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Abstract
Objectives To quantify the heterogeneity of fibrosis boundaries in idiopathic pulmonary fibrosis (IPF) using the Gaussian
curvature analysis for evaluating disease severity and predicting survival.
Methods We retrospectively included 104 IPF patients and 52 controls who underwent baseline chest CT scans. Normal lungs
below − 500 HU were segmented, and the boundary was three-dimensionally reconstructed using in-house software. Gaussian
curvature analysis provided histogram features on the heterogeneity of the fibrosis boundary. We analyzed the correlations
between histogram features and the gender-age-physiology (GAP) and CT fibrosis scores. We built a regression model to predict
diffusing capacity of carbon monoxide (DLCO) using the histogram features and calculated the modified GAP (mGAP) score by
replacing DLCO with the predicted DLCO. The performances of the GAP, CT-GAP, and mGAP scores were compared using
100 repeated random-split sets.
Results Patients with moderate-to-severe IPF had more numerous Gaussian curvatures at the fibrosis boundary, lower unifor-
mity, and lower 10th to 30th percentiles of Gaussian curvature than controls or patients with mild IPF (all p < 0.0033). The 20th
percentile was most significantly correlated with the GAP score (r = − 0.357; p < 0.001) and the CT fibrosis score (r = − 0.343;
p = 0.001). More numerous Gaussian curvatures, higher entropy, lower uniformity, and 10th to 30th percentiles (p < 0.001–0.041)
were associated with mortality. The mGAP score was comparable to the GAP and CT-GAP scores for survival prediction (mean
C-indices, 0.76 vs. 0.79 vs. 0.77, respectively).
Conclusions Gaussian curvatures of fibrosis boundaries became more heterogeneous as the disease progressed, and heterogene-
ity was negatively associated with survival in IPF.
Key Points
• Gaussian curvature of the fibrotic lung boundary was more heterogeneous in patients with moderate-to-severe IPF than those
with mild IPF or normal controls.

• The 20th percentile of the Gaussian curvature of the fibrosis boundary was linearly correlated with the GAP score and the CT
fibrosis score.

• A modified GAP score that replaced the diffusing capacity of carbon monoxide with a composite measure using histogram
features of the Gaussian curvature of the fibrosis boundary showed a comparable ability to predict survival to both the GAP
and the CT-GAP score.
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Abbreviations
CI Confidence interval
DLCO Diffusing capacity of carbon monoxide
DLCO% Percent of predicted diffusing capacity of carbon

monoxide
FVC Forced vital capacity
FVC% Percent of predicted forced vital capacity
GAP Gender-age-physiology
GGO Ground-glass opacity
IPF Idiopathic pulmonary fibrosis
LASSO Least absolute shrinkage and selection operator
mGAP Modified gender-age-physiology
PFT Pulmonary function test
RMSE Root mean square error

Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive,
fibrosing interstitial lung disease of unknown etiology [1, 2].
IPF patients typically have a median survival of about 3 years
after diagnosis. Nevertheless, disease severity may vary con-
siderably at the time of IPF diagnosis, and patients’ clinical
course after diagnosis can likewise show variation [3]. The
gender-age-physiology (GAP) model is a well-validated clin-
ical model for staging disease severity and predicting survival
in IPF patients; this model consists of four clinical variables,
including age, sex, forced vital capacity (FVC), and diffusing
capacity of carbon monoxide (DLCO) [4, 5].

The radiologic abnormalities of IPF on chest CT can be
utilized not only for diagnosis [1, 6], but also for staging its
severity and prognostication. The visually assessed extent of
fibrosis on CT images is a predictor of survival in IPF patients
[7–10]. Furthermore, the CT-derived extent of fibrosis can be
used as a supplement to the GAP score to improve the capa-
bility of predicting survival [11], or as a substitute for DLCO
in the GAP model [12]. However, the visual evaluation of
fibrosis on CT can be limited by the subjective interpretation
or degree of experience of the reader, causing inter-observer
variation [13]. Accordingly, several computer-based algo-
rithms for the quantification of fibrosis have been developed
[14–16] and shown to predict survival or disease progression
in IPF better than visual assessments [17–21].

