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Altered metabolome and microbiome features provide clues

in understanding irritable bowel syndrome and depression
comorbidity
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Irritable bowel syndrome (IBS) is one of the functional gastrointestinal disorders characterized by chronic and/or recurrent symptoms

of abdominal pain and irregular defecation. Changed gut microbiota has been proposed to mediate IBS; however, contradictory
results exist, and IBS-specific microbiota, metabolites, and their interactions remain poorly understood. To address this issue,

we performed metabolomic and metagenomic profiling of stool and serum samples based on discovery (n =330) and validation
(n=101) cohorts. Fecal metagenomic data showed moderate dysbiosis compared with other diseases, in contrast, serum
metabolites showed significant differences with greater power to distinguish IBS patients from healthy controls. Specifically, 726

differentially abundant serum metabolites were identified, including a cluster of fatty acyl-CoAs enriched in IBS. We further identified

522 robust associations between differentially abundant gut bacteria and fecal metabolites, of which three species including
Odoribacter splanchnicus, Escherichia coli, and Ruminococcus gnavus were strongly associated with the low abundance of

dihydropteroic acid. Moreover, dysregulated tryptophan/serotonin metabolism was found to be correlated with the severity of IBS

depression in both fecal and serum metabolomes, characterized by a shift in tryptophan metabolism towards kynurenine
production. Collectively, our study revealed serum/fecal metabolome alterations and their relationship with gut microbiome,

highlighted the massive alterations of serum metabolites, which empower to recognize IBS patients, suggested potential roles of
metabolic dysregulation in IBS pathogenesis, and offered new clues to understand IBS depression comorbidity. Our study provided a
valuable resource for future studies, and would facilitate potential clinical applications of IBS featured microbiota and/or metabolites.

The ISME Journal (2022) 16:983-996; https://doi.org/10.1038/s41396-021-01123-5

INTRODUCTION
Irritable bowel syndrome (IBS) is a common functional gastro-
intestinal disorder that affects around 11% of the population
globally [1]. IBS is categorized into four subtypes including
diarrhea-predominant IBS (IBS-D), constipation-predominant IBS
(IBS-C), mixed IBS (IBS-M), and un-subtyped IBS (IBS-U) according
to patients’ bowel habits. Moreover, psychological comorbidity
including anxiety and depression is common in IBS population [2].
Although the precise mechanism of IBS remains unclear, the
alteration of gut microbiota has been proposed to mediate IBS
pathogenesis.

Pittayanon and colleagues systematically reviewed gut micro-
biota studies in IBS from inception to April, 2018, reported the

IBS-specific intestinal microbiota characterized by an increase in
family Enterobacteriaceae, family Lactobacillaceae and genus
Bacteroides, together with a decrease in uncultured Clostridiales |,
genus Faecalibacterium and genus Bifidobacterium [3]. However,
inconsistent results exist among studies, probably due to the
differences in methodology, the limited sample size, coupled with
the lack of necessary information such as antibiotics/probiotics
use and diet habit. For example, one study showed a relative
increased abundance of bacterial species including Enterobacter-
iaceae in feces of IBS patients, with decreased composition in
Lactobacillus and Bifidobacterium; while opposite results found in
another study described an increase in Lactobacillus genus or
Lactobacillales in IBS-D [4]. Tap et al. reported the fecal and
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mucosal microbiota signatures that are related with the severity of
IBS [5]. Vich et al. reported a large scale of metagenomic
sequencing of stool samples from 1792 individuals with IBS and
inflammatory bowel disease (IBD), which demonstrate overlapped
and specific species between IBD and IBS patients compared with
controls [6]. Jeffery et al. reported significant differences in fecal
microbiomes and metabolomes of individuals with or without IBS,
and highlighted the potential of using metabolomes and
microbiome in the diagnosis and treatment of IBS [7]. However,
by analyzing the fecal and mucosa-associated microbiome of IBS
patients from a Swedish random population, it was reported that
no IBS-specific microbiota feature was identified [8].

The microbial composition can shape the environment in the
colon as metabolites produced from microbes can be involved in
signaling, immune system modulation, or have antibiotic activity.
For example, short-chain fatty acids (SCFAs) showed lower
proportions in sera of IBS patients [9], which play major roles in
the microbiota—host interaction by inhibiting inflammatory and
malignant growth [10]. A recent study from our group revealed an
impaired bile acid synthetic regulation with excessive bile acid
excretion contributed by the Clostridia-rich microbiota that is
associated with the severity of diarrheal symptoms in IBS-D
patients [11].

These results indicate a potential role of microbiota and
microbiota-related byproducts in IBS, but the alterations of fecal
and serum metabolites and their interactions with gut microbiota
are not well established and interpreted. Here in this study, we
integrated microbiome and untargeted metabolites profiling data
from discovery (n=330) and validation (n=101) cohorts to
understand the IBS-specific microbiota and metabolite alterations.
We found a moderate alteration of fecal microbiome and
metabolome in IBS patients, whereas clear separation between
IBS patients and healthy controls was observed using serum
metabolites. Interestingly, we found strong associations between
fecal metabolites and microbiota, and identified dysregulated
tryptophan/serotonin metabolism correlated with the severity of
IBS depression. Collectively, our study provides a valuable
resource to understand IBS-specific microbiota/microbiome fea-
tures and interactions, highlights the potential application of
serum metabolites in laboratory diagnostics of IBS, and offers new
clues to understand IBS depression comorbidity.

