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Abstract 13 
The ovarian reserve defines female reproductive lifespan, which in humans spans decades due to the 14 
maintenance of meiotic arrest in non-growing oocytes (NGO) residing in primordial follicles. Unknown is 15 
how the chromatin state of NGOs is established to enable long-term maintenance of the ovarian reserve. 16 
Here, we show that a chromatin remodeler, CHD4, a member of the Nucleosome Remodeling and 17 
Deacetylase (NuRD) complex, establishes chromatin states required for formation and maintenance of the 18 
ovarian reserve. Conditional loss of CHD4 in perinatal mouse oocytes results in acute death of NGOs and 19 
depletion of the ovarian reserve. CHD4 establishes closed chromatin at regulatory elements of pro-20 
apoptotic genes to prevent cell death and at specific genes required for meiotic prophase I to facilitate the 21 
transition from meiotic prophase I oocytes to meiotic arrested NGOs. In addition, CHD4 establishes 22 
closed chromatin at the regulatory elements of pro-apoptotic genes in male germ cells, allowing male 23 
germ cell survival. These results demonstrate a role for CHD4 in defining a chromatin state that ensures 24 
germ cell survival, thereby enabling the long-term maintenance of both female and male germ cells.  25 
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Introduction 26 
Germ cell maintenance and survival are fundamental for the continuous supply of gametes for 27 
reproduction. In adult mammals, while the male germline is maintained by self-renewal of 28 
spermatogonial stem cells, the female germline is not maintained by a stem cell-based mechanism but is 29 
maintained within a pool of meiotically arrested oocytes, called the ovarian reserve. These small non-30 
growing oocytes (NGOs) residing in primordial follicles are arrested at the dictyate stage, the prolonged 31 
diplotene stage, of meiotic prophase I (MPI) 1. NGOs are the only source of fertilizable eggs throughout a 32 
female’s reproductive life span. Because the number of NGOs is finite, their premature depletion leads to 33 
infertility associated with early menopause, such as premature ovarian insufficiency (POI)2. However, the 34 
mechanisms underlying formation and maintenance of the ovarian reserve remain largely elusive. 35 
 36 
In the female germline of mouse embryos, primordial germ cells (PGCs) initiate MPI after induction of 37 
genes specifically expressed in MPI (MPI genes)3. After completing chromosome synapsis and 38 
recombination, oocytes reach the dictyate stage around birth, gradually decreasing in number before 39 
formation of the ovarian reserve 4, 5, 6. During ovarian reserve formation, MPI genes are suppressed, and 40 
there is a transition in genome-wide transcription to become NGOs, which is termed the perinatal oocyte 41 
transition (POT)7, 8. POT is regulated by an epigenetic regulator, Polycomb Repressive Complex 1 42 
(PRC1), to suppress MPI genes when oocytes exit MPI7. Concomitantly, an oocyte-specific transcription 43 
factor FIGLA and several signaling pathways, such as Notch, TGF-b, JNK, and hypoxia signaling that 44 
regulate gene expression are required for primordial follicle formation9, 10, 11, 12, 13. These studies raise the 45 
possibility that the chromatin state in NGOs is uniquely established to instruct the gene expression 46 
program for ovarian reserve formation.  47 
 48 
To identify a chromatin-based mechanism underlying the process of the ovarian reserve formation and 49 
maintenance, we sought to examine the role of ATP-dependent chromatin remodelers that utilize the 50 
energy from ATP hydrolysis to reorganize chromatin and regulate gene expression14, 15. There are four 51 
major subfamilies of chromatin remodeling complexes, including SWI/SNF (switch/sucrose non-52 
fermentable), ISWI (imitation SWI), NuRD (nucleosome remodeling and deacetylase)/CHD 53 
(chromodomain helicase DNA-binding)/mi-2, and INO80/SWR (SWI2/SNF2 related) families14, 15. 54 
Among the ATPase subunits in these four major chromatin remodeler subfamilies, we focused our 55 
attention on CHD4 (also known as Mi-2β) based on its gene expression at POT and because CHD4 is 56 
associated with lineage commitment and differentiation processes16, 17, 18, 19. In the male germline, CHD4 57 
regulates maintenance and survival of undifferentiated spermatogonia20, 21, 22. However, the molecular 58 
mechanisms underlying this process remain unknown. 59 
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Here we show that CHD4 has an essential function in formation and maintenance of the ovarian reserve 60 
and determine the molecular mechanisms common to both female and male germ cells. In the female 61 
germline, CHD4 establishes closed chromatin at regulatory elements of pro-apoptotic genes to prevent 62 
cell death and at MPI genes to facilitate the transition from MPI to NGO. Further, in the male germline, 63 
CHD4 establishes closed chromatin at the regulatory elements of pro-apoptotic genes, allowing male 64 
germ cell survival. Thus, CHD4 defines the chromatin state for maintenance of both female and male 65 
germ cells. 66 
 67 
Results 68 
CHD4 is required for ovarian reserve formation 69 
To identify a key ATP-dependent chromatin remodeler that functions in ovarian reserve formation in 70 
mice, we compared gene expression profiles of ATPase subunits in representative chromatin remodeler 71 
subfamilies using previously published RNA-seq data13. Among these candidates, Chd4 is highly 72 
expressed from embryonic day 14 (E14.5) oocytes in MPI to postnatal day 4 (P4) and P6 NGOs, which 73 
corresponds to the time of ovarian reserve formation when genome-wide gene expression changes occur 74 
during POT7 (Fig. 1a). Chd4 expression was slightly downregulated when NGOs in primordial follicle 75 
(labeled as “small” in Fig. 1a) are activated to become growing oocytes (GOs) in primary follicles 76 
(labeled as “large” in Fig. 1a); this transition is termed the primordial to primary follicle transition 77 
(PPT)13, and the first wave occurs as early as P4 (Fig. 1a). Based on this gene expression profile, we 78 
focused on CHD4 and sought to determine the function of CHD4 in ovarian reserve formation.  79 
 80 
To determine the function of CHD4 in ovarian reserve formation, we generated Chd4 conditional 81 
knockout mice using the Chd4 floxed allele23 and Ddx4-Cre transgene, which is a germline-specific Cre 82 
line expressed from E15.524 (Chd4 f/-; Ddx4-Cre Tg/+; termed Chd4 DcKO, Fig. 1b).  CHD4 protein 83 
localized in the nucleus of the P1 oocytes in littermate controls (Chd4 f/+; Ddx4-Cre Tg/+; termed Chd4 84 
Dctrl), but was absent in 98.8% of the P1 oocyte nuclei of Chd4 DcKO mice (Fig1c, d), confirming the 85 
efficient deletion of CHD4 protein in Chd4 DcKO oocytes. The estimated oocyte number of Chd4 DcKO 86 
neonatal mice at P1 did not differ from that of Chd4 Dctrl (Fig. 1e, f). However, by P5, when the ovarian 87 
reserve is established, the estimated oocyte number of Chd4 DcKO newborn mice was markedly reduced 88 