Pre-existing techniques for visual assessment or automatic
quantification have focused on the presence and degree of
fibrosis [22]. The temporal and spatial heterogeneity of inter-
stitial fibrosis is considered a pathognomonic histologic find-
ing of IPF [23]. Gaussian curvature is defined as the product
of the minimum and maximum curvatures (i.e., the reciprocal
of the radius) and is one of the local geometric descriptors of
surface roughness in classical differential geometry (Fig. 1a
and Supplementary figure 1) [24], which has been applied to
analyze curvature in the developing brain using brain MRI

[25]. We hypothesized that the similar approach could be ap-
plied for IPF patients by quantifying the heterogeneity of the
fibrosis. Thus, the purpose of our study was to quantify the
spatial heterogeneity of the fibrosis boundary on chest CT in
IPF using the Gaussian curvature analysis for evaluating dis-
ease severity and predicting survival.

Materials and methods

Our institutional review board approved this retrospective
study (IRB No. H-1803-120-932), and informed consent
was waived.

Patients

A study coordinator initially searched electronic medical re-
cords to identify patients who were diagnosed with IPF and
underwent chest CT scans from 2006 to 2016 at a single ter-
tiary hospital. The diagnosis of IPF was made according to the
2011 ATS/ERS/JRS/ALAT guideline since 2012 [26]. IPF
was diagnosed by surgical pathology until 2011. We applied
the following inclusion criteria to determine eligibility: (a)
available baseline standard dose thin-section chest CT scans
with a slice interval of 1.5 mm or shorter, and (b) available
baseline pulmonary function test (PFT) results within 6
months before or after the baseline chest CT scan. We exclud-
ed patients who had (a) malignancy at the baseline workup,
(b) a destroyed lung due to other pathology, or (c) profound
motion artifacts on their CT images. Finally, a total of 104
patients (mean age, 68.2 ± 9.4; male-to-female ratio, 71:33; 56
diagnosed by pathology, 12 by multidisciplinary diagnosis,
and 36 by typical usual interstitial pneumonia CT findings
after excluding other differential diagnoses) were included in
this study (Fig. 2).

For normal controls, we searched consecutive subjects who
underwent chest CT scans from January 1 to April 15, 2019,
and had few respiratory symptoms and CT abnormalities ex-
cept for small benign nodules or linear atelectasis. We applied
the same inclusion criteria except for PFT, as PFT was rarely
performed for the normal controls without respiratory com-
plaints. After age- and sex-matching with the IPF patients, 52
control subjects (mean age, 67.5 ± 9.4; male-to-female ratio,
35:17) were included in this study (Fig. 2).

Clinical risk assessment and CT visual analysis

The GAP stage and score were calculated using the baseline
PFT results, including the percent of predicted FVC (FVC%)
and DLCO (DLCO%) [4], with the following distribution:
GAP stage I, 64 patients; stage II, 34 patients; stage III, 5
patients. Since there were few GAP stage III patients, we
classified the patients as having mild IPF (GAP stage I, n =
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64) or moderate-to-severe IPF (GAP stage II–III, n = 40). The
mean interval between the baseline PFT and the CT scans was
21.2 ± 38.2 days.

Two thoracic radiologists (with 13 and 6 years of
thoracic CT experience, respectively) blinded to the
clinical data analyzed the CT images visually by a

consensus reading. The radiologists reviewed axial CT
images containing lung parenchyma at a PACS worksta-
tion (INFINITT PACS Version 5.0.0) with a lung win-
dow setting (level, − 700 HU; width, 1500 HU). A
whole-lung extent of ground-glass opacity (GGO), con-
solidation, reticular abnormality, honeycombing,

Fig. 1 Schematic diagram of (a) Gaussian curvature of the fibrosis
boundaries of (b) the normal lung and (c) the fibrotic lung. a Gaussian
curvature is defined as the product of two principal curvatures which are
the maximum (κ1) and minimum (κ2) of curvatures that intersect the
normal plane—a plane containing the normal vector of the surface at a
certain point (P). b In the normal lung, fibrotic areas do not exist; there-
fore, the boundary (colored in yellow) of non-fibrotic areas (below − 500

HU is colored in red) corresponds to pleural surfaces, which are smoothly
elliptic and have a radius of the tangent sphere (R) that is mostly larger
than 1 mm. c In IPF, the fibrosis boundary (colored in yellow) is irregular
and the radius of the tangent sphere (r) is much smaller. Thus, the fre-
quency of either positive or negative Gaussian curvature (according to the
direction of the boundary curvature) is higher, although overall concavity
of the boundary is maintained along pleural surfaces

Fig. 2 Study diagram for the
inclusion of patients and controls
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emphysema, and total fibrosis (including both reticular
abnormality and honeycombing) were scored to the
nearest 10% [27].