MATERIALS AND METHODS

Sample collection

Adults meeting the Rome IV criteria for IBS [12, 13] were prospectively
recruited at two Chinese medicine clinics affiliated with the School of
Chinese Medicine, Hong Kong Baptist University. More specifically, IBS
patients were recruited on if they fulfilled the following inclusion criteria:
(1) meeting the Rome IV criteria, including recurrent abdominal pain on
average at least 1d/week in the last 3 months; (2) IBS Symptom Severity
Scale (IBS-SSS) over than 75 points at baseline; (3) age of 18—65 years; (4)
normal colonic evaluation with 5 years by examination of colonoscopy or
barium enema; (5) Written informed consent. Patients were excluded if
they fulfilled one or more of the following exclusion criteria: (1) pregnancy
or breast-feeding; (2) medical history of IBD, carbohydrate malabsorption,
hormonal disorder, known allergies to food additives, and/or any other
serious diseases; (3) surgical histories of gallbladder removal, gastrointest-
inal (GI) tract, and cerebral cranium; (4) having parasitic infections; (5) use
of medications known to influence gastrointestinal function, blood
pressure, and fat. The disease status was classified by predominant bowel
habits on the days with abnormal bowel movements based on the
questionnaire of Bristol Stool Form scale and defecation frequency [12].
Matched healthy controls without the medical history of neurodegenera-
tive diseases, cardiovascular diseases, metabolic disorders, Gl diseases, and
surgical histories of gallbladder removal, GI tract, and cerebral cranium
were also recruited in the same clinical centers. Included subjects were
instructed to provide morning first stool samples and fasting blood
samples on the same day for biochemical detection and omics analyses. All
included participants were required to stop using antibiotics, probiotics,
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prebiotics, and other microbiota-related supplements at least three weeks
before stool sampling. Specimens (serum and stools) were transported to
the laboratory using dry ice and were frozen at —80 °C.

In total, we recruited 330 and 101 individuals for discovery and
validation cohorts, respectively. Specifically, we collected 330 fecal samples
(including 24 IBS-C, 214 IBS-D, 19 IBS-M, 7 IBS-U, and 66 healthy controls)
and 325 matched serum samples (including 24 IBS-C, 209 IBS-D, 19 IBS-M, 7
IBS-U, and 66 healthy controls) from the discovery cohort, and collected
101 fecal samples (including 7 IBS-C, 57 IBS-D, 13 IBS-M, 9 IBS-U, and 15
healthy controls) and 98 matched serum samples (including 7 IBS-C, 55
IBS-D, 13 IBS-M, 9 IBS-U, and 14 healthy controls) from the validation
cohort.

There were 24 intrinsic factors and 45 questionnaire factors collected for
each subject. The 24 intrinsic factors contained: Gender, Age, BMI, Subtype
(including IBS-D, IBS-C, IBS-M, and IBS-U), Serum TBA (Serum Total Bile
Acids (TBAs), umol/g), Fecal TBA (Fecal TBAs, umol/g), ALP (Alkaline
phosphatase, u/L), ALT (Alanine transaminase, u/L), AST(Aspartate transa-
minase, u/L), Urea (mmol/L), Creatinine (umol/L), TC (Serum total
cholesterol, mmol/L), Fasting glucose (mmol/L), TG (Triglyceride, mmol/
L), C4 (serum 7a-hydroxy-4-cholesten-3-one, ng/mL), FGF19 (serum
fibroblast growth factor 19, pg/mL), Stool Freq (stool frequency per day),
Bristol Stool Score, HAMD (Hamilton Depression Rating Scale), SAS (the
Zung Self-Rating Anxiety Scale), SDS (the Zung Self-Rating Depression
Scale), IBS SSS Pain (IBS Symptom Severity Scale-Pain Score), IBS SSS
Distention (IBS Symptom Severity Scale-Distention Score) and IBS SSS (IBS
Symptom Severity Scale). The 45 questionnaire factors contained: (1) basic
information (Education Level, Marriage and Monthly Income); (2) dietary
habits (Rice Products Quantity and Frequency, Flour Products Quantity and
Frequency, Coarse Cereals Quantity and Frequency, Viscera Blood Products
Quantity and Frequency, Red Meat Quantity and Frequency, White Meat
Quantity and Frequency, Egg Products Quantity and Frequency, Vege-
tables Quantity and Frequency, Tuber Products Quantity and Frequency,
Bean Products Quantity and Frequency, Fruit Quantity and Frequency,
Vegetable Oil Quantity and Frequency, Animal Oil Quantity and
Frequency); (3) beverage consumption (Tea Quantity and Frequency,
Coffee Quantity and Frequency, Alcohols Quantity and Frequency, Milk
Products Quantity and Frequency); (4) physical exercise habits (Physical
Activity Quantity, Exercise Quantity and Frequency); (5) sleeping status
(Sleep Quality and Sleep Time); (6) smoking (Smoke Duration); (7) stress
status (Spirit Quantity and Frequency).

Depression diagnosis

IBS patients with depression were diagnosed by a combination of a SDS
self-report and a 17-item HAMD-17 other-report. All subjects were firstly
requested to complete the SDS, with an index score of 53 as a cut-off value
[14]. Those with SDS score greater than 53 were received a professional
diagnosis with a HAMD by a psychiatrist. The severity of depressive
symptom was categorized by the following severity range [15]: (1) HAMD
<7: no depression (rIBS); (2) HAMD 8—16: mild depression (mIBS); (3)
HAMD = 17: moderate and severe depression (17—23 for moderate and
>24 for severe) (sIBS). In the 330-member discovery cohort, 264 IBS
patients were further diagnosed as 185 rIBS, 63 mIBS, and 16 sIBS.

Approval for human patient research

This study was approved by the Ethics Committee on the Use of Human &
Animal Subjects in Teaching & Research (Approval no. HASC/15-16/0300
and HASC/16-17/0027). Written informed consent was obtained from each
participant prior to sample collection.

Measurements of total bile acids, 7a-hydroxy-4-cholesten-3-
one and fibroblast growth factor 19 in serum samples
Concentrations of TBAs and fibroblast growth factor 19 (FGF19) in human
serum were tested by using commercial TBA Assay Kit (Cell Biolabs, San
Diego, CA, USA) and Human Fibroblast growth Factor 19 Assay Kit (Thermo
Scientific, Waltham, MA, USA), respectively. The level of serum 7a-hydroxy-
4-cholesten-3-one (C4) was quantified by a liquid chromatography coupled
with mass spectrometry (LC/MS)-based method developed from
our group.