compared to Chd4 Dctrl (Fig. 1e, f). Apoptosis was likely responsible for the loss of oocytes in Chd4 89 
DcKO newborn mice because immunofluorescence staining for cleaved Caspase 3, a marker of apoptosis, 90 
revealed no difference in the proportion of cleaved Caspase 3-positive oocytes in P1, whereas the 91 
proportion of cleaved Caspase 3-positive oocytes in P3 Chd4 DcKO ovaries was significantly increased 92 
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compared to Chd4 Dctrl (Fig. 2a, b). These results suggest that CHD4 is critical for ovarian reserve 93 
formation. 94 
 95 
We next examined whether the ovarian reserve is properly established in Chd4 DcKO ovaries. During the 96 
formation of NGOs in the ovarian reserve, localization of the transcription factor FOXO3 changes from 97 
the cytoplasm to the nucleu25; nuclear localization of FOXO3 is a hallmark of NGOs25. 98 
Immunofluorescence staining for FOXO3 showed that in P1 FOXO3 was localized in the cytoplasm of 99 
most oocytes in both Chd4 Dctrl and Chd4 DcKO (Fig. 2c, d). However, at P3, FOXO3 was localized in 100 
the nucleus of 92.9% of oocytes in Chd4 Dctrl whereas nuclear localization was only 7.9% of oocytes in 101 
Chd4 DcKO had FOXO3 (Fig. 2c, d). Therefore, NGOs are not properly generated in Chd4 DcKO 102 
ovaries. Nevertheless, the behavior of meiotic chromosomes in MPI, including progression to the dictyate 103 
stage of MPI, appeared normal in Chd4 DcKO (Supplementary Fig. 1a). Thus, cell death is not initiated 104 
by defects in meiotic chromosome behavior. 105 
 106 
CHD4 represses MPI genes and apoptosis genes in ovarian reserve formation. 107 
To further examine the function of CHD4 in ovarian reserve formation, NGOs were isolated from P1 and 108 
P5 ovaries, and RNA-seq analysis was performed (Supplementary Fig. 1b). In P1 Chd4 DcKO NGOs, 109 
533 genes were up-regulated, and 348 genes were down-regulated (Fig. 3a, left, Supplementary Data 1). 110 
In P5 Chd4 DcKO NGOs, 569 genes were up-regulated, and 396 genes were down-regulated (Fig. 3a, 111 
right, Supplementary Data 2). To infer possible functions of these differentially expressed genes, we 112 
performed Gene ontology enrichment analyses. The genes down-regulated in P1 and P5 Chd4 DcKO 113 
oocytes were enriched with genes involved in “oogenesis” and “female gamete generation”. On the other 114 
hand, the genes up-regulated in P5 Chd4 DcKO oocytes were enriched with genes involved in MPI, such 115 
as “homologous chromosome pairing at meiosis” (Fig. 3b), suggesting that CHD4 represses MPI genes. 116 
During ovarian reserve formation, MPI genes are repressed as oocytes exit from MPI and the fetal 117 
program7. Therefore, we examined how MPI genes are regulated in Chd4 DcKO NGOs.  118 
 119 
In a previous study26, 104 genes were identified to be MPI-specific genes in fetal oocytes26. The 120 
expression of these MPI genes is comparable between Chd4 DcKO and Chd4 Dctrl NGOs at P1 (Fig. 3c). 121 
In contrast, in P5 NGOs, expression of MPI genes was significantly up-regulated in Chd4 DcKO relative 122 
to Chd4 Dctrl (Fig. 3c). Among them, 23 MPI genes, such as Spo1127, 28, Sycp129, Hormad130, 31, 32, 123 
Meiob33, and Majin34, which are important for MPI progression, were included in the differentially 124 
expressed genes in P5 NGOs (Fig. 3d). Because there is a genome-wide gene expression change in POT 125 
in normal oogenesis7, we next examined how differentially expressed genes at POT are regulated in the 126 
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Chd4 DcKO NGOs. In P5 Chd4 DcKO NGOs, up-regulated genes at POT were down-regulated, while 127 
down-regulated genes at POT were up-regulated (Supplementary Fig. S1c, d, Supplementary Data 3), 128 
further confirming that POT is defective in accordance with defective ovarian reserve formation. 129 
 130 
We also examined the expression of the genes in the mouse apoptosis pathway defined in the KEGG 131 
database35. Both in P1 and P5 NGOs, Casp7, a gene important for apoptosis, was significantly up-132 
regulated (Fig. 3e). Taken together, CHD4 is required for the repression of MPI genes and apoptosis 133 
genes during ovarian reserve formation. 134 
 135 
CHD4 represses chromatin accessibility to down-regulate genes. 136 
Because CHD4 represses transcription and chromatin accessibility in various cell types16, 36, 37, we next 137 
sought to determine how CHD4 regulates chromatin accessibility during ovarian reserve formation. We 138 
used the assay for transposase-accessible chromatin by sequencing (ATAC-seq)38, 39 to assess the effect of 139 
CHD4 loss on chromatin accessibility in ovarian reserve formation (Supplementary Fig. 2a). A 140 
representative track view confirms that peak patterns are consistent between two biological replicates 141 
(Supplementary Fig. 2b). An ATAC-seq analysis of P1 NGOs showed that accessibility was massively 142 
increased in Chd4 DcKO (Fig. 4a). These increased accessibility regions are mainly introns and intergenic 143 
regions, and a relatively minor change was observed at promoters and transcription termination sites 144 
(TTSs: Fig. 4b). This result suggests that CHD4 regulates distal cis-regulatory elements such as 145 
enhancers.  146 
 147 
Next, we examined the relationship between changes in the distal accessible regions and changes in gene 148 
expression following CHD4 loss. Expression of 2,906 genes adjacent to Chd4 Dctrl-specific distal 149 
accessible regions (outside the transcription start sites (TSSs) ±1 kb window) was similar between Chd4 150 
DcKO and Chd4 Dctrl NGOs both in P1 and P5 (Fig. 4c). However, expression of 5,423 genes adjacent 151 
to Chd4 DcKO-specific distal accessible regions was globally up-regulated in Chd4 DcKO NGOs both in 152 
P1 and P5 (Fig. 4d). Therefore, CHD4 represses distal accessible regions to down-regulate genes. Further, 153 
we examined chromatin accessibility at the promoters of differentially expressed genes in Chd4 DcKO 154 
NGOs. We found that up-regulated genes in Chd4 DcKO NGOs are associated with increased 155 
accessibility at promoters both in P1 and P5, whereas down-regulated genes were not associated with 156 
changes in chromatin accessibility (Fig. 4e-h). Chromatin accessibility was increased at the TSS of genes 157 
whose expression was up-regulated in Chd4 DcKO; for example, an apoptotic gene Casp7, and an MPI 158 
gene Stra8, which is the transcription factor critical for MPI gene expression40 (Fig. 4i). Together, we 159 
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conclude that CHD4 represses chromatin accessibility both at promoters and distal regulatory elements to 160 
repress genes in ovarian reserve formation. 161 
 162 
CHD4 binds chromatin to regulate MPI and apoptosis genes. 163 
Because CHD4 deficiency causes a massive increase in chromatin accessibility, we hypothesize that 164 
CHD4 directly binds target sites to regulate chromatin accessibility. To test this hypothesis, we performed 165 