Gaussian curvature histogram analysis of the fibrosis
boundaries

Gaussian curvature analysis of the fibrosis boundaries was
performed by one researcher using in-house software
(Supplementary figure 2). After loading the CT images, the
non-fibrotic areas of both lungs were segmented with a thresh-
old value of − 500 HU [28]. Next, the subpleural boundary
between the fibrotic and non-fibrotic areas was automatically

reconstructed by using the marching cube algorithm [29],
which is one of the most commonly used algorithms for
reconstructing a polygonal mesh from three-dimensional
medical data (Fig. 3). This algorithm was performed after
the volumetric segmentation of the structure of interest, and
by “marching” through all the cubic cells intersected by the
isosurface, the algorithm calculated the intersection points
along the edges and produced a triangular mesh to fit the
points. Finally, Gaussian curvature histogram analysis was
performed to provide the following histogram parameters of
the Gaussian curvature of the fibrosis boundary [24]: mean,
standard deviation, skewness, kurtosis, entropy, uniformity,
minimum, maximum, and 10th to 90th percentile values [30].

Fig. 3 Representative images of
extracting the boundaries between
fibrotic and non-fibrotic lung
areas. a, d Baseline chest CT im-
ages of patients with (a) mild IPF
(GAP stage I) and (d) severe IPF
(GAP stage III). b, e After
segmenting into fibrotic and non-
fibrotic areas using a threshold
value of − 500 HU, the fibrosis
boundary was automatically ex-
tracted and reconstructed three-
dimensionally by applying
marching cube. c, f The Gaussian
curvature analysis was performed
at the fibrosis boundary. The
Gaussian curvature value at each
point of the boundary was coded
into red (negative), green (near-
zero), and blue (positive). Note
that the fibrosis boundary in se-
vere IPF is more irregular than in
mild IPF
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Survival analysis

All patients were followed up until December 31, 2017. We
obtained survival data regarding whether the patients were
alive until December 31, 2017, and the date of death if the
patients died earlier from the Ministry of the Interior and
Safety of South Korea. The mean follow-up period was 47.8
± 35.2 months.

Prediction of DLCO using the CT histogram
parameters of Gaussian curvature

To predict DLCO using the histogram parameters, the least
absolute shrinkage and selection operator (LASSO) was used
to select features and to build a regression model [31]. First,
study participants were split randomly into training and vali-
dation sets (6:4). Then, a linear regression model for
predicting DLCO was built using the training set, and the
tuning parameter for model shrinkage (i.e., lambda) was ob-
tained based on the four-fold cross-validation error. The mod-
el was assessed on the validation set.

Statistical analysis

One-way ANOVA was used to compare the histogram
parameters between IPF patients and controls. The
Tukey honest significant difference test was used as a
post hoc test. The Pearson or Spearman rank correlation
coefficient was used to analyze the correlations of the
histogram parameters with the GAP score and CT visual
analysis score. A Cox proportional hazard model was
used to investigate the effects of the histogram parame-
ters, CT visual analysis score, and clinical parameters
on patient survival. A p < 0.05 was selected to deter-
mine statistical significance, and the Bonferroni correc-
tion was applied for comparison of the histogram pa-
rameters between IPF patients and controls.

The DLCO prediction model was evaluated with re-
spect to the following metrics: (1) root mean square
error (RMSE) and (2) R-square. The modified GAP
(mGAP) score was calculated by replacing DLCO%
with the predicted DLCO% in the GAP score formula.
We compared the C-indices and their 95% confidence
intervals (CIs) of the GAP, CT-GAP, and mGAP scores
using 100-times repeated random splitting of the study
population [32]. The comparison was considered to be
significant when p < 0.05.

Statistical analyses were carried out using the SPSS soft-
ware (version 25; IBM Corp.) and R software (version 3.5.1,
R Project for Statistical Computing; packages: caret and
glmnet).

Results

Baseline characteristics and CT visual analysis

The patients with moderate-to-severe IPF were significantly
older (71.4 ± 7.8 vs. 66.2 ± 9.8 years, p = 0.014) and had lower
FVC% (63.4 ± 11.4% vs. 83.4 ± 14.8%, p < 0.001) and
DLCO% (49.4 ± 18.1% vs. 69.9 ± 16.4%, p < 0.001) than
those with mild IPF. Furthermore, patients with moderate-to-
severe IPF had a larger extent of reticular opacities and
honeycombing, as well as a higher CT fibrosis score (p <
0.001–0.002) than patients with mild IPF, but the extent of
GGO, consolidation, and emphysema did not significantly
differ between the groups (Table 1).