Metabolite profiling of fecal and serum samples

Metabolites were extracted from serum and fecal samples as described
previously [16, 17]. Briefly, feces (100 mg) were completely homogenized
with five-fold volume of ice-cold distilled water. After high-speed
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centrifugation (13,000 rpm for 15 min at 4°C), water extractions were
transferred to a new 2mL tube. Subsequently, another five-fold volume
(500 pL) of methanol was added into the pellet sample. The mixture was
completely homogenized and centrifuged again. Methanol extractions
were combined with the previous water extractions. Serum (50 uL) was
prepared with four volumes of cold methanol for protein precipitation, and
metabolite extracts were obtained after vortex and centrifugation. The 200
pL of fecal or serum supernatant was dried and redissolved in the same
volume of solvent consisting of water and acetonitrile (98:2, v/v).
Meanwhile, quality control (QC) samples pooling all samples were
individually prepared using the same protocol. P-chlorophenylalanine (5
pg/mL) was added as an internal standard.

Analytical conditions for the untargeted metabolic profiling
The 2pL of the resulting supernatant was injected into a liquid
chromatography system (UPLC, Agilent 1290 Infinity, USA) and separated
by gradient elution with 0.35 mL/min of flow rate using ACQUITY UPLC
BEH C18 column (1.7 um, 2.1 x 50 mm, Waters Corporation, Milford, MA).
The gradient program consisted of phase A (0.1% formic acid in water) and
phase B (0.1% formic acid in acetonitrile), which started from 2 to 5% B in
1 min, then raised to 100% B in the next 11 min and maintained at 100% B
for 3 min, finally turned back to 2% B in 2 min. A quadruple time-of-flight
mass spectrometer (Q-TOF/MS, Agilent 6543, USA) coupled with electro-
spray ionization (ESI) was performed for the acquisition of metabolic
fragments in both positive and negative ionic modes. The instrument
operated in full scan mode from 100 to 1,000 m/z and the capillary voltage
was set at 3,000 V.

Semi-quantification of neuroactive amides in feces and serum
A total of 17 neuroactive metabolites including tryptophan (TRP), tryptamine
(TRPT), n-acetylserotonin (NAS), 5-hydroxyindoleacetic acid (5-HIAA), melato-
nin, kynurenine (KYN), kynurenic acid (KYA), serotonin, 3-indole acetic acid (3-
IAA), 3-hydroxyanthranilic acid (3-HAA), tyrosine (TYR), succinic acid (SUCC),
dopamine, glutamate (GLU), glutamine (GLN), histamine, aminobutyric acid
(GABA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). An isotopic
glutamine-2,3,3,4/4-d5 as an internal standard was obtained from CDN
isotopes (Pointe-Claire, Quebec, Canada). HPLC grade organic reagents for
mass spectrometric analysis were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The standard curves and regression coefficients were gained
based on internal standard adjustment.

The analytical conditions were referred to a published study [18]. Briefly,
a liquid chromatography (Agilent UHPLC 1290, USA) coupled with a triple-
quadrupole mass spectrometer (Agilent QQQ-MS 6438, USA) was applied.
Sample injection and flow rate were set at 2 pL and 0.4 ml/min for each
sample, respectively. Of neuroactive metabolites, GLU, GLN, histamine,
GABA were separated using an ACQUITY BEH Amide column (1.7 um, 100
mm x 2.1 mm) with a linear gradient of 100 MM ammonium formate in
95% water and 5% acetonitrile (mobile phase A) and 30 mM ammonium
formate in 15% water and 85% acetonitrile (mobile phase B). The gradient
program was: 100—80% B for the first 6 min, 80—50% B for 3 min, held at
50% B for 3 min, 50—100% B for 3 min. The column temperature was
maintained at 30 °C. Moreover, melatonin, NAS, KYN, KYA, TRP, 5-HIAA, TYR,
serotonin, 3-IAA, TRPT, 3-HAA, dopamine, SUCC were separated using an
ACQUITY BEH C18 column (1.7 pm, 100 mm x 2.1 mm) with a linear
gradient of 0.1% formic acid (FA) in water (mobile phase A) and 0.1% FA in
acetonitrile (mobile phase B). The gradient program was: 2—30% B for the
first 4 min, 30—100% B for 2 min, held at 100% B for 2 min, 100—2% B for 2
min. The column temperature was maintained at 40°C. The capillary
voltage of the mass spectrometer for both acquisitions was 3.5kV in the
positive mode. The acquisition data were analyzed using Agilent
MassHunter Workstation Software for peak integration, calibration
equations, and quantification of individual metabolites.

Identification of differentially abundant metabolites

The nonparametric univariate method (Wilcoxon rank-sum test) was
applied to identify metabolites that differed in abundance between IBS
patients and controls and corrected for false discovery rate (FDR). Partial
least-squares discriminant analysis (PLS-DA) was applied by using the
function plsda from the R package mixOmics. Differentially abundant
metabolites between IBS patients and healthy controls were identified by
using the combined statistical criteria of PLS-DA Variable Importance in
Projection (VIP) score > 1.0, FDR adjusted p-value < 0.1, and fold change in
the range of 0.8—1.2.
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Unsupervised clustering of differentially abundant
metabolites

We performed unsupervised clustering using residual abundance values
from linear modelling described in detail by Fransoza et al. [32] on all
differentially abundant metabolites. The detailed analysis process included
two steps: calculating residual abundance values and clustering. To
calculate residual abundance values, we firstly log-transformed the relative
abundance values to variance-stabilize the data. Zero values were
additively smoothed by half the smallest non-zero measurement on a
per-sample basis. We then modelled the transformed abundance of each
feature as a function of IBS phenotype (modelled as a categorical variable),
with age as a continuous covariate. Residual abundance values from the
linear models were used in subsequent cluster analyses.