Cleavage Under Targets and Tagmentation (CUT&Tag) analysis41 on CHD4 using P1 oocytes to 166 
determine where CHD4 is bound in the genome (Supplementary Fig. 2c). CUT&Tag analysis revealed 167 
that the majority of CHD4 peaks were enriched in introns and intergenic regions (Fig. 5a). In addition, 168 
most of the CHD4 peaks were located 5-500 kb away from the TSSs (Fig. 5b), consistent with the 169 
genomic sites of accessibility changes in Chd4 DcKO NGOs. We compared the ATAC peaks with the 170 
CHD4 peaks and found that, surprisingly, only a minor portion of them overlapped (Supplementary Fig. 171 
2d), and this is the case for the ATAC distal peaks (Fig. 5c). We compared the adjacent gene expression 172 
near the CHD4 peaks and found that it was significantly increased in P5 Chd4 DcKO (Fig. 5d), 173 
suggesting that CHD4 binds to repress target genes. However, counterintuitively, the CHD4 signals were 174 
enriched at the TSSs of the gene that was significantly down-regulated in P1 and P5 Chd4 DcKO (Fig. 175 
5e). These results suggest that CHD4 not only directly regulates chromatin accessibility but may also 176 
regulate gene expression without changing chromatin accessibility. 177 
 178 
To further elucidate the function of CHD4 in formation of ovarian reserve, we focused on apoptosis-179 
associated genes and MPI genes whose expression was up-regulated in Chd4 DcKO NGOs. CHD4 was 180 
enriched in the TSSs of the respective gene groups compared to randomly selected regions (Fig. 5f, g). At 181 
the Stra8 gene locus, CHD4 binds the TSS, where chromatin accessibly increased in the Chd4 DcKO 182 
NGOs (Fig. 5h, left). Furthermore, at the pro-apoptotic Bbc3 (also known as Puma) gene locus, CHD4 183 
bound not only at the TSS but also at the upstream region where chromatin accessibility was increased in 184 
Chd4 DcKO NGOs (Fig. 5h, right). Thus, for some important target genes, CHD4 directly regulates 185 
chromatin accessibility, supporting a model in which CHD4 represses expression by regulating chromatin 186 
accessibility. 187 
 188 
CHD4 is required for the maintenance of the ovarian reserve and oocyte survival. 189 
Because a critical aspect of ovarian reserve is the long maintenance of chromatin states during the female 190 
reproductive life span, we next determined whether CHD4 is required for maintenance of ovarian reserve 191 
after its establishment. To elucidate the function of CHD4 in the maintenance of NGOs in the ovarian 192 
reserve, we generated another line of CHD4 conditional knockout mice using Gdf9-iCre, which is 193 
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expressed NGOs from P342 (Chd4 f/f; Gdf9-iCre Tg/+; termed Chd4 GcKO) (Fig. 6a). CHD4 was localized 194 
in the nuclei of NGOs in primordial follicles and GOs in primary follicles of P10 ovaries, and nearly 195 
complete depletion of CHD4 was observed in P10 Chd4 GcKO oocytes (Supplementary Fig. 3a, b). In 196 
P10 ovaries in which primordial follicle formation is complete, the estimated numbers of NGOs and GOs 197 
in the ovaries of Chd4 GcKO mice were significantly reduced in both NGOs and GOs compared to Chd4 198 
Gctrl mice (Fig. 6b, c). These results indicate that CHD4 is essential for the maintenance of NGOs and 199 
the survival of GOs.  200 
 201 
To determine the function of CHD4 in maintenance of ovarian reserve and survival of GOs, NGOs and 202 
GOs were isolated from P10 ovaries, and RNA-seq analysis was performed (Supplementary Fig. 3c). In 203 
the P10 Chd4 GcKO NGOs, 947 genes were up-regulated, and 744 genes were downregulated (Fig. 6d, 204 
left, Supplementary Data 4). In the P10 Chd4 GcKO GOs, 1,938 genes were up-regulated, and 1,420 205 
genes were down-regulated (Fig. 6d, right, Supplementary Data 4). Gene ontology enrichment analyses 206 
show that up-regulated genes in P10 Chd4 GcKO NGOs were associated with apoptotic cell clearance 207 
(Supplementary Fig. 3d). In addition, up-regulated genes in P10 Chd4 GcKO GOs were enriched with 208 
genes involved in synaptonemal complex assembly, which is related to MPI (Supplementary Fig. 3d). 209 
Female MPI-specific genes were up-regulated in Chd4 GcKO GOs (Fig. 6e). Similar to Chd4 DcKO, 210 
Stra8 expression was increased in both P10 NGOs and GOs in Chd4 GcKO (Fig. 6f). We also examined 211 
apoptosis-related genes and found that the expression of a pro-apoptotic gene, Bid 43, a key player in 212 
apoptosis, was increased in both NGOs and GOs in Chd4 GcKO (Fig. 6f). In summary, CHD4 is essential 213 
for oocyte survival and maintenance of ovarian reserve by repressing a group of the MPI genes and 214 
apoptosis genes. 215 
 216 
CHD4 repressed apoptosis-related genes for male germ cell survival. 217 
After determining the function of CHD4 in the female germline, we finally sought to address whether 218 
CHD4 has a common function in the female and male germline. In the male germline, around the time of 219 
birth, mitotically arrested prospermatogonia resume active cell cycle and transition to spermatogonia after 220 
birth, which sustains long-term fertility of males by stem self-renewal44. Recent studies using germline-221 
specific conditional knockout of CHD4 revealed that CHD4 is required for the survival of 222 
undifferentiated spermatogonia20, 21. Consistent with these studies, our Chd4 DcKO males (Fig. 7a) 223 
showed germ cell depletion that became evident at P3 testes (Fig. 7b).  224 
 225 
To examine the genes regulated by CHD4, we isolated undifferentiated male germ cells from P3 testes 226 
using a previously established fluorescence-activated cell sorting (FACS) method 45, 46 and performed 227 
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RNA-seq analysis (Supplementary Fig. 4a). In P3 Chd4 DcKO male germ cells, 696 genes were up-228 
regulated, and 168 genes were down-regulated (Fig. 7c, Supplementary Data 5). Gene ontology 229 
enrichment analyses revealed that the genes up-regulated in Chd4 DcKO male germ cells were associated 230 
with “cell morphogenesis” and “regulation of secretion by cell” (Supplementary Fig. 4b). Next, we 231 
examined whether the expression of MPI genes is up-regulated by CHD4 deletion, as observed in 232 
oocytes, but found no difference in the expression of 104 female MPI genes (Supplementary Fig. 4c). 233 
However, a pro-apoptotic gene Bbc3 and Gadd45g were up-regulated in Chd4 DcKO male germ cells, as 234 
was observed in oocytes (Fig. 7d, and Supplementary Fig. 4d). Thus, CHD4 represses the Bbc3 and 235 
Gadd45 genes in both males and females. 236 
 237 
To determine whether CHD4 also represses accessible chromatin in male germ cells, we performed 238 
ATAC-seq analysis on P3 Chd4 DcKO male germ cells (Supplementary Fig. 4e). Chromatin accessibility 239 
was increased in Chd4 DcKO male germ cells compared to P3 Chd4 Dctrl, as observed in oocytes (Fig. 240 
7e). In addition, P3 Chd4 DcKO male germ cells -specific ATAC peaks were enriched in intron and 241 
intergenic regions, and only slightly in the promoter-TSS region (Fig. 7f). As shown in the track view, 242 