Quantitative analysis of the heterogeneity of fibrosis
boundaries

Among the histogram parameters of the Gaussian curvature,
the overall number, mean, entropy, uniformity, and the 10th to
30th percentiles were significantly different across controls,
patients with mild IPF, and those with moderate-to-severe IPF
(p < 0.0033) (Table 2, Supplementary table 1, and Figs. 4 and
5). In the post hoc test, the 10th and 20th percentiles were
lower in patients with mild IPF than in controls (p < 0.001–
0.002), and those values were also lower in patients with
moderate-to-severe IPF than in patients with mild IPF (p ≤
0.001). Patients with moderate-to-severe IPF had a signifi-
cantly larger number of curvatures, higher entropy and lower
uniformity, and 30th percentile than controls (p < 0.001) and
larger number of curvatures, lower uniformity, and 30th per-
centile than patients with mild IPF (p < 0.001–0.003), but
there was no significant difference of those parameters be-
tween controls and patients with mild IPF. Histogram param-
eters of the Gaussian curvature did not significantly differ
depending on contrast enhancement (Supplementary table 2).

Association between the GAP score, CT visual
analysis, and heterogeneity of fibrosis boundaries

The overall number of the curvatures and entropy showed
significant positive correlations with the GAP score (r =
0.308, p = 0.002; r = 0.200, p = 0.043, respectively), while
uniformity and the 10th to 30th percentiles showed significant
negative correlations with the GAP score (r ranging from −
0.357 to − 0.219, p < 0.05). The 20th percentile of Gaussian
curvature showed the most significant correlation with the
GAP score (r = − 0.357; p < 0.001). However, histogram
parameters did not have a significant correlation with the
CT-GAP score except for the overall number of curvatures
(r = 0.236, p = 0.016) (Table 3 and Supplementary table 3).

The 20th percentile showed the most significant correlation
with the CT fibrosis score (r = − 0.343; p = 0.001) and the
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extent of honeycombing on CT (r = − 0.362; p < 0.001). A
larger number of the curvatures, smaller minimum or 10th to
30th percentile values, and larger maximum or 90th percentile
values were associated with a greater extent of at least one
lung abnormality, including consolidation, reticular abnor-
mality, honeycombing, and total fibrosis (Table 4 and
Supplementary table 4). However, none of the histogram pa-
rameters displayed significant correlations with the extent of
GGO or emphysema.

Survival analysis with the prediction of DLCO using
the histogram features of Gaussian curvature

There were 56 (53.8%) deaths among the IPF patients during
follow-up. The 1-, 2- and 3-year survival rates were 87%, 74%,
and 61%, respectively. In univariate survival analysis, a higher
GAP score (p < 0.001), as well as the clinical parameters in-
cluded in the GAP score—older age, male sex, lower FVC%,
and DLCO% (p < 0.001–0.007)—were associated with worse
survival. Among the CT visual analysis parameters, a greater
extent of reticular abnormality and honeycombing, the total
fibrosis score, and emphysema were associated with worse sur-
vival (p < 0.001), while GGO and consolidation were not

associated with survival. Among the histogram parameters,
the overall number of the curvatures (p < 0.001), higher entropy
(p = 0.041), lower uniformity (p = 0.027), and lower 10th to
30th percentiles (p < 0.001–0.010) were significant survival
predictors (Table 5).

The regression equation for the prediction of DLCO%
based on a single random split was as follows:

Predicted DLCO% ¼ 74:456þ 18:227*meanþ 33:553*20th percentile−0:003*maximum

The median values of DLCO% and predicted DLCO% of
the 100 repeated random-split set were 60% (interquartile
range, 48–74%) and 63% (interquartile range, 57–67%), re-
spectively. The mean R-square value between DLCO% and
predicted DLCO%was 0.296 (95% CI, 0.275–0.317), and the
RMSE was 16.69 (95% CI, 16.40–16.97). The predicted
DLCO% was significantly associated with patient survival
in univariate survival analysis using validation set (hazard
ratio, 0.905; 95% CI, 0.845–0.969; p = 0.004 based on a
single random split), and the mGAP score with the predicted
DLCO%was also significantly associated with worse survival
(hazard ratio, 34.0; 95% CI, 7.0–165.7; p < 0.001 based on a
single random split).

