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Acylhydrazone-based dynamic combinatorial chemistry (DCC)
is a powerful strategy for the rapid identification of novel hits.

Even though acylhydrazones are important structural motifs in
medicinal chemistry, their further progression in development

may be hampered by major instability and potential toxicity

under physiological conditions. It is therefore of paramount
importance to identify stable replacements for acylhydrazone

linkers. Herein, we present the first report on the design and
synthesis of stable bioisosteres of acylhydrazone-based inhibi-

tors of the aspartic protease endothiapepsin as a follow-up to
a DCC study. The most successful bioisostere is equipotent,

bears an amide linker, and we confirmed its binding mode by

X-ray crystallography. Having some validated bioisosteres of
acylhydrazones readily available might accelerate hit-to-lead

optimization in future acylhydrazone-based DCC projects.

Dynamic combinatorial chemistry (DCC) enables rapid screen-

ing of functionally diverse compounds against a target, circum-

venting the need for individual synthesis, purification and char-
acterization.[1–7] Among many other prominent examples of

DCC, reversible disulfide-bond formation was first introduced
in DCC by the groups of Still,[8] Sanders,[5] and Lehn[9] in the

late 1990s. Later on, in 1997, the group of Lehn first applied

DCC to a protein target using imine formation/exchange.[1]

Since then, its scope and wider applicability were demonstrat-

ed on a range of biological targets. Replacement of the reversi-
ble disulfide bond with thioether (-S-CH2-)[10] or all-carbon

(olefin, -CH2-CH2-)[11–15] and of the imine moiety with amines,[1]

an ethyl linker[16] or with an amide linker[17] provides stable bio-
isosteres with potentially preserved binding mode, making

DCC an enabling tool for medicinal chemistry and drug discov-
ery (Figure 1 a).

We chose the target protein endothiapepsin, belonging to
the family of pepsin-like aspartic proteases, which play a causa-
tive role in numerous diseases such as malaria, Alzheimer’s dis-
ease, hypertension, and HIV-1.[18] Endothiapepsin is used as a

representative enzyme due to its robustness, immense stability
and similarity to the drug targets of the class of aspartic pro-

teases. Moreover, it has been used as a model enzyme for

mechanistic studies,[19–21] as it is readily available in large quan-
tity and crystallizes easily and importantly remains active at

room temperature for more than 20 days.
We previously discovered acylhydrazone-based inhibitors of

endothiapepsin using DCC in combination with de novo struc-
ture-based drug design, which display a promising inhibitory
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Figure 1. a) Previous examples of bioisosteres and b) proposed bioisosteres
(2–4) of the acylhydrazone 1 as stable inhibitors of endothiapepsin.
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profile (IC50 = 12.8:0.4 mm).[22] Acylhydrazones are considered
to be important structural motifs in medicinal chemistry,

as they hold the potential to interact with a range of biologi-
cal targets in antiviral, anticancer and antibacterial drug discov-

ery.
Nevertheless, there are problems associated with acylhydra-

zones. This class of compounds is considered by some as a
member of the pan-assay interference compounds (PAINS).[23]

They undergo photoinduced E/Z isomerization.[24] In addition,

it is important to consider also the behavior of acylhydrazones
in vivo. The major setback of acylhydrazones is their lack of
stability due to hydrolysis into an aldehyde and a hydrazide
under acidic pH. In spite of that, hydrazone and acylhydrazone
linkages are used to develop pH-degradable drug-delivery sys-
tems for site-specific targeting.[25] Furthermore, some acylhy-

drazones, like PAC-1, are in clinical trials as a treatment for

cancer.[26, 27] Nevertheless, it is highly desirable to replace the
labile acylhydrazone linker with stable and chemically benign

analogues while maintaining the key interactions in the active
site of the protein without significant changes in chemical

structure.
Surprisingly, to the best of our knowledge, there are only

few examples of bioisosteres of acylhydrazones,[16] but no

report as a direct follow-up of a DCC experiment. In most
cases, the binding mode of the bioisostere is not confirmed ex-

perimentally. Having suitable bioisosteres in hand, will estab-
lish ‘acylhydrazone-based DCC’ as a powerful hit/lead-identifi-

cation strategy with the potential for further optimization.
Bioisosteres have been introduced as a fundamental strategy

to improve the biocompatibility of the parent hit or lead com-

pounds. As such, bioisosteres contribute to the field of medici-
nal chemistry, in terms of improving potency, enhancing selec-

tivity, altering physicochemical properties, reducing or redirect-
ing metabolism, eliminating or modifying toxicophores and ac-

quiring novel intellectual property.[28] Herein, we describe the
design, synthesis, and biochemical activity of three bioisosteres
of the acylhydrazone (S)-1, the first acylhydrazone inhibitor of

endothiapepsin. Importantly, unlike the parent acylhydrazone,
bioisosteres (S)-2 and (S)-4 are not prone to hydrolysis, and all
three do not liberate potentially toxic hydrazides.

We chose the X-ray crystal structure of endothiapepsin in

complex with acylhydrazone (S)-1 (PDB ID: 4KUP)[22] as a start-
ing point for the design of stable bioisosteres of the labile acyl-

hydrazone moiety. Hit (S)-1 displays an IC50 value of 12.8 mm
and a ligand efficiency (LE) of 0.27. It interacts with the catalyt-
ic dyad using H-bonding interactions (Asp35 (2.8 a, 3.2 a) and

Asp219 (2.9 a)) through its a-amino group.
We designed bioisosteres using two different design ap-

proaches, namely Recore in the LeadIT suite[29] and the molecu-
lar modeling software Moloc[30] for molecular modeling and

computation of the dipole moments. In Recore, a defined

moiety of a molecule (the core) is replaced by fragments from
a 3D database whilst keeping the rest of the molecule intact.

To restrict the number of solutions, defined ligand-based phar-
macophore constraints can be assigned. This modeling and

docking resulted in various compounds displaying heterocyclic,
ester or amide linkages. Among the various heterocycles (e.g. ,

triazole, tetrazole, oxazole (Supporting Information Figure S8)),
we chose the best three compounds (Figure 1 b) based on

their dipole moments, their calculated DG, and predicted bind-
ing modes, which are similar to those of the parent acylhydra-

zone (S)-1 and synthesized them as a proof-of-concept study.
The predicted binding modes of three representative bioisos-

teres in the active pocket of endothiapepsin are shown in Fig-
ure S4 (Supporting Information).

Inspection of the soaked crystal structure of endothiapepsin

with acylhydrazone (S)-1 in the active site shows that the aro-
matic parts of the compound such as indolyl and/or mesityl

moieties are able to form p–p-stacking interactions with the
amino acid residues of the protein backbone. In all of the
structures (Figure 1 b), the binding modes of the indolyl and
mesityl moieties are preserved. It was computationally ob-

served that the a-amino groups of all bioisosteres (S)-2-(S)-4
form charge-assisted H bonds to the catalytic dyad (Asp35 and
Asp 219) as well as additional H-bonding interactions with
Asp81, and Gly221. The indolyl NH forms H bonds either with
Asp81 or Asp33, the NH group of the amide donates an H

bond to Gly221 in (S)-2. In addition to these, the thiazolyl ring
of (S)-4 is involved in several hydrophobic interactions with the

protein backbone. The main building blocks required for the

synthesis of bioisosteres (S)-2-(S)-4, are N-a-Boc-l-tryptophan
(5) and the 2-mesitylene-derived compounds (S)-5, 8 and 11
(see Schemes S1–S4 in the Supporting Information and
Scheme 1).

Very mild peptide-coupling conditions afforded the bioisos-
tere (S)-2 with the amide linker, followed by deprotection of

the Boc group. Starting from N-Boc-l-tryptophan (5) and 2-me-

sitylethanamine hydrochloride (10) in presence of the weak
base carbonyldiimidazole, furnished the corresponding amide

(S)-14 in 80 % yield, and after deprotection with TFA, the test
compound (S)-2 in quantitative yield. The ester (S)-3 was acces-

sible through the Steglich esterification.[31] We synthesized the
bioisostere (S)-4 from the building blocks thioamide (S)-7 and
ketobromide 9, which can be both accessed in two steps from

N-a-Boc-l-tryptophan (5) and mesitylacetic acid (8),[32, 33] re-
spectively.

Subsequent deprotection of the Boc group of compound
(S)-12 afforded bioisostere (S)-4 in quantitative yield. The first

step to obtain thioamide (S)-7 consists of the synthesis of
amide (S)-6 followed by thionation using Lawesson’s reagent.

On the other hand, using modified Arndt–Eistert reaction con-
ditions, starting from mesitylacetic acid (8), afforded intermedi-
ate 9. To investigate the biochemical activity of the designed

bioisosteres (S)-2 to (S)-4, we performed a fluorescence-based
assay adapted from the HIV-protease assay (see Figures S1–S3

for the IC50 curves, Supporting Information).[34]

The three designed bioisosteres inhibit the activity of endo-

thiapepsin to a different extent. The most potent inhibitor, the

amide bioisostere (S)-2, displays a Ki value of 6.1 mm, very simi-
lar to the parent acylhydrazone (S)-1 (Ki = 6.0 mm, Table 1). We

calculated the Ki values from experimental IC50 values using
the Cheng–Prusoff equation.[35] To verify the predicted binding

mode of the bioisosteres, we soaked crystals of endothiapep-
sin with the most potent bioisostere (S)-2 and determined the
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crystal structure of (S)-2 in complex with endothiapepsin at
1.58 a resolution (PDB ID: 5OJE). The structure features clear
electron density for the ligand, as shown in Figure 2 b.

Upon closer examination, the location of the ligand is similar

to the docked pose shown in Figure S4 (See Supporting Infor-
mation). The amino group of the ligand forms two H bonds

with Asp35 (2.9 a) and Asp219 (3.0 a). The indolyl nitrogen
atom forms an H bond with Asp81 (3.2 a). The hydrophobic

part of the indolyl moiety is engaged in hydrophobic interac-
tions with Phe116, Leu125, Tyr79 and Gly221. The mesityl sub-

stituent is involved in hydrophobic interactions with Ile300,

Ile304, Tyr226, Gly80 and Asp81. The oxygen atom of the
amide linkage forms water-mediated H bonds to the carbonyl

oxygen of Gly37 and the amide nitrogen of Gly80. The media-
ting water molecules are conserved between the crystal struc-

tures in complex with (S)-1 and (S)-2 (PDB IDs: 4KUP and 5OJE,
respectively, Supporting Information Figure S7).

The only difference compared to the docked pose is at the

amide linkage. In contradiction to the computational model-
ing, the nitrogen atom of the amide does not form an H bond
with the oxygen atom of Gly221, the distance is 4.2 a. Instead,
the hydroxy group of Thr222 acts as an H-bond acceptor and

forms an H bond (2.9 a) with the amide nitrogen atom of the
ligand, which is also shown in Figure 3.

Due to the slightly bent shape of the coordinated ligand,

both aromatic groups are able to form hydrophobic interac-
tions with one DMSO molecule, shown in Figure 2. This DMSO

molecule is well-coordinated and seems to displace several
water molecules. This may be important for the stabilization of

the ligand bound to the protein. A similar DMSO molecule can
be observed in previous crystal structures (e.g. , PDB ID:

4KUP).[22]

The single bond connecting the mesityl unit to the rest of
the acylhydrazone (S)-1 is part of a conjugated system and pre-

fers a planar orientation. It is twisted out of planarity to an un-
favorable angle of 34.48 compared to the more favored angle

of 107.08 as in bioisostere (S)-2 (Supporting Information Fig-
ure S6).

Scheme 1. Synthesis of bioisosteres: a) ClCO2Et, Et3N, dry THF, aq. NH3 ; b) Lawesson’s reagent, dry CH2Cl2 ; c) EtOH, reflux, 4 h; d) TFA, CH2Cl2 ; e) 2-mesityle-
thanamine hydrochloride (10), 1,1’-carbonyldiimidazole, THF, RT, 15 h; f) TFA, CH2Cl2, 0 8C!RT, 1.5 h; g) 2-mesitylethanol (11), DCC, DMAP (5 %) CH2Cl2, 8 h;
h) HCl/Et2O 1 m, 24 h; i) SOCl2, dry toluene, reflux, 3 h; j) a) TMS-diazomethane, Et2O, b) 47.5 % aq. HBr.

Table 1. Biochemical evaluation of acylhydrazone (S)-1 and its bioisos-
teres (S)-2–(S)-4. Each experiment was carried out in duplicate.

Inhibitor IC50 [mm][a] Ki [mm][b] DGEXPT [kJ mol@1][b] DGHYDE [kJ mol@1][c]

(S)-1 12.8:0.4 6.0:0.2 @30 @32
(S)-2 12.9:0.7 6.1:0.4 @30 @27
(S)-3 28.7:4.1 13.5:1.9 @28 @28
(S)-4 193.7:11.4 91.2:5.4 @23 @31

[a] Eleven different concentrations of inhibitor were used; errors are
given in standard deviations (SD). [b] Values indicate the inhibition con-
stant (Ki) and the Gibbs free energy of binding (DG) derived from IC50

values using the Cheng–Prusoff equation.[35] [c] Values indicate the calcu-
lated Gibbs free energy of binding (DGHYDE ; calculated by the HYDE scor-
ing function in the LeadIT suite).

Figure 2. a) Zoomed-out view of the protein shown as surface. b) Electron
density omit-map of the crystal structure of endothiapepsin in complex with
compound (S)-2 and a coordinated DMSO molecule. Fo@Fc map contoured
at 3.3 s (color code: protein cartoon: light blue, C: green, O: red, N: blue, S:
yellow).
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The bioisostere (S)-2, however, contains a peptidic bond in

the linker, which also prefers planarity. This forces the C@N
bond, its third bond, counting from the mesityl substituent,

into an unfavorable torsional angle of 1228 compared to the
preferred 1708 of the acylhydrazone (Figure S6). In conclusion,

both ligands have to adopt a slightly unfavorable conforma-

tion to bind in the pocket of the enzyme, which is reflected in
their binding affinities. Based on our observations, it might be

difficult to design a linker with improved binding affinity,
which would need to be more flexible with respect to the tor-

sional angles, while the H-bond donor and –acceptor functions
of the peptidic nitrogen and oxygen atoms should ideally be

preserved.

We report the successful replacement of the acid-sensitive
and hydrolyzable acylhydrazone linker of parent hit (S)-1, af-

fording stable and equipotent inhibitors of endothiapepsin.
We designed and synthesized three bioisosteres and evaluated

them for their inhibitory potency against endothiapepsin.
Compounds (S)-2 and (S)-3, possessing amide and ester linkers,

respectively display similar Ki values as the parent hit (S)-1,

while compound (S)-4 is an order of magnitude weaker than
the parent hit. The crystal structure of amide (S)-2 (Ki = 6.1 mm)
in complex with endothiapepsin validates the predicted bind-
ing mode. In this proof-of-concept study, we identified molecu-

lar interactions that should be taken into consideration if fur-
ther modifications are done to achieve a more druglike re-

placement for the acylhydrazone linker. Taken together, we
demonstrate that acylhydrazones can be replaced without af-
fecting the binding mode and whilst preserving the activity,

demonstrating that acylhydrazone-based DCC is a powerful
tool to identify hits, which can then be optimized to stable

lead compounds in a straightforward manner.

Experimental Section

Full experimental details are provided in the Supporting Informa-
tion.
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