chromatin accessibility of the Bbc3 gene at the TSS was increased (Fig. 7d). These results indicate that 243 
CHD4 suppresses expression of apoptosis genes by repressing chromatin accessibility in P3 Chd4 DcKO 244 
male germ cells, leading to cell survival. Taken together, we conclude that CHD4 defines the chromatin 245 
state to ensure germ cell survival, enabling the long-term maintenance of female and male germ cells. 246 
 247 
Discussion 248 
The germline must maintain genome integrity to ensure generation of the offspring. Thus, mechanisms 249 
underlying long-term maintenance of the germline are critical at sexually dimorphic stages of the 250 
germline: one for maintenance of the ovarian reserve in females and another for maintenance of 251 
spermatogonial stem cells in males. We report here that CHD4 is a critical regulator for the long-term 252 
maintenance of the germline in both males and females. In combination with mouse genetics and 253 
epigenomic analyses, our study reveals that CHD4 directly binds and closes accessible chromatin at the 254 
distal regulatory elements genome-wide. This mechanism underlies regulation of pro-apoptotic genes in 255 
both females and males (Fig. 7g). Notably, the female germline is maintained in the ovarian reserve after 256 
MPI and CHD4 is required to close the regulatory elements for MPI genes in females but not in males 257 
(Fig. 7g). These results highlight the common and distinct features of chromatin regulation in female and 258 
male germlines. 259 
 260 
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We find that CHD4 is required for both formation and maintenance of ovarian reserve. Because CHD4 261 
has a maintenance function after ovarian reserve formation, it is likely that CHD4 continues to associate 262 
with chromatin in MPI-arrested NGOs. The histone H3.3 chaperone HIRA, which continues to replace 263 
H3.3 in NGOs is critical to maintain the ovarian reserve47, suggesting that the chromatin state of NGOs is 264 
not so static. Thus, a chromatin remodeler may be required to maintain a dynamic chromatin environment 265 
in NGOs. Furthermore, loss of the DNA damage response (DDR) genes has been implicated in ovarian 266 
aging, suggesting a possible function of DDR in the ovarian reserve maintenance48. Noteworthy is that 267 
CHD4 is known to function in the context of DDR49, 50. To further clarify the molecular mechanism for 268 
CHD4 in formation and maintenance of the ovarian reserve, the composition of the CHD4-containing 269 
chromatin remodeling complex needs to be determined to distinguish its function from other chromatin 270 
remodelers whose functions are not known in ovarian reserve formation.  271 
 272 
Another critical regulator of POT is PRC1 for MPI exit7. Notably, MPI genes repressed by CHD4 (Fig. 273 
3d) are also repressed by PRC17, suggesting possible coordination between CHD4 and PRC1 in MPI exit. 274 
In this context, CHD4 closes the accessible chromatin at POT. Consistent with this observation, in 275 
embryonic stem cells, CHD4-containing NuRD complexes deacetylate histone H3K27 and recruit PRC2, 276 
which often functions with PRC1 to facilitate H3K27me3-mediated repression51. On the other hand, 277 
CHD4 was also enriched at downregulated genes in Chd4 DcKO NGOs at P1 and P5 (Fig. 5e), suggesting 278 
the possible function of CHD4 in gene activation. Indeed, CHD4 also functions in gene activation23, 279 
raising the possibility that the function of CHD4 is context-dependent for both gene repression and 280 
activation. 281 
 282 
We also investigated the target sites of CHD4 chromatin remodeling. The majority of CHD4 binding sites 283 
and the accessible chromatin sites closed by CHD4 are intergenic regions and introns. We examined de 284 
novo motifs present in cKO-specific ATAC peaks (i.e., sites closed by the action of CHD4 in wild-type) 285 
in both females and males (Supplementary Fig. 4f). In females, the PRDM9 motif, which is often a 286 
feature of meiotic recombination sites, was highly enriched, consistent with CHD4 facilitating exit from 287 
the MPI program. The ZNF11 motif was commonly enriched in both females and males, suggesting a 288 
common program between males and females. Intriguingly, the NFYB and POU3F1 motifs, detected in 289 
males, become open in late spermatogenesis52. Thus, it is tempting to speculate that the regulatory 290 
elements used in late spermatogenesis are remodeled by CHD4 at an early stage, which may represent a 291 
mechanism for epigenetic priming often observed in the male germline53.  292 
 293 
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Together, our study reveals a chromatin remodeling mechanism underlying regulatory elements required 294 
for key developmental transitions in the germline. A next key question is how these specific sites are 295 
determined to be regulated by CHD4. Because transcription factors (FIGLA, FOXO3) and several 296 
signaling pathways (Notch, TGF-b, JNK, and hypoxia signaling) are implicated in primordial follicle 297 
formation, it will be important to understand how these mechanisms intersect with chromatin remodeling 298 
to establish the necessary chromatin states for ovarian reserve formation. Furthermore, given the 299 
significant role of the RNA regulatory network in primordial follicle formation54, the mechanistic 300 
relationship between the RNA regulatory network and chromatin-based cellular memory emerges as an 301 
important agenda for future investigation. 302 
 303 
Methods 304 
 305 
Animals 306 
Generation of conditionally deficient Chd4 DcKO mice, Chd4 f/-; Ddx4-Cre Tg/+, were generated from 307 
Chd4 f/f female crossed with Chd4 f/+; Ddx4-Cre Tg/+ males, and Chd4 Dctrl mice used in experiments 308 
were Chd4 f/+; Ddx4-Cre Tg/+ littermate. Generation of conditionally deficient Chd4 GcKO mice, Chd4 309 
f/f; Gdf9-iCre Tg/+, were generated from Chd4 f/f female crossed with Chd4 f/f; Gdf9-iCre Tg/+ males, 310 
and Chd4 Gctrl mice used in experiments were Chd4 f/f littermate. Generation of Chd4 floxed alleles 311 
(Chd4 f/f) were reported previously23. Mice were maintained on a mixed genetic background of C57BL/6 312 
and DBA2. Ddx4-Cre transgenic mice were purchased from the Jackson Laboratory24. For ATAC-seq and 313 
CUT&Tag, Chd4 f/f; Stella-GFP Tg/+ mice were generated from Chd4 f/f mice crossed with Stella-GFP 314 
Tg/+ mice. Stella-GFP transgenic mice were obtained from Dr. M. Azim Surani55. For each experiment, a 315 
minimum of three mice was analyzed. Mice were maintained on a 12:12 light: dark cycle in a temperature 316 
and humidity-controlled vivarium (22  ±  2 °C; 40–50% humidity) with free access to food and water in 317 
the pathogen-free animal care facility. Mice were used according to the guidelines of the Institutional 318 
Animal Care and Use Committee (IACUC: protocol no. IACUC 21931 and 23545) at the University of 319 
California, Davis. 320 
 321 
Oocyte collection 322 
The P1, P5, or P10 female pups were collected, and ovaries were harvested by carefully removing 323 