Table 1 Summary of clinical parameters and CT visual analysis scores

Variables Control (n = 52) Mild IPF (n = 64) Moderate-to-severe IPF (n = 40) p value†

Clinical parameters

Age (years) 67.5 ± 9.4 66.2 ± 9.8 71.4 ± 7.8 0.018*a

Male sexb 35 (67.3%) 40 (62.5%) 31 (77.5%) 0.278

FVC (L) - 2.74 ± 0.76 2.09 ± 0.57 < 0.001*

DLCO (mL/mmHg/min) - 12.04 ± 3.28 7.72 ± 2.46c < 0.001*

FVC% - 83.4 ± 14.8 63.4 ± 11.4 < 0.001*

DLCO% - 69.9 ± 16.4 49.4 ± 18.1c < 0.001*

Unable to perform DLCO testb - 0 (0.0%) 1 (2.5%) 0.385

CT visual analysis score (%)

GGO - 11.1 ± 9.3 13.5 ± 8.6 0.190

Consolidation - 3.0 ± 6.1 4.8 ± 7.8 0.225

Reticular abnormality - 27.8 ± 7.2 32.5 ± 6.7 0.001*

Honeycombing - 13.0 ± 10.5 21.3 ± 13.8 0.002*

Total fibrosis (CT fibrosis score) - 32.0 ± 8.8 41.8 ± 10.1 < 0.001*

Emphysema - 6.3 ± 8.6 10.3 ± 12.1 0.073

Unless otherwise indicated, data are mean ± standard deviation. Asterisks indicate statistical significance (p < 0.05)

IPF idiopathic pulmonary fibrosis, FVC forced vital capacity,DLCO diffusing capacity of carbonmonoxide, FVC% percent of predicted FVC,DLCO%
percent of predicted DLCO, GGO ground-glass opacity
† p values were obtained using one-way ANOVA for age, chi-square test for “male sex,” Fisher’s exact test for “unable to perform DLCO test,” and
Student’s T test for other variables
a Post hoc test for age: p = 0.733 (normal control vs. mild IPF), p = 0.104 (normal control vs. moderate-to-severe IPF), and p = 0.014 (mild IPF vs.
moderate-to-severe IPF)
b Data are absolute numbers, with percentages in parentheses
c One patient who was unable to perform the DLCO test was excluded
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Table 2 Summary of comparison of the histogram parameters of the Gaussian curvature of fibrosis boundaries

Histogram parameters Control (n = 52) Mild IPF (n = 64) Moderate-to-
severe IPF (n = 40)

p value† p value for post hoc test††

Control vs.
mild IPF

Control vs. moderate-
to-severe IPF

Mild vs. moderate-
to-severe IPF

Overall no. of
curvatures (×106)

1.587 ± 0.342 1.799 ± 0.593 2.429 ± 1.030 < 0.001* 0.215 < 0.001* < 0.001*

Mean 0.700 ± 0.263 0.545 ± 0.211 0.575 ± 0.201 0.001* 0.001* 0.027 0.792

Entropy 1.549 ± 0.317 1.620 ± 0.347 1.831 ± 0.317 < 0.001* 0.480 < 0.001* 0.005

Uniformity 0.572 ± 0.083 0.550 ± 0.086 0.494 ± 0.077 < 0.001* 0.325 < 0.001* 0.003*

10th percentile − 0.995 ± 0.326 − 1.243 ± 0.405 − 1.531 ± 0.417 < 0.001* 0.002* < 0.001* 0.001*

20th percentile − 0.410 ± 0.197 − 0.589 ± 0.226 − 0.792 ± 0.261 < 0.001* < 0.001* < 0.001* < 0.001*

30th percentile − 0.036 ± 0.122 − 0.130 ± 0.162 − 0.278 ± 0.210 < 0.001* 0.008 < 0.001* < 0.001*

Other
parameters

- - - N.S. N.S. N.S. N.S.

