 21 articles, but the
large majority (81%) contributed single articles (Figure 2C) as
observed for the entire workforce (Figure 1D). Ranking authors
by PCs identified the top contributors among the last authors
(Figure 2D).

Genealogical relations in a field can be derived from the last
and first authors on article bylines representing ancestor and
offspring, respectively (Pfrieger, 2021). Figure 3A shows family
relations among authors highlighting those with the largest
offspring counts. About 10% of last authors published previously
as first authors thus qualifying as offspring, and 7% of last authors
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FIGURE 8 | In-depth view on the field-specific workforce. TeamTree graphs showing counts of publications (PC), offspring (OC), collaborative connections (CC), and
the TeamTree product (TTP) in the indicated fields (AD, Alzheimer’s disease; MS, multiple sclerosis; PD, Parkinson’s disease; ALS, amyotrophic lateral sclerosis; HD,
Huntington’s disease) together with names of authors with the 10 largest values for each parameter. Note that for PD, ALS and HD, TTP values were replaced by an
inclusive version of this measure (iTTP). For iTTP, zero counts of OC or CC values are set to one to include authors without offspring or lacking collaborators in the
TTP-based ranking.

qualified as ancestors (Figure 3B). These ancestors generated
up to four offspring authors and published up to 10 articles
with their offspring (Figure 3C). Overall, the field comprised
192 families with up to six members spanning maximally four
generations (Figures 3D,E). The large majority of families (91%)
had only two members. Ranking by OCs revealed the most
prolific authors and their families in the field (Figures 3F,G).

Collaborative connections can be delineated based on middle
and last byline positions (Newman, 2001; Pfrieger, 2021).
Figure 4 exposes collaborations between authors contributing to
the field. In total, 43% of the authors established collaborations
with maximally 46 other authors and published up to
77 collaborative articles as last and co-author, respectively
(Figures 4B,C). Ranking authors based on collaboration counts
revealed the most strongly connected teams in the field and their
networks (Figures 4D,E).

IDENTIFICATION OF MAJOR
CONTRIBUTORS TO THE FIELD

An important goal of bibliometric analyses is to estimate
the contribution of individual authors. The ‘‘key players’’
may serve as experts, key opinion leaders, referees, and

collaborators. Different indicators of scientific production have
been explored including PCs, citations, invitations, grants,
and honors (Hicks et al., 2015; Schimanski and Alperin,
2018; Braithwaite et al., 2019). Original articles represent
an accessible primary basis to estimate the contribution of
an author. A new approach takes into account publication
record, offspring generation, and collaborative connections,
and delivers a new citation-independent parameter named
TeamTree product (TTP; Pfrieger, 2021). Based on this
parameter, key players studying neurodegenerative diseases
and cholesterol are exposed in Figure 5. Due to the high
selectivity, only a small fraction of authors (5%) reached
TTP values above zero. Notably, TTP values of authors
were strongly correlated with citation-dependent measures
such as the total number of citations or the H index
(Figure 5C).

DISEASE-SPECIFIC WORKFORCE
ANALYSES

To gain deeper insight, diseases with the largest numbers
of publications were analyzed separately (Table 1). Notably,
AD-related research produced half of the articles published in
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the field (Table 1). Overall, the fields showed marked differences
with respect to length and growth pattern: MS has the longest
and most continuous publication record (Figure 6). Except
for two articles published in the 1960s, research on AD and
cholesterol started in the 1980s. The subsequent growth of this
field was probably triggered by discoveries that the epsilon allele
of apolipoprotein E (Corder et al., 1993; Poirier et al., 1993;
Rebeck et al., 1993; Saunders et al., 1993; Strittmatter et al.,
1993) and high blood levels of cholesterol raise the risk of
sporadic AD (Kivipelto et al., 2001). Parallel studies revealed
connections between cholesterol and beta amyloid (Hartmann
et al., 1994; Bodovitz and Klein, 1996; Avdulov et al., 1997;
Howland et al., 1998; Simons et al., 1998; Refolo et al., 2000;
Fassbender et al., 2001; Kojro et al., 2001; Puglielli et al., 2001;
Runz et al., 2002; Wahrle et al., 2002) and between statins and AD
(Wolozin et al., 2000; Refolo et al., 2001). The other disease fields
are characterized by intermittent publication activity starting in
the 1960s (HD) and 1970 (PD, ALS) and a more continuous
development since 2000 (Figure 6). In the case of HD, pioneering
studies showing links to cholesterol synthesis were published at
the beginning of the 2000s (Sipione et al., 2002; Valenza et al.,
2005). In all fields, the workforce grew more strongly than the
number of publications (Figure 6) due to the increasing number
of authors per article (Figure 1C). The ratios of author counts
to publication counts were very similar across fields (6.6 ± 0.5;
mean± standard deviation; n = 5).

In each field, most authors contributed single articles with
their fractions ranging from the lowest value in AD to the highest
in ALS (Figure 7A). Inversely, the AD and ALS fields showed the
highest and lowest fraction of authors involved in collaborations,
respectively (Figure 7A). Authors with family ties represented a
minority of the workforce with disease-specific fractions between
3% and 13% (Figure 7A). The analysis also revealed relatively
little overlap among the workforce of each disease. Only 6% of
authors (146 out of 2,379) contributed articles to more than one
field (Figure 7B) and established up to six connections among
them with AD and PD showing the largest workforce overlap
(Figure 7C).

TeamTree graphs illustrate the workforce that studies links
between cholesterol and the selected diseases (Table 1; Figure 8).
Not surprisingly key players of the AD field dominate the global
rankings (Figures 2–5, 8). The analysis shows further that OCs
are particularly sensitive to the size of the field. In those with
the lowest number of articles and the smallest workforce (PD,
ALS, HD), authors produced maximally one offspring indicating
that this parameter requires a critical mass of authors (Figure 8).

The TTP values reveal distinct disease-specific origins of the
top 10 contributors. Notably, in the AD field, these authors
entered the field within one decade starting in the 1990s, whereas,
in other fields, these contributors entered after the year 2000
(Figure 8).

CONCLUSIONS

The new bibliometric analysis provides a detailed view of the
development and structure of the workforce driving research
on cholesterol and neurodegenerative diseases and complements
content-specific summaries. The analysis revealed that the
field started in the 1950s and remained relatively small until
the 1990s. Except for MS, all fields showed intermittent
publications, but a strong growth since 2000. The continuous
expansion of the workforce during this period was mainly
driven by authors contributing single articles although their
contribution varied among the diseases analyzed. More than
half of the articles are related to AD, therefore, the family ties,
collaborative connections, and key players of this field dominate
the overall picture. The analysis has caveats. A key challenge
for this and other bibliometric approaches are ambiguous
author names, as distinct authors can share the same name
precluding correct evaluation (Smalheiser and Torvik, 2009).
Evaluation of contributions based on single metrics such as
TTP values is context-dependent, unsuited to evaluate junior
scientists, and insensitive to ground-breaking contributions from
small teams or from teams that contribute only briefly to
a field.
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