oviducts and ovarian bursa in PBS. Ovaries were digested in 200 μl TrypLE™ Express Enzyme (1X) 324 
(Gibco, 12604013) supplemented with 0.3 mg/ml Collagenase Type 1 (Worthington, CLS-1) and 10 325 
mg/ml DNase I (Sigma, D5025) and incubated at 37°C for 25 min with gentle agitation. After incubation, 326 
the ovaries were dissociated by gentle pipetting using the FisherbrandTM Premium Plus MultiFlex Gel-327 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2024. ; https://doi.org/10.1101/2024.08.12.607691doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.12.607691
http://creativecommons.org/licenses/by-nc-nd/4.0/


Loading Tips until no visible tissue pieces. 2 ml DMEM/F-12 medium (Gibco, 11330107) supplemented 328 
with 10% FBS (HyClone, SH30396.03) were then added to the suspension to stop enzyme reaction. Cell 329 
suspension was seeded onto a 60 mm tissue culture dish (Falcon, 353002). The cells were allowed to 330 
settle down for 15 min at 37°C; 5% CO2 in the incubator before being transferred under the microscope 331 
(Nikon, SMZ1270). For RNA-seq, based on morphology and diameter, non-growing and growing oocytes 332 
were manually picked up, washed in M2 medium (Sigma, M7167), and transferred into the downstream 333 
buffer by mouth pipette. For ATAC-seq and CUT&Tag, P1 non-growing oocytes expressing a Stella-GFP 334 
transgene were collected by FACS (SONY SH800S).  335 
 336 
Histology and Immunostaining 337 
For the preparation of paraffin blocks, ovaries, and testis were fixed with 4% paraformaldehyde overnight 338 
at 4 °C. Ovaries and testis were dehydrated and embedded in paraffin. For histological analysis, 5 µm-339 
thick paraffin sections were deparaffinized and stained with hematoxylin (Sigma, MHS16) and eosin 340 
(Sigma, 318906). For immunostaining, 5 µm-thick paraffin sections were deparaffinized and autoclaved 341 
in target retrieval solution (DAKO) for 10 min at 121 °C. Sections were blocked with Blocking One Histo 342 
(Nacalai) for 30 min at room temperature and then incubated with primary antibodies as outlined below: 343 
mouse anti-CHD4 (1:500, Abcam, ab70469), rabbit anti-DDX4 (1:500, Abcam, ab13840), goat anti-344 
CD117/c-kit (1:200, R&D, AF1356), rabbit anti-Cleaved Caspase-3 (1:200, Cell Signaling Technology, 345 
#9661), rabbit anti-FOXO3 (1:200, Cell Signaling Technology, #2497) overnight at 4 °C. Sections were 346 
washed with PBST (PBS containing 0.1% Tween 20) three times at room temperature for 5 min and then 347 
incubated with the corresponding secondary (Invitrogen) at 1:500 dilution for 1 h at room temperature. 348 
Finally, sections were counterstained with DAPI and mounted using 20 μL undiluted ProLong Gold 349 
Antifade Mountant (ThermoFisher Scientific, P36930). Images were obtained by an all-in-one 350 
fluorescence microscope (BZ-X810, KEYENCE) equipped with an optical sectioning module (BZ-H4XF, 351 
KEYENCE). 352 

 353 
Quantification of ovarian follicles 354 
For counting the number of follicles, paraffin-embedded ovaries were serially sectioned at 5 μm 355 
thickness, and all sections were mounted on slides. 5 µm-thick paraffin serially sections were 356 
deparaffinized and stained with hematoxylin and eosin. Ovarian follicles at different developmental 357 
stages, including primordial (type 1 and type 2) as non-growing oocytes, and primary (type 3) and pre-358 
antral (type 4 and type 5) as growing oocytes, were counted in every fifth section of the collected sections 359 
from one ovary, based on the standards established method56. In each section, only those follicles in 360 
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which the nucleus of the oocyte was clearly visible were counted, and the cumulative follicle counts were 361 
multiplied by a correction factor of 5 to represent the estimated number of follicles in an ovary. 362 
 363 
Meiotic chromosome spreads and immunofluorescence 364 
Chromosome spreads of oocytes from neonatal ovaries were prepared as described7. Briefly, ovaries were 365 
digested in 200 μl TrypLE™ Express Enzyme (1X) supplemented with 0.3 mg/ml Collagenase Type 1 366 
and 10 mg/ml DNase I and incubated at 37°C for 25 min with gentle agitation. After incubation, the 367 
ovaries were dissociated by gentle pipetting using the FisherbrandTM Premium Plus MultiFlex Gel-368 
Loading Tips until no visible tissue pieces. 2 ml DMEM/F-12 medium supplemented with 10% FBS was 369 
added to the suspension to stop enzyme reaction. Cell suspension was incubated in hypotonic extraction 370 
buffer [HEB: 30 mM Tris base, 17 mM trisodium citrate, 5 mM ethylenediaminetetraacetic acid (EDTA), 371 
50 mM sucrose, 5 mM dithiothreitol (DTT), 1× cOmplete Protease Inhibitor Cocktail (Sigma, 372 
11836145001), 1× phosphatase inhibitor cocktail 2 (Sigma, P5726-5ML), pH 8.2] on ice for 10 min. 373 
30 µL of the suspension was applied to positively charged slides (Probe On Plus: Thermo Fisher 374 
Scientific, 22-230-900); before application of the suspension, the slides had been incubated in chilled 375 
fixation solution (2% paraformaldehyde, 0.1% Triton X-100, 0.02% sodium monododecyl sulfate, 376 
adjusted to pH 9.2 with sodium borate buffer). The slides were placed in “humid chambers” overnight at 377 
room temperature. Then, the slides were washed twice in 0.4% Photo-Flo 200 (Kodak, 146-4510), 2 min 378 
per wash. Slides were dried completely at room temperature before staining or storage in slide boxes at 379 
−80 °C. 380 
 381 
Flow cytometry and cell sorting 382 
Flow cytometric experiments and cell sorting were performed using SH800S (SONY), with antibody-383 
stained testicular single-cell suspensions prepared as described previously. Data were analyzed using 384 
SH800S software (SONY) and FCS Express 7 (De Novo Software). 385 
 386 
For ATAC-seq and CUT&Tag, P1 oocytes were collected using the Stella-GFP transgene. To prepare 387 
single cells suspension for cell sorting, ovaries were digested in 200 μl TrypLE™ Express Enzyme (1X) 388 
supplemented with 0.3 mg/ml Collagenase Type 1 and 10 mg/ml DNase I and incubated at 37°C for 389 
25 min with gentle agitation. After incubation, the ovaries were dissociated by gentle pipetting using the 390 
FisherbrandTM Premium Plus MultiFlex Gel-Loading Tips until no visible tissue pieces. 2 ml DMEM/F-391 
12 medium supplemented with 10% FBS was added to the suspension to stop enzyme reaction. Cells 392 
were suspended in FACS buffer (PBS containing 2% FBS) and filtered into a 5 ml FACS tube through a 393 
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35 μm nylon mesh cap (Falcon, 352235). GFP+ oocytes were collected after removing small and large 394 
debris in FSC-A versus SSC-A gating and doublets in FSC-W versus FSC-H gating. 395 
 396 

Collection of male germ cells was modified from described57. Briefly, to prepare single cells suspension 397 
for cell sorting, detangled seminiferous tubules from P3 mouse testes were incubated in 1× Krebs-Ringer 398 
Bicarbonate Buffer (Sigma, K4002) supplemented with 1.5 mg/ml Collagenase Type 1 and 0.04 mg/ml 399 