Data are mean ± standard deviation. Asterisks indicate statistical significance (p < 0.0033, applying the Bonferroni correction). Complete data are
available in Supplementary table 1

IPF idiopathic pulmonary fibrosis, N.S. not significant
† p values were obtained using one-way ANOVA
†† p values were obtained using the Tukey honest significant difference test

Fig. 4 Summary histogram of the Gaussian curvature of the fibrosis
boundaries in healthy controls and patients with mild and moderate-to-
severe IPF. a, b The general shape of the histogram of the Gaussian
curvature of the fibrosis boundaries is similar across groups, as the overall
concavity of the boundaries is maintained along pleural surfaces,

resulting in a dominant peak of Gaussian curvature at 0. cWhen the upper
bound of the relative frequency on the Y-axis is adjusted in the same
graph, it becomes clear that positively or negatively skewed Gaussian
curvatures with a smaller radius exist primarily in IPF patients
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The mean C-indices in the GAP and CT-GAP scores were
0.79 (95% CI, 0.71–0.86) and 0.77 (95% CI, 0.68–0.85), re-
spectively. The mGAP score calculated with the predicted

DLCO% using the composite of the histogram features of
the Gaussian curvature instead of DLCO% had a mean C-
index of 0.76 (95% CI, 0.69–0.84). All three GAP scores

Fig. 5 Representative images of (a, b) mild and (c, d) severe IPF. a
Baseline chest CT image of a 50-year-old man with mild IPF (GAP stage
I). b The histogram of the Gaussian curvature of the subpleural fibrosis
boundary is shown: entropy, 1.141; uniformity, 0.664; 10th to 30th per-
centiles, − 0.696, − 0.316, and 0.000, respectively (data with Gaussian
curvature < − 10.5 or > 10.5 are cropped for visibility). c Baseline chest

CT image of a 66-year-old man with severe IPF (GAP stage III). d The
histogram of the Gaussian curvature of the subpleural fibrosis boundary is
shown: entropy, 2.231; uniformity, 0.400; 10th to 30th percentiles, −
2.152, − 1.134, and − 0.565, respectively (data with Gaussian curvature
< − 10.5 or > 10.5 are cropped for visibility)

Table 3 Summary of correlations between the histogram parameters of the Gaussian curvature of fibrosis boundaries and the GAP, CT-GAP, and
mGAP scores

Histogram parameters GAP score CT-GAP score mGAP scorea

Pearson’s correlation
coefficient

p value† Pearson’s correlation
coefficient

p value† Pearson’s correlation coefficient p value†

Overall no. of curvatures 0.308 0.002* 0.236 0.016* 0.341 < 0.001*

Entropy 0.200 0.043* 0.069 0.487 0.222 0.025*

Uniformity − 0.219 0.026* − 0.083 0.404 − 0.235 0.017*

10th percentile − 0.275 0.005* − 0.136 0.170 − 0.285 0.004*

20th percentile − 0.357 < 0.001* − 0.187 0.059 − 0.357 < 0.001*

30th percentile − 0.321 0.001* − 0.182 0.066 − 0.326 0.001*

Other parameters - N.S. - N.S. - N.S.

Asterisks indicate statistical significance (p < 0.05). Complete data are available in Supplementary table 3

GAP gender-age-physiology, mGAP modified GAP, N.S. not significant
† p values were obtained using the Pearson’s correlation coefficient
a mGAP score was calculated based on a single random split: Predicted DLCO% = 74.456 + 18.227*mean + 33.553*20th percentile − 0.003*maximum
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showed a comparable ability to predict survival without a
significant difference in the C-index (p > 0.05; 95% CI of
difference, − 0.09 to 0.05 when compared with the GAP
score) (p > 0.05; 95% CI of difference, − 0.04 to 0.04 with
the CT-GAP score).

Discussion

Gaussian curvature is positive for elliptic surfaces and nega-
tive for saddle surfaces, and the absolute value of Gaussian
curvature increases as the radius becomes smaller. In normal
lungs, as fibrotic areas do not exist, the boundary of non-
fibrotic areas corresponds to the pleural surfaces, which typi-
cally have a smooth convexity with some acute peaks between
the chest wall pleura and mediastinal or diaphragmatic pleura
(Fig. 1b). Therefore, the Gaussian curvature of normal lungs is
predominantly distributed around 0, followed by curvatures
larger than 0. In contrary, IPF typically involves a predomi-
nant subpleural pattern of fibrosis, resulting in irregular
boundaries between fibrotic and non-fibrotic areas. The irreg-
ular boundaries of fibrosis make more numerous Gaussian
curvatures and result in many positively or negatively skewed
Gaussian curvatures with a smaller radius, which is represent-
ed as higher entropy, lower uniformity, lower 10th to 30th
percentiles, and higher 70th to 90th percentiles (Fig. 1c).