We performed clustering on residual abundance values of all
differentially abundant metabolites. This procedure enriches for covaria-
tion between metabolites. Metabolites were firstly ranked according to the
richness in IBS (the fold change). The highest-ranked metabolite was
assigned as an initial cluster. Each subsequent metabolite was then
compared to each extant cluster. If the metabolite had a mean similarity to
the cluster's members exceeding a threshold, the metabolite was added to
that cluster (using Spearman'’s rank correlation r = 0.7 as a threshold). If the
metabolite was not added to any extant clusters, it was seeded into a new
cluster. After scanning all metabolites, clusters were renumbered accord-
ing to their size, of which cluster 1 had the largest size, and so on.

Metagenomic DNA extraction and sequencing

We used the phenol/chloroform/isoamyl alcohol method to extract
microbial DNA from stool samples (200 mg) of included subjects [19].
The DNA that passed quality control was then subjected to library
construction using the TruSeq DNA HT Sample Prep Kit. Paired-end
sequencing (2 x 150 bp) was carried out using lllumina Hi-Seq platform.

Read-level quality control and metagenomic profiling

Raw sequencing reads were filtered using SOAPnuke with the parameter
“-120-q 0.5 -n 0.1 -d” [20]. After the removal of adapter sequences and low-
quality reads, host (human) reads were identified and removed by
mapping against the human genome (hg19 build) with SOAP2 [21]. The
remaining high-quality reads were used for further analysis. MetaPhlAn2
[22] (version 2.7.6) and default marker database mpa_v20_m200 were
used to estimate the relative abundance of taxonomic profile. The
database contained ~ 1 M clade-specific marker genes from approximately
17,000 reference genomes. We only considered the species-level data and
kept species that exceed 0.1% relative abundance in at least six samples.
Functional profiling was performed using HUMANN2 [23] (version 0.9.4) in
UniRef90 mode. Detected genes were further regrouped into gene families
and pathways and then sum-normalized within HUMANN2. Linear
discriminant analysis Effect Size (LEfSe) [24] analysis was applied on the
relative abundance of species, gene families, and pathways to identify
disease-associated biomarkers. Features with Linear discriminant analysis
(LDA) score > 2.0 and p-value < 0.05 were considered as statistically
significant. Association between microbiome composition and covariates
was estimated with PERMANOVA test using the R package vegan.

In order to compare gut microbiota profile of IBS with that of other
diseases, the microbial taxonomic data including IBD [25], liver cirrhosis
(LC) [26], colorectal cancer (CRC) [27], and type 2 diabetes (T2D) [28], were
collected using the R package curatedMetagenomicData [29].

Statistical analysis

We assessed which fraction of the total variation of Bray-Curtis distance of
microbiome and metabolome can be explained by clinical factors using
the function adonis from the R (3.5.1) package vegan. The p-value was
determined by 1000x permutations and was further adjusted using the
Benjamini and Hochberg method. The association between each factor
and each diversity or richness measure was assessed by Spearman
correlation. The 10-fold cross-validation random forest (RF) model was
generated using R (3.5.1) package randomForest. The cross-validational
error curves from 5 trials of the 10-fold cross-validation were averaged, and
the minimum error in the averaged curve plus the standard error at that
point was used as the cutoff. The minimum number of species/metabolites
markers with an error less than the cutoff was chosen as the optimal
model. The receiver operating characteristic (ROC) curves were drawn
using R (3.5.1) package pROC, and area under the curve (AUC) scores are
used to compare different models.
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RESULTS

Multi-omics profiles associated with intrinsic and
questionnaire factors in IBS patients

To investigate the potential mechanism of pathogenesis in IBS, we
collected 330 stool and 325 serum samples from a 330-member
discovery cohort included 264 IBS patients and 66 healthy controls
(Supplementary Fig. 1). Nearly 30% (79 out of 264) of IBS patients
also suffered from depression or anxiety (Supplementary Table 1).
For each subject, 24 intrinsic factors (including symptom scores
and biochemical indices) and 45 questionnaire factors (including
basic information, dietary habits, beverage consumption, exercise
habits, sleeping status, smoking, stress status, etc) were collected,
and the intercorrelations between factors were analyzed (Supple-
mentary Fig. 2).

To characterize the microbiome and metabolic profile in IBS,
330 stool samples were subjected to metagenomic sequencing and
untargeted metabolomic analysis. In total, we captured 1788 known
and uncharacterized fecal metabolites (including 856 identified in
the positive mode and 932 identified in the negative mode).
Regarding 325 serum samples available, we performed untargeted
metabolomic analysis by using high-resolution mass spectrometer
and captured 1769 known and uncharacterized serum metabolites
(including 879 identified in the positive mode and 890 identified in
the negative mode). We firstly assessed the overall differences
between IBS patients and healthy controls in the fecal microbiome,
fecal, and serum metabolomes respectively. Compared with healthy
controls, IBS patients showed significantly elevated alpha and beta
diversity in serum metabolome data (p=1.04e—11 and 0.08 for
alpha diversity by positive and negative ionization modes,
respectively; p =2.2e—16 and 2.2e—16 for beta diversity by positive
and negative ionization modes, respectively; Supplementary Fig. 3a),
increased beta diversity in fecal microbiome (p = 8.6e—09, Supple-
mentary Fig. 3c), but no obvious differences in fecal metabolome
data (Supplementary Fig. 3b). Interestingly, we noticed that the
serum metabolites of IBS patients dramatically change from those of
healthy controls, suggesting that serum metabolites have the
potential to be used for IBS laboratory diagnostics (Fig. 1a). Such
differences could result from a combination of multiple factors,
including the effect of host disease status, the differences in dietary
habits, medication use, etc. However, both IBS patients and healthy
controls were clustered together on Principal coordinates analysis
(PCoA) plot based on fecal metabolome and microbiome data,
indicating fecal data have less power to distinguish IBS patients
(Fig. 1a). We subsequently compared the degree of IBS-related
microbiota dysbiosis to other microbiota-mediated diseases, includ-
ing IBD, LC, CRC, and T2D. As shown in Fig. 1b, only 0.5% of the gut
microbiota dysbiosis could be explained by disease status in IBS,
which was similar to T2D but much smaller than that of LC or IBD,
suggesting a moderate degree of microbiota dysbiosis in IBS
compared to other diseases.