DNase I at 37°C for 15 min with gentle agitation and dissociated using vigorous pipetting. Then add 400 
0.75mg/ml Hyaluronidase (Sigma, H3506) and incubate at 37°C for 10 min with gentle agitation and 401 
dissociated using vigorous pipetting.10 ml DMEM/F-12 medium supplemented with 10% FBS was added 402 
to the suspension to stop enzyme reaction. The cell suspension was washed with 10 ml FACS buffer three 403 
times by centrifugation at 300 × g for 5 min and filtered through a 70 μm nylon cell strainer (Falcon, 404 
352350). The cell suspension was stained with cocktails of antibodies diluted with FACS buffer listed as 405 
follows: PE-conjugated anti-mouse/human CD324 (E-Cadherin) antibody (1:500, Biolegend, 147303) and 406 
FITC-conjugated anti-mouse CD9 antibody (1:500, Biolegend, 124808). After 50min incubation on ice, 407 
cells were washed with 10 ml FACS buffer three times by centrifugation at 300 × g for 5 min and filtered 408 
into a 5 ml FACS tube through a 35 μm nylon mesh cap. 7-AAD Viability Stain (Invitrogen, 00-6993-50) 409 
and 0.01 mg/ml DNase I was added to cell suspension for the exclusion of dead cells. Samples were kept 410 
on ice until sorting. Cells were analyzed after removing small and large debris in FSC-A versus SSC-A 411 
gating, doublets in FSC-W versus FSC-H gating, and 7AAD+ dead cells. Then, the desired cell population 412 
was collected in gates and determined based on antibody staining. 413 
 414 
RNA-seq library generation and sequencing 415 
RNA-seq libraries of oocytes from P1, P5, and P10 ovaries were prepared as described7; briefly, 500 non-416 
growing and 100 growing oocytes isolated from ovaries were pooled as one replicate, and two 417 
independent biological replicates were used for RNA-seq library generation. Total RNA was extracted 418 
using the RNeasy Plus Micro Kit (QIAGEN, Cat # 74034) according to the manufacturer's instructions. 419 
Library preparation was performed with NEBNext® Single Cell/Low Input RNA Library Prep Kit for 420 
Illumina® (NEB, E6420S) according to the manufacturer’s instruction. Prepared RNA-seq libraries were 421 
sequenced on the HiSeq X system (Illumina) with paired-ended 150-bp reads. 422 
 423 
ATAC-seq library generation and sequencing 424 
ATAC-seq libraries of germ cells were prepared as described39; briefly, 10,000 FACS-sorted cells were 425 
isolated from P1 ovaries or P3 testis and pooled as one replicate, and two independent biological 426 
replicates were used for ATAC-seq library generation. Samples were lysed in 50 μl of lysis buffer (10 427 
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mM Tris–HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, and 0.1% NP-40, 0.1% Tween-20, and 0.01% 428 
Digitonin) on ice for 10 min. Immediately after lysis, the samples were spun at 500 × g for 10 min at 4 °C 429 
and the supernatant removed. The sedimented nuclei were then incubated in 10 μl of transposition mix 430 
(0.5 µl homemade Tn5 transposase (~1μg/μl), 5 µl 2× TD buffer (10 mM Tris–HCl (pH 7.6), 10 mM 431 
MgCl2, and 20% Dimethyl Formamide), 3.3 µl PBS, 0.1 μl 1% digitonin, 0.1 μl 10% Tween-20, and 1 μl 432 
water) at 37 °C for 30 min in a thermomixer with shaking at 500 rpm. After tagmentation, the transposed 433 
DNA was purified with a MinElute kit (Qiagen). Polymerase chain reaction (PCR) was performed to 434 
amplify the library using the following conditions: 72 °C for 3 min; 98°C for 30 s; thermocycling at 98 °C 435 
for 10 s, 60 °C for 30 s, and 72 °C for 1 min. qPCR was used to estimate the number of additional cycles 436 
needed to generate products at 25% saturation. Seven to eight additional PCR cycles were added to the 437 
initial set of five cycles. Amplified DNA was purified by SPRIselect bead (Beckman Coulter). ATAC-438 
seq libraries were sequenced on the HiSeq X ten system (Illumina) with 150-bp paired-end reads. 439 
 440 
CUT&Tag library generation and sequencing 441 
CUT&Tag libraries from P1 oocytes for CHD4 were generated as previously described41, 58 (a step-by-442 
step protocol https://www.protocols.io/view/bench-top-cut-amp-tag-kqdg34qdpl25/v3) using 443 
CUTANA™ pAG-Tn5 (Epicypher, 15-1017). Briefly, 10,000 FACS-sorted cells were isolated from P1 444 
Chd4 f/f ovaries and pooled as one replicate and two independent biological replicates were used for 445 
CUT&Tag library generation. The antibodies used were mouse anti-CHD4 (1:50, Abcam, ab70469) and 446 
rabbit α-mouse antibody (1:100, Abcam, ab46540). CUT&Tag libraries were sequenced on the NovaSeq 447 
X Plus system (Illumina) with 150-bp paired-end reads. 448 
 449 
RNA-seq data processing 450 
Raw paired-end RNA-seq reads after trimming by trimmomatic (version 0.39)59 were aligned to the 451 
mouse (GRCm38/mm10) genome using by STAR (version STAR_2.5.4b)60 with default arguments. All 452 
unmapped and non-uniquely mapped reads were filtered out by samtools (version 1.9)61 before being 453 
subjected to downstream analyses. To quantify aligned reads in RNA-seq, aligned read counts for each 454 
gene were generated using featureCounts (v2.0.1), which is part of the Subread package 62 based on 455 
annotated genes (GENCODE vM25). The TPM values of each gene were for comparative expression 456 
analyses and computing the Pearson correlation coefficient between biological replicates using corrplot63.  457 
To detect differentially expressed genes between CHD4 Dctrl and CHD4 DcKO, or CHD4 Gctrl and 458 
CHD4 GcKO, DESeq2 (version 1.42.1)64 was used for differential gene expression analyses with cutoffs 459 
≥2-fold change and binominal tests (Padj < 0.05; P values were adjusted for multiple testing using the 460 
Benjamini–Hochberg method). Padj values were used to determine significantly dysregulated genes. 461 
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To perform GO analyses, we used the online functional annotation clustering tool Metascape65 462 
(http://metascape.org). Further analyses were performed with R and visualized as heatmaps using 463 
Morpheus (https://software.broadinstitute.org/morpheus, Broad Institute). 464 
 465 
ATAC-seq and CUT&Tag data processing 466 
Raw paired-end ATAC-seq and CUT&Tag reads after trimming by Trim-galore 467 
(https://github.com/FelixKrueger/TrimGalore) (version 0.6.7) were aligned to either the mouse 468 
(GRCm38/mm10) genomes using bowtie2 (version 2.3.3.1)66 with default arguments. The aligned reads 469 
were filtered to remove alignments mapped to multiple locations by calling grep with the -v option before 470 
being subjected to downstream analyses. PCR duplicates were removed using the ‘MarkDuplicates’ 471 
command in Picard tools (version 2.23.8) (https://broadinstitute.github.io/picard/, Broad Institute). To 472 
compare replicates, Pearson correlation coefficients were calculated and plotted by 'multiBamSummary 473 
bins' and 'plot correlation' functions of deepTools (version 3.3.0)67. Biological replicates were pooled for 474 
visualization and other analyses after validation of reproducibility. Peak calling for ATAC-seq and 475 