The overall number and 10th to 30th percentiles of
Gaussian curvatures showed significant correlations with the
extent of honeycombing and total fibrosis on CT, and entropy
and uniformity also tended to be higher and lower with a
greater extent of honeycombing and total fibrosis, respective-
ly. In addition, these parameters were shown to be associated
with disease severity and survival in IPF patients. These re-
sults are consistent with the aforementioned theoretical rela-
tionship between the Gaussian curvature of subpleural

surfaces and the extent of fibrosis in IPF. Interestingly, the
70th to 90th percentiles of Gaussian curvature did not show
any significant correlations with fibrosis. The 70th to 90th
percentiles reflect peaks or pits, whereas the 10th to 30th per-
centiles reflect saddle points. Considering that even normal
lungs have acute peaks at the flexure of the pleura at the
transition between the diaphragm and mediastinum, while
saddle points are scarce in normal lungs, the 10th to 30th
percentiles seem more meaningful.

A previous study by Iwasawa et al reported that the CT
analysis of subpleural fibrosis had a prognostic implication
in IPF [33]. Despite the similar prognostic implication of
subpleural fibrosis, the analyzing methodology of subpleural
fibrosis was different between ours and theirs. We analyzed
the curvature of fibrosis boundary caused by subpleural fibro-
sis, and their work analyzed the CT morphology of subpleural
fibrosis. The result of the two studies seems to emphasize the
importance of preferential subpleural involvement in the dis-
ease course of IPF.

The mGAP score calculated with predicted DLCO%
showed a similar ability to predict survival to the GAP and
CT-GAP scores. These results imply that the spatial heteroge-
neity of the fibrosis boundary in IPF can provide similar prog-
nostic information to the degree of fibrosis on CT. The GAP
score is a well-validated model for predicting survival in IPF
patients, and the CT-GAP model is a useful alternative for the
original GAP model [4, 12]. However, the DLCO test can
suffer from intra- and inter-session variability, and some pa-
tients with lung disease cannot perform the maneuver of the
DLCO test adequately [34, 35]. Furthermore, during a regular
follow-up, IPF patients typically perform CT scans and spi-
rometry but less undergo a DLCO test. The CT-GAP model
allows predicting survival without performing the DLCO test,
but visual assessment of the fibrosis on CT requires experi-
enced radiologists and potentially be affected by inter-

Table 4 Summary of correlation between the histogram parameters of the Gaussian curvature of fibrosis boundaries and CT visual analysis score

Variables Consolidation Reticular abnormality Honeycombing Total fibrosis

Overall no. of curvatures N.S. N.S. 0.364 (< 0.001*) 0.324 (0.001*)

Minimum − 0.204 (0.038*) N.S. N.S. − 0.206 (0.036*)

10th percentile − 0.224 (0.022*) N.S. − 0.286 (0.003*) − 0.309 (0.001*)

20th percentile N.S. − 0.231 (0.019*) − 0.362 (< 0.001*) − 0.343 (< 0.001*)

30th percentile N.S. N.S. − 0.353 (< 0.001*) − 0.313 (0.001*)

90th percentile 0.198 (0.044*) N.S. N.S. N.S.

Maximum 0.214 (0.029*) N.S. N.S. N.S.

Other parameters N.S. N.S. N.S. N.S.

Data are Spearman’s ρ coefficients between each histogram parameter and the CT visual analysis score, with p values in parentheses. Asterisks indicate
statistical significance (p < 0.05). None of the histogram parameters displayed significant correlations with the extent of ground-glass opacity (GGO) or
emphysema. Complete data are available in Supplementary table 4

CT computed tomography, N.S. not significant
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observer variability. Either the DLCO test or time-consuming
visual grading of the experienced radiologist is limitedly ap-
plicable in clinical practice during coronavirus disease 2019
[36]. In our method of analysis, on the other hand, inter-
observer variability was unlikely to occur since non-fibrotic
areas were segmented using a threshold of − 500 HU and the
entire process of analysis, from lung segmentation to the
Gaussian curvature analysis, was fully automated. A com-
bined analysis of the degree and spatial heterogeneity of fibro-
sis may provide better prognostication of IPF, and further
investigations such as a head-to-head comparison between
the GAP scores are warranted.