Further, we separately investigated the associations of intrinsic
and questionnaire factors with metabolic and microbial profiles
(Fig. 1c). Previous studies have suggested that the alterations of
gut microbiome composition were influenced by clinical factors in
IBD and IBS [6]. Here, we correlated those 24 intrinsic factors and
45 questionnaire factors with the overall composition of micro-
biota and metabolites based on Bray—Curtis dissimilarities,
respectively. Permutational multivariate analysis of variance
(PERMANOVA) revealed that IBS subtypes were associated with
composition changes in both fecal microbiome and serum
metabolome, but not with fecal metabolome. Based on fecal
microbiome profiles, 10 factors were significantly associated (FDR
<0.1) with overall composition variation, which together
explained 9% of inter-individual variations. The strongest associa-
tions with microbial composition were found to be the levels of
several biochemical indices, including fecal TBA and C4, which is
consistent with previous studies [30, 31]. Similar trends were
observed in both positive and negative ionic mode fecal
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metabolome profiles (Fig. 1c and Supplementary Fig. 4a) which
fecal TBA explained >6% of the composition variance that was far
greater than any other factors. We also noticed that the fecal TBA
was negatively correlated with the alpha diversity of fecal
metabolomic profiling (Spearman’s r=-0.17, p=0.002). By
contrast, in serum metabolomics data, the Zung Self-Rating
Anxiety Scale (SAS) primarily explained >8% of the compositional
variance and showed a positive correlation with the Shannon
index (Spearman’s r=0.22, p =0.0003) (Fig. 1c and Supplemen-
tary Fig. 4b). This result demonstrated a close linkage between
psychological burden and serum metabolic alterations. Moreover,
several dietary factors were also found to be associated with
metabolomic profiles, of which the frequency of tea drinking
showed a significant relationship with fecal metabolic variation
(Spearman’s r= —0.14, p = 0.016) (Supplementary Fig. 4a, c).

Metabolome alterations between IBS patients and healthy
controls

To illuminate metabolic changes across groups, we performed
PLS-DA on both serum and fecal metabolome data. The serum
samples were largely separated between IBS and controls, which is
consistent with broad changes in serum metabolite profiles
described in earlier context (Supplementary Figs. 5b and 6b). By
contrast, IBS patients could not be discriminated from healthy
controls in fecal metabolome according to PLS-DA plots
(Supplementary Fig. 7¢, d). We then applied nonparametric
univariate method (Wilcoxon rank-sum test) to identify differen-
tially abundant serum metabolites between IBS patients and
healthy controls. After correcting for FDR, a total of 726 serum
metabolic fragments were significantly changed (FDR < 0.05) in
IBS (Supplementary Figs. 5a and 6a and Supplementary Table 2),
whereas only 8 fecal metabolites were identified (Supplementary
Fig. 7a, b). When evaluating the generality of the differentially
abundant serum metabolites in the validation cohort, 635 (87.5%)
were enriched, of which 628 were also FDR significant (Supple-
mentary Table 3).

101 out of 726 different metabolic fragments in serum were
structurally identified (Fig. 2a). Compounds whose levels signifi-
cantly changed between IBS patients and healthy controls include
many metabolites from food, such as y-tocotrienol, myo-Inositol 1-
phosphate, stearic acid, and actinidine, indicating that some
detected changes of metabolite were attributed to the differences
in dietary habits (Fig. 2b). Although total serum TBA level
increased in IBS patients (Supplementary Table 1), we observed
depletions in bile alcohol 27-Norcholestanehexol and bile salt
Taurochenodeoxycholate-3-sulfate. This discrepancy may be due
to different enzymes involved in the metabolism and synthesis of
different types of bile acids [32]. Another control-enriched
metabolite, Tetrahydrodeoxycorticosterone (THDOC), is a stress-
induced neuroactive and anti-oxidative steroid, which might
protect stress-induced responses [33]. Our result showed sig-
nificant negative correlations between serum levels of THDOC
with SDS in IBS (Supplementary Fig. 8a).

Considering the simultaneous elevation of four fatty acyl-CoAs in
IBS patients, we hypothesized that metabolites may be clustered for
similar chemical and functional properties. Using the unsupervised
clustering method based on residual abundance values from linear
modelling described in detail by Franzosa et al. [25], 726
differentially abundant serum metabolites were clustered into 78
clusters which tend to covary independently of their relationship
with IBS phenotype and age (Supplementary Table 2). Clusters of
metabolites can be used to predict properties for unannotated
metabolites by transforming knowledge from their annotated
partners. The largest cluster enriched in IBS patients contained 70
metabolites (Fig. 2c), which include the three out of the four fatty
acyl-CoAs, enhanced the importance of dysregulation of fatty acids
in IBS patients. Other metabolites in this cluster included some sterol
lipids and structural variants of fatty acid. Moreover, 58 unlabeled
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Fig. 1 Multi-omics profiles of IBS patients. a Principal coordinates analysis (PCoA) of discovery cohort individuals based on 330 gut
metagenomic (264 IBS and 66 HC), 330 fecal metabolomic (264 IBS and 66 HC), and 325 serum metabolomic profiles (259 IBS and 66 HC),
respectively (Bray—Curtis distance). b Left panel shows the comparisons of gut microbiota dysbiosis in different diseases and different
subtypes of IBS. The gut metagenomic data of other diseases, including inflammatory bowel disease (IBD, n = 155, including 121 IBD and 34
HCQ) [25], liver cirrhosis (LC, n =237, including 123 LC and 114 HC) [26], colorectal cancer (CRC, n = 128, including 74 CRC and 54 HC) [27], and
type 2 diabetes (T2D, n = 363, including 178 T2D and 185 HC) [28], were collected by the R package curatedMetagenomicData [29]. Right panel
shows the comparisons of gut microbiota dysbiosis in different subtypes of IBS, including IBS-C (n =90, 24 IBS-C and 66 HC), IBS-D (n = 280,
214 IBS-D, and 66 HC), IBS-M (n = 85, 19 IBS-M, and 66 HC), and IBS-U (n =73, 7 IBS-U, and 66 HC). ¢ Shown are associated factors with gut
metagenomic, fecal metabolomic (negative ionization mode), and serum metabolomic (negative ionization mode) profiles in the 330-member
discovery cohort. Black bars indicate statistical significance (FDR < 0.1).