CUT&Tag data was performed using MACS3 (version 3.0.0a7)68 with default arguments. We computed 476 
the number of overlapping peaks between peak files using BEDtools69 (version 2.28.0) function intersect. 477 
To detect genes adjacent to ATAC-seq and CUT&Tag peaks, we used the HOMER (version 4.9.1)70 478 
function annotatePeaks.pl. The deeptools67 was used to draw tag density plots and heatmaps for reads 479 
enrichments. To visualize ATAC-seq and CUT&Tag data using the Integrative Genomics Viewer (Broad 480 
Institute)71, BPM normalized counts data were created from sorted BAM files using the deeptools67. To 481 
perform functional annotation enrichment of CHD4, we used GREAT tools72. 482 
 483 
Statistics 484 
Statistical methods and P values for each plot are listed in the figure legends and/or in the Methods. In 485 
brief, all grouped data are represented as mean ± SD. All box-and-whisker plots are represented as center 486 
lines (median), box limits (interquartile range; 25th and 75th percentiles), and whiskers (maximum value 487 
not exceeding 1.5x the interquartile range (IQR) from the hinge) unless stated otherwise. Statistical 488 
significance for pairwise comparisons was determined using two-sided Mann–Whitney U-tests and two-489 
tailed unpaired t-tests. Next-generation sequencing data (RNA-seq, ATAC-seq, and CUT&Tag) were 490 
based on two independent replicates. No statistical methods were used to predetermine sample size in 491 
these experiments. Experiments were not randomized, and investigators were not blinded to allocation 492 
during experiments and outcome assessments. 493 
 494 
Data availability 495 
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The raw data of quantifications presented in the main figures and supplementary figures are provided as 496 
"Source data files". RNA-seq data reported in this study were deposited to the Gene Expression Omnibus 497 
(accession no. GSE273309). Source data are provided with this paper. 498 
 499 
Code availability  500 
Source code for all software and tools used in this study with documentation, examples, and additional 501 
information, is available at the URLs listed below. 502 
 503 
trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic] 504 
STAR [https://github.com/alexdobin/STAR] 505 
featureCounts [http://subread.sourceforge.net] 506 
DESeq2 [https://bioconductor.org/packages/release/bioc/html/DESeq2.html] 507 
corrplot [https://github.com/taiyun/corrplot] 508 
ggplot2 [https://github.com/tidyverse/ggplot2] 509 
Metascape [http://metascape.org] 510 
Morpheus [https://software.broadinstitute.org/morpheus/] 511 
Trim-galore [https://github.com/FelixKrueger/TrimGalore] 512 
Bowtie2 [https://github.com/BenLangmead/bowtie2] 513 
Picard [https://broadinstitute.github.io/picard/] 514 
deepTools [https://github.com/deeptools/deepTools] 515 
MACS3 [https://github.com/macs3-project/MACS] 516 
Bedtools [https://github.com/arq5x/bedtools2] 517 
HOMER [http://homer.ucsd.edu/homer/index.html] 518 
GREAT [http://great.stanford.edu/public/html/] 519 
  520 
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Figure Legends 782 
 783 
Fig 1. CHD4 deficiency causes oocyte loss.  784 
a. Heatmap showing bulk RNA-seq gene expression (log2 (TPM+1) values) for core subunits of ATP-785 
dependent remodeling complexes in oocytes during oogenesis. Embryonic day (E) 18.5 to postnatal day 786 
(P) 3 indicate oocytes with meiosis in progress. P4 and P6 small indicate oocytes residing in primordial 787 
follicles. P4 and P6-large indicate growing oocytes in primary follicles.  788 
b. Schematic for mouse models and experiments.  789 
c. Immunostaining of DDX4 (red) and CHD4 (green) in ovaries of Chd4 Dctrl and Chd4 DcKO at P1. 790 
CHD4 is present only in somatic cells in Chd4 DcKO. Bars: 100 μm (20 μm in the boxed area). Yellow 791 
arrowheads indicate oocytes with no CHD4 expression.  792 
d. Quantitative analysis of immunostaining. Percentages representing numbers of oocytes with CHD4 at 793 
P1. Data are presented as mean values ± SD. *** P < 0.001: Two-tailed unpaired t-tests. Three 794 
independent biological replicates were analyzed for each genotype.  795 
e. Ovarian sections of Chd4 Dctrl and Chd4 DcKO mice at P1 and P5, respectively. The sections were 796 
stained with hematoxylin and eosin or immunostained for DDX4 (red). Bars: 100 μm. Three mice were 797 
analyzed for each genotype at each time point, and representative images are shown.  798 
f. Dot plots showing the estimated numbers of oocytes per ovary from Chd4 Dctrl and Chd4 DcKO mice 799 
at P1 and P5, respectively. At least three mice were analyzed for each genotype at each time point. 800 
Central bars represent mean values. *** P < 0.001: ns, not significant; Two-tailed unpaired t-tests. 801 
 802 
Fig 2. CHD4 is required for ovarian reserve formation.  803 
a. Immunofluorescence staining of cKIT (white) and Cleaved Caspase-3 (red) in ovaries of Chd4 Dctrl 804 
and Chd4 DcKO at P1 and P3, respectively. Yellow arrowheads indicate Cleaved Caspase-3+ apoptotic 805 
oocytes. Bars: 100 μm. Three mice were analyzed for each genotype at each time point, and 806 
representative images are shown.  807 
b. Quantitative analysis of immunostaining. Dot plots showing the percentages of Cleaved Caspase-3+ 808 
apoptotic oocytes per cKIT+ oocytes at P1 and P3. Four independent biological replicates were analyzed 809 
for each genotype at each time point.  ** P < 0.01: ns, not significant; Two-tailed unpaired t-tests.  810 
c. Immunofluorescence staining of FOXO3 (red) and cKIT (green) in ovaries of Chd4 Dctrl and Chd4 811 
DcKO at P1 and P5, respectively. Bars: 100 μm (50 μm in the boxed area). Three and five mice were 812 
analyzed for each genotype at each time point, and representative images are shown.  813 
d. Quantitative analysis of immunostaining. Dot plots showing the percentages of nuclear FOXO3+ 814 
oocytes per cKIT+ oocytes at P1 and P5, respectively. Three and five independent biological replicates 815 
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were analyzed for each genotype at each time point.  *** P < 0.001; ns, not significant; Two-tailed 816 
unpaired t-tests. 817 
 818 
Fig 3.  CHD4 represses meiotic prophase I genes and apoptosis-related genes.  819 
a. Comparison of transcriptomes between Chd4 Dctrl and Chd4 DcKO oocytes at P1 and P5, 820 
respectively. 500 non-growing oocytes (NGOs) isolated from P1 or P5 ovaries were pooled as one 821 
replicate, and two independent biological replicates were examined for RNA-seq. Differentially expressed 822 
genes (DEGs: Log2FoldChange > 1, Padj < 0.05, binominal test with Benjamini–Hochberg correction) are 823 
colored (red: upregulated in Chd4 DcKO oocytes; blue: downregulated in Chd4 DcKO oocytes).  824 
b. Gene ontology term enrichments analysis of differentially expressed genes detected in a.  825 
c. Violin plots with a Box plot indicate TPM values for female MPI-specific genes (104 genes) in Chd4 826 
Dctrl and Chd4 DcKO oocytes at P1 and P5. The central lines represent medians. The upper and lower 827 