Our study has several limitations. First, our study was de-
signed retrospectively and included a relatively small

population of patients and controls. Second, the CT system
and protocols were variable, including both contrast-enhanced
and non-enhanced CT, although we excluded low-dose CT
scans. Of particular note, CT attenuation of the lung changes
depending on the use of intravenous contrast, which may af-
fect the automatic segmentation of the lung using a specified
HU threshold [37]. However, the resulting difference would
be minimal since the difference between the attenuation of the
lung with or without contrast enhancement is much smaller
than the difference between fibrotic and non-fibrotic lung tis-
sues [37]. Third, although patients were instructed to achieve
full inspiration when undergoing chest CT, the degree of in-
spiration may have varied among the patients. Insufficient
inspiration may increase the CT attenuation of the lung,

Table 5 Univariate survival
analysis for clinical parameters,
the CT visual analysis score, and
the histogram features of the
Gaussian curvature of fibrosis
boundaries

Variables Hazard ratio 95% CI p value†

Clinical parameters

Age (years) 1.039 1.010–1.069 0.007*

Male sex 2.482 1.279–4.816 0.007*

FVC% 0.962 0.944–0.980 < 0.001*

DLCO%a 0.974 0.959–0.990 0.001*

GAP score 3.722 2.467–5.615 < 0.001*

CT visual analysis score (%)

Ground-glass opacity 0.992 0.965–1.021 0.597

Consolidation 1.023 0.989–1.059 0.190

Reticular abnormality 1.083 1.040–1.128 < 0.001*

Honeycombing 1.050 1.029–1.072 < 0.001*

Total fibrosis 1.095 1.061–1.129 < 0.001*

Emphysema 1.047 1.022–1.073 < 0.001*

Histogram features

Overall no. of curvatures (×106) 1.605 1.230–2.095 < 0.001*

Mean 0.894 0.237–3.374 0.868

Standard deviation 1.163 0.804–1.682 0.424

Skewness 0.903 0.727–1.123 0.359

Kurtosis 0.995 0.983–1.008 0.478

Entropy 2.175 1.034–4.578 0.041*

Uniformity 0.031 0.001–0.667 0.027*

Minimum 0.962 0.923–1.004 0.075

10th percentile 0.482 0.276–0.841 0.010*

20th percentile 0.215 0.084–0.554 0.001*

30th percentile 0.173 0.049–0.612 0.007*

70th percentile 39.493 0.058–26919.670 0.269

80th percentile 1.553 0.690–3.495 0.287

90th percentile 1.212 0.874–1.681 0.249

Maximum 1.000 0.960–1.041 0.987

Asterisks indicate statistical significance (p < 0.05)

CI confidence interval, FVC% percent-predicted forced vital capacity, DLCO% percent-predicted diffusing ca-
pacity of carbon monoxide, GAP gender-age-physiology.
† p values were obtained using a univariate Cox proportional hazard model
a One patient who was unable to perform the DLCO test was excluded
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thereby affecting the Gaussian curvature. Fourth, the repro-
ducibility of our analyzing method was not evaluated in this
study. Although thought to be minimal, inter-scan variability
can occur depending on CT imaging conditions. Fifth, the
example of the regression equation mentioned in the result
was derived from a single random split, and different param-
eters may be selected in the other split of the population or
external validation. Finally, we analyzed Gaussian curvature
of the outmost boundary between fibrotic and non-fibrotic
lungs. It predominantly reflected subpleural fibrosis in IPF
patients, with a minor exception of the wall of honeycombing
cysts which might not be included as a fibrotic area due to
smaller HU. Thus, the entire boundary of fibrosis may not
have been fully reflected in the analysis. Particularly, a central
boundary between fibrotic and non-fibrotic lungs cannot be
evaluated with our analyzing method. Further study using the
central boundary may be meaningful.

In conclusion, the spatial heterogeneity of the fibrosis
boundary in IPF could be quantitatively measured using the
Gaussian curvature histogram analysis, and irregular fibrosis
boundaries were represented as more numerous curvatures
and heterogeneous distribution of Gaussian curvature on his-
tograms. Heterogeneity was negatively associated with dis-
ease severity and survival in IPF patients. The quantitative
analysis of the spatial heterogeneity of fibrosis boundaries in
IPF shows promise as a potential imaging biomarker for stag-
ing disease severity and prognostication.
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