and Dimethyltryptamine (Fig. 2d). Pyridoxamine 5-phosphate
is one form of vitamin B6, which is involved in many reactions of
amino acid metabolism [34]. Dimethyltryptamine has a similar
chemical structure to the neurotransmitter serotonin and acts as

metabolites were also contained in this cluster which may also be
related to fatty acid metabolism via guilt-by-association logic. The
largest cluster enriched in healthy controls contained 123 metabo-
lites, and all of them elevated in healthy controls (Supplementary

Fig. 8b). Validated standard metabolites in this cluster included a
variety of Triglyceride (TG) metabolites and phosphates. Another
interesting cluster enriched in healthy control contained a variety of
amines, including Pyridoxamine-5’-Phosphate, Phenylethylamine,

The ISME Journal (2022) 16:983 - 996

an agonist in mammalian brain and blood [35]. Phenylethylamine
is a monoamine neurotransmitter, which can stimulate the body
to make certain chemicals that play a role in depression and
other psychiatric conditions [36]. The co-functions of these
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Fig. 2 Differentially abundant serum metabolites and their clusters. By analyzing the serum metabolomic profiles of 259 IBS and 66 HC
from the discovery cohort, we identified 726 differentially abundant serum metabolites (including 364 identified in the positive mode and 362
identified in the negative mode), among which 101 out of the 726 metabolites were structurally identified. a The barplot shows the PLS-DA
VIP results in the projection of the 101 structurally identified differentially abundant serum metabolites. b Diet-associated differentially
abundant serum metabolites that enriched in IBS patients and in healthy controls. The Y-axis represents each metabolite, and the X-axis shows
the log-transformed PPM units of the abundance of each metabolite. ¢ The largest cluster enriched in IBS contained 70 metabolites, and all of
them significantly elevated among IBS patients. d One interesting cluster enriched in healthy controls contained 46 metabolites and included
a variety of amines, all of which significantly elevated in healthy controls. Abundances are in log-transformed PPM units.

organic compounds in IBS still need further research. Most clusters
remained largely undefined, allowing the potential correlation
analysis for many previously undescribed metabolites with microbial

origin.

SPRINGER NATURE

Microbiome alterations between IBS patients and healthy

controls
Although several previous studies already explored the IBS gut

microbiome characteristics in IBS even in large cohort [5, 6], much of
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the data related to Western populations, limiting their application in
a global context [29]. Considering the heterogeneity and complexity
of IBS, together with the fact that the prevalence of IBS varies
dramatically among geography, it is worth investigating in different
countries and cultures. To infer the differences of gut microbiome
between IBS patients and healthy controls in Hong Kong Chinese
populations, we applied LEfSe [24] to the high-dimensional
taxonomic profiles. A total of 33 species were identified as
differentially abundant bacteria species, of which 23 were elevated
in IBS relative to controls, including Ruminococcus gnavus,
Escherichia coli, Bacteroides plebeius, etc. In contrast, 10 species
including Bacteroides uniformis, Prevotella stercorea, and Bacteroides
coprocola were among the species exhibiting the strongest
enrichments in healthy controls (Supplementary Fig. 9a and
Supplementary Table 4a). Of 33 differentially abundant species in
the discovery cohort, 24 trended in the same direction in the
validation cohort, suggesting the majority of IBS-associated changes
identified in the discovery cohort generalized in their directionality
to the validation cohort. Notably, the enrichment of Bacteroides
plebeius and Lachnospiraceae bacterium 2_1_58FAA was also
observed in the validation cohort in spite of the small number of
differentially abundant species (Supplementary Table 5).

The ISME Journal (2022) 16:983 - 996

IBS patients could display different symptoms, for example,
diarrhea versus constipation, thus it is important and interesting to
figure out the similarities and differences among subtypes in
terms of gut microbiome and metabolome. Figure 3a gives an
overview of the gut microbiota differentially identified in all IBS
clinical subtypes, depicting the numbers of increased and
decreased species per family. In total, 16, 29, 9, and 7
nonredundant taxa were associated with IBS-C, IBS-D, IBS-M and
IBS-U patients, respectively (Supplementary Fig. 9b—e and
Supplementary Table 4b—e). Compared with controls, patients
with IBS-C or IBS-D showed substantial overlap in the increase and
decrease in the relative abundance of bacterial species in their gut
microbiome. There were 10 taxa associated with both IBS-D and
IBS-C (Supplementary Table 6). These included an increase in
several Gram-negative bacteria, including Bacteroides faecis,
Escherichia coli, and Klebsiella pneumoniae. Furthermore, the
Bacteroides clarus and Bacteroides coprocola showed an opposite
changing direction, may be associated with the different
symptoms in IBS-C and IBS-D. In addition, we also found some
disease-specific associations. The abundance of Fusobacterium
varium, for example, was only elevated in patients with IBS-D but
not in those with IBS-C. An increase in species of the Clostridium
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was observed only in patients with IBS-C, including increases in
Clostridium symbiosum and Clostridium bartlettii [11].

To understand the functional consequences of microbial
community changes in IBS, we profiled pathways in all metagen-
omes using HUMANN2 [23]. LEfSe [24] was applied on the
abundance data, revealing 18 pathways differentially abundant in
IBS patients and healthy controls (Supplementary Table 7). Of the
differentially abundant pathways, 8 was significantly elevated in
IBS patients. The glycolysis VI (mammalian) represented the most
significantly enriched functional pathway in IBS, which was
dominated by the Bacteroides genus (Fig. 3b). The synthesis of
stearate, androgen, and L-tyrosine were also enhanced in IBS
(Supplementary Fig. 10a, b, and Supplementary Table 7). The most
common pathways enriched in healthy controls included bio-
synthesis of L-lysine (PWY_5097, PWY_2941, PWY_2942, and
PWY_724), and the biosynthesis of isoleucine and threonine
(Supplementary Fig. 10c—e and Supplementary Table 7). Our
functional analysis revealed differential metabolic pathways
between IBS patients and healthy controls, and these observations
may help to explain the great divergence of serum metabolites
between these two groups.

Associations between fecal/serum metabolites and gut
microbiota

The multi-omics nature of our data enables the identification of
dynamic interaction between differentially abundant microbial
and metabolic features in IBS. Positive associations between
microbiota and metabolites might suggest metabolites promote
the growth of certain species or species produce certain
metabolites; while negative associations may suggest competitive
or suppressive relationship. Here we analyzed the association
between species and fecal/serum metabolites. Interestingly, a total
of 522 associations (g < 0.05) between 113 differentially abundant
fecal metabolites and 33 differentially abundant gut bacteria
species were revealed (Fig. 4a); however, the association between
differentially abundant serum metabolites and gut bacteria
showed no statistical difference. These findings suggested that
fecal metabolites, which could directly interact with gut micro-
biota, in comparison serum metabolites are regulated by more
complex and subtle mechanisms. To further confirm potential
mechanistic associations that are perturbed in IBS, we specifically
focused on the subset of associations that were nominally
significant (p-value < 0.05) and changes in the same direction in
healthy controls. This analysis showed that 30% (155 out of 522)
associations could be validated in controls, including 43 associa-
tions involving structurally known metabolites (Supplementary
Table 8). Of 43 associations, 13 out of 33 differentially abundant
species were represented in at least one association. Ruminococ-
cus gnavus associates with eight metabolites and followed by
species Odoribacter splanchnicus and Escherichia coli that associate
with seven metabolites (Supplementary Table 8). In line with IBD,
the over-represented abundance of Ruminococcus gnavus is
elevated in IBS compared with healthy control, and it is negatively
associated with metabolites such as dihydropteroic acid, sebacic
acid, 2-methyl valeric acid, and cortisone. Especially, Ruminococcus
gnavus is strongly associated with dihydropteroic acid (Spear-
man’s r = —0.60), which is an important intermediate product for
folic acid. Folic acid is reported to be relatively low in IBS patients.
Our result demonstrated that the enriched Ruminococcus gnavus
was closely related to the low level of folic acid in IBS. In addition,
Odoribacter splanchnicus and Escherichia coli are also observed to
associate with dihydropteroic acid (Fig. 4b—e, Spearman’s r = 0.41
and —0.35). Our data demonstrated the importance of integrating
gut microbiome and metabolome, as it provides an explaining
framework for IBS pathogenesis and complication, and identifies
microbial and metabolic candidates for further investigation and
application.

SPRINGER NATURE

Microbial and metabolic signatures associated with IBS
depression

To investigate the potential association between multi-omics
signatures and severity of psychological symptoms, especially
depression, we classified samples into four groups: healthy
controls (HC), regular IBS patients without depression (rIBS:
HAMD < 7 and SDS < 53), IBS patients with mild depression (mIBS:
7<HAMD < 17 and SDS = 53) and IBS patients with moderate or
severe depression (sIBS: HAMD = 17 and SDS = 53). By applying
PLS-DA, we revealed enormous differences between healthy
controls and IBS depression groups (including rIBS, sIBS, and
mIBS) (Fig. 5a, b). The serum compositional changes involved 836
and 754 metabolites that altered abundance in mIBS and sIBS,
respectively (Supplementary Table 9). Of them, 693 metabolites
are shared. The significantly increased compounds include
guanine, stearamide, and anandamide. In contrast, we found
fewer differences in fecal metabolome between control and
depression groups (Fig. 5¢, d and Supplementary Table 10). A
similar phenomenon was observed in gut microbiota, and only
37 species showed aberrant alterations (Fig. 5e and Supplemen-
tary Table 11). However, functional analysis revealed a gradually
increasing enrichment of L-tryptophan biosynthesis pathway
across control, rIBS, miIBS, and sIBS groups (Fig. 5f and
Supplementary Table 12).

To identify metabolic and metagenomic features that distin-
guish depressed-IBS from regular subjects, we further make a
comparison among rIBS, miIBS, and sIBS groups. The multi-omics
divergence between rIBS and the depressed group was smaller
than that compared with healthy controls. Notably, the sIBS
patients showed more divergence than mIBS patients (Supple-
mentary Fig. 11 and Supplementary Tables 13—15). Interestingly,
the L-tryptophan biosynthesis pathway was over-represented in
sIBS patient compared with rIBS (Supplementary Table 16). We
also quantified depression-related molecules using a targeted
metabolic profiling. Consistent with the enhanced TRP biosynth-
esis ability in gut microbiota, the TRP intensity also significantly
increased in serum (Fig. 5g). In addition, we also noticed that there
are some other elevated compounds in the depression group
compared with healthy controls, including histamine, tryptamine,
kynurenine (KYN) (Supplementary Fig. 12).

To explore the associations between neuroactive amino acids/
neurotransmitters and gut microbiota, we selected eight repre-
sentative species which have the greatest power to distinguish IBS
patients with depression from healthy controls (Supplementary
Fig. 13a, b) and examined their relationships with these molecular
compounds. A positive association of Roseburia inulinivorans and
histamine was observed in both fecal and serum data (Supple-
mentary Fig. 13c), indicating a promoting role of Roseburia
inulinivorans in the production of histamine. In addition, Roseburia
inulinivorans was associated with melatonin, tryptamine, 3-HAA,
KYN, glutamine, and dopamine in serum, although these
associations are not replicated in feces. Furthermore, the IBS-
enriched species, Clostridium nexile, correlate with a broader range
of metabolite changes, such as NAS, TRP, and 5-HIAA. Taken
together, our data suggested that gut microbiome producing
amino acids and amines, such as TRP, serotonin, and histamine,
could be involved in the synthesis and degeneration of many
neurotransmitters thus affecting the host's mood and psycholo-
gical conditions. The integration of metagenome and metabo-
lome data enables us to connect certain bacteria and associated
metabolic products, providing new clues to understand IBS
depression comorbidity.

Applications of multi-omics features in IBS detection

Currently, IBS is basically diagnosed based on symptoms, lacking
valid biomarkers. We thus explored the performance of using
microbiome and/or metabolites features to distinguish IBS
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Fig. 4 Associations between differentially abundant fecal metabolites and differentially abundant species. By analyzing the fecal
metabolomic and gut metabolomic profiles of 264 IBS and 66 HC from the discovery cohort, we identified 113 differentially abundant fecal
metabolites (including 21 metabolites that were structurally identified) and 33 differentially abundant species. a The heatmap shows the
associations between 33 differentially abundant species and 113 differentially abundant fecal metabolites (including 21 structurally known
metabolites). b The barplot illustrates associations between dihydropteroic acid and 33 differentially abundant species. Each row represents
one differentially abundant species. The left panel shows the absolute values of Spearman’s rank correlation coefficients in the discovery
cohort, while the right panel shows corresponding g values in IBS patients and p-value in healthy controls. c—e Shown are the top 3
differentially abundant species (Ruminococcus gnavus, Odoribacter splanchnicus, and Escherichia coli) and their Spearman’s rank correlation

coefficients with dihydropteroic acid.

patients from healthy controls, and to detect different subtypes.
Here we built RF models using the filtered relative abundance of
microbiome and metabolites features and 10-fold cross-validation
in the discovery and the independent validation cohorts.

Based on fecal microbiome data, the AUCs for IBS detection
were 0.839 [95% confidence interval (Cl): 79.2—88.69] in the
discovery cohort, and 0.639 (95% Cl: 58.93—68.99) in the
validation cohort (Fig. 6a). The AUCs for IBS-D detection were
0.855 (95% Cl: 80.81—90.14) in the discovery cohort, and 0.746
(95% Cl: 70.52—78.6) in the validation cohort (Supplementary
Fig. 14a, b). The same procedure was applied to IBS-C, IBS-M, and
IBS-U, but only the result of IBS-C was shown due to the limited
sample size for IBS-M and IBS-U. Based on fecal metabolome data,
the AUCs for IBS detection were 0.882 (95% Cl: 83.37—92.93) in the
discovery cohort, and 0.709 (95% Cl: 64.33—77.46) in validation set

The ISME Journal (2022) 16:983 - 996

(Fig. 6b). A similar trend could be observed in IBS-D detection,
with an AUC of 0.880 (95% Cl: 82.66—93.29) in the discovery
cohort, and 0.671 (95% Cl: 60.08—74.15) in the validation cohort
(Supplementary Fig. 14c, d). Based on serum metabolome data,
IBS patients were almost perfectly detected from healthy controls
with an AUC of 0.997 (95% Cl: 99.17—100) (Fig. 6¢) in the discovery
cohort, and 0.998 (95% Cl: 99.67—99.95) in the validation cohort.
IBS-D could be superiorly predicted from healthy controls as well,
achieving an AUC of 0.996 (95% Cl: 99.15—100) in the discovery
cohort, and 0.997 (95% Cl: 99.49—99.92) in the validation cohort
(IBS-D =57, control=15) (Supplementary Fig. 14e, f). Similar
trends could be replicated in IBS-C, IBS-M, and IBS-U despite
limited sample numbers. All these supervised learning results
were consistent with our unsupervised PCoA analysis using serum
metabolites (Supplementary Fig. 5¢ and 6c), suggesting that
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Fig. 5 Aberrant metabolomic and metagenomic patterns in IBS patients with and without depression. a, b PLS-DA score plots based on
the serum metabolomic profiles of 259 IBS patients (including 181 rIBS, 62 mIBS, and 16 sIBS) and 66 healthy controls form the discovery
cohort in both positive and negative ionization modes. ¢, d PLS-DA score plots based on fecal metabolomic profiles of 264 IBS patients
(including 185 rIBS, 63 mIBS, and 16 sIBS) and 66 healthy controls form the discovery cohort in both positive and negative ion modes. e
Differentially abundant gut microbiota species among rIBS, mIBS, sIBS, and HC, by using LEfSe to analyze the gut metagenomic profiles of
individuals from the discovery cohort. f The relative abundance of L-tryptophan biosynthesis pathway in rIBS, mIBS, sIBS, and HC. Here the
abundance of TRP production is inferred by analyzing the fecal metagenomic profiles of 264 IBS and 66 HC from the discovery cohort, not yet
measured in situ. g The signal intensity of tryptophan in serum and feces in rIBS, miBS, sIBS, and HC, by analyzing the serum and fecal targeted
metabolic profiles