hinges correspond to the 25th and 75th percentiles. The upper and lower whiskers are extended from the 828 
hinge to the largest value no further than the 1.5x inter-quartile range (IQR) from the hinge. * P < 0.05: 829 
ns, not significant; Wilcoxon rank sum test.  830 
d. Heatmaps showing expression of the P5 up-regulated differentially expressed MPI-specific genes in 831 
Chd4 DcKO oocytes at P1 and P5, respectively.  832 
e. RNA-seq track views at the Casp7 gene locus. The y-axis represents normalized tag counts for bulk 833 
RNA-seq in each sample. Data ranges are shown in brackets. 834 
 835 
Fig 4. CHD4-dependent regulation of accessible chromatin in perinatal oocytes.  836 
a. Venn diagram indicates overlap of ATAC-seq peaks between Chd4 Dctrl and Chd4 DcKO oocytes at 837 
P1.  838 
b. Numbers and genomic distribution of ATAC-seq peaks in a.  839 
c, d. Violin plots with a box plot indicate changes in TPM values of genes adjacent to specific ATAC-seq 840 
peaks in Chd4 Dctrl (c) and Chd4 DcKO (d) oocytes at P1. The central lines represent medians. The 841 
upper and lower hinges correspond to the 25th and 75th percentiles. The upper and lower whiskera are 842 
extended from the hinge to the largest value no further than the 1.5x inter-quartile range (IQR) from the 843 
hinge. *** P < 0.001; ** P < 0.01; ns, not significant; Wilcoxon rank sum test.  844 
e, f, g, h. Heatmaps and average tag density plots of ATAC-seq enrichment around TSS (±2.5 kb) of 845 
downregulated in Chd4 DcKO oocytes at P1 (e) and P5 (f) and upregulated in Chd4 DcKO oocytes at P1 846 
(g) and P5 (h). *** P < 0.001; Wilcoxon rank sum test.  847 
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i. Representative track views of Casp7 and Stra8 gene loci show ATAC-seq signals in Chd4 Dctrl and 848 
Chd4 DcKO oocytes at P1. The y-axis represents normalized tag counts for ATAC-seq in each sample. 849 
The regions around TSSs are highlighted in red. 850 
 851 
Fig 5. CHD4 binding sites in non-growing oocytes at P1.  852 
a. Numbers and genomic distribution of CHD4 CUT&Tag peaks in Chd4 f/f oocytes at P1.  853 
b. Bar chart depicts the regional distribution of CHD4 CUT&Tag peaks to TSSs.  854 
c. Overlap between ATAC distal peaks (> 1kb from TSSs) and CHD4 CUT&Tag peaks within classified 855 
ATAC peaks.  856 
d. Violin plots with a box plot indicate changes in TPM values of genes adjacent to CHD4 CUT&Tag 857 
peaks in Chd4 Dctrl and Chd4 DcKO oocytes at P1 and P5. The central lines represent medians. The 858 
upper and lower hinges correspond to the 25th and 75th percentiles. The upper and lower whiskers are 859 
extended from the hinge to the largest value no further than the 1.5x inter-quartile range (IQR) from the 860 
hinge. *** P < 0.001; ns, not significant; Wilcoxon rank sum test.  861 
e. Heatmaps and average tag density plots of CHD4 enrichment around TSS (±2.5 kb) of DEG in Chd4 862 
Dctrl and Chd4 DcKO oocytes at P1 and P5. *** P < 0.001; Wilcoxon rank sum test.  863 
f, g. Violin plots with a box plot indicate CHD4 enrichment around TSS (±1 kb) for female MPI-specific 864 
genes (f, 104 genes) and apoptosis pathway genes in the KEGG database (g, 136 genes) in Chd4 Dctrl and 865 
Chd4 DcKO oocytes at P1 and P5. The central lines represent medians. The upper and lower hinges 866 
correspond to the 25th and 75th percentiles. The upper and lower whiskers are extended from the hinge to 867 
the largest value no further than the 1.5x IQR from the hinge. *** P < 0.001; Wilcoxon rank sum test.  868 
h. Representative track views of Stra8 and Bbc3 loci in P1 and P5 oocytes of indicated genotypes. Data 869 
ranges are shown in brackets. Specific ATAC-seq peak regions in Chd4 DcKO are highlighted. 870 
 871 
Fig 6. CHD4 is required for ovarian reserve maintenance.  872 
a. Schematic for mouse models and experiments.  873 
b. Ovarian sections of Chd4 Gctrl and Chd4 GcKO mice at P10. The sections were stained with 874 
hematoxylin and eosin or immunostained for DDX4 (red). Bars: 100 μm. Three mice were analyzed for 875 
each genotype at each time point, and representative images are shown.  876 
c. Dot plots showing the estimated numbers of oocytes per ovary from Chd4 Gctrl and Chd4 GcKO mice 877 
at P10. At least three mice were analyzed for each genotype at each time point. Central bars represent 878 
mean values. *** P < 0.001; * P < 0.05; Two-tailed unpaired t-tests.  879 
d. Comparison of transcriptomes between Chd4 Gctrl and Chd4 GcKO non-growing oocytes (NGOs) and 880 
growing oocytes (GOs) at P10. 500 NGOs and 100 GOs were isolated from P10 ovaries and were pooled 881 
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as one replicate, and two independent biological replicates were examined for RNA-seq. Differentially 882 
expressed genes (DEGs: Log2FoldChange > 1, Padj < 0.05, binominal test with Benjamini–Hochberg 883 
correction) are colored (red: upregulated in Chd4 GcKO oocytes; blue: downregulated in Chd4 GcKO 884 
oocytes).  885 
e. Violin plots with a Box plot indicate TPM values for female MPI-specific genes (104 genes) in Chd4 886 
Gctrl and Chd4 GcKO oocytes at P10. The central lines represent medians. The upper and lower hinges 887 
correspond to the 25th and 75th percentiles. The upper and lower whiskers are extended from the hinge to 888 
the largest value no further than the 1.5x inter-quartile range (IQR) from the hinge. ** P < 0.01; ns, not 889 
significant; Wilcoxon rank sum test.  890 
f. Track views showing RNA-seq signals in Chd4 Gctrl and Chd4 GcKO oocytes at P10, on Stra8 and Bid 891 
loci. The y-axis represents normalized tag counts for bulk RNA-seq in each sample. Data ranges are 892 
shown in brackets. 893 
 894 
Fig 7. CHD4 suppresses pro-apoptotic genes for male germ cell survival, and summary model.  895 
a. Schematic for mouse models and experiments.  896 
b. Immunostaining of DDX4 (red) in testicular sections in Chd4 Dctrl and Chd4 DcKO at P3. Bars: 100 897 
μm. Three mice were analyzed for each genotype at each time point, and representative images are 898 
shown.  899 
c. Comparison of transcriptomes between Chd4 Dctrl and Chd4 DcKO undifferentiated male germ cells at 900 
P3. Two independent biological replicates were examined for RNA-seq. Differentially expressed genes 901 
(DEGs: Log2FoldChange > 1, Padj < 0.05, binominal test with Benjamini–Hochberg correction) are 902 
colored (red: upregulated in Chd4 DcKO undifferentiated male germ cells; blue: downregulated in Chd4 903 
DcKO undifferentiated male germ cells).  904 
d. Representative track views of Bbc3 locus in P3 undifferentiated male germ cells of indicated 905 
genotypes. Data ranges are shown in brackets. Specific ATAC-seq peak regions in Chd4 DcKO are 906 
highlighted.  907 
e. Venn diagram indicates overlap of ATAC-seq peaks between Chd4 Dctrl and Chd4 DcKO 908 
undifferentiated male germ cells at P3.  909 
f. Numbers and genomic distribution of ATAC-seq peaks in e.  910 
g. Model of CHD4’s function in oocytes and undifferentiated male germ cells. 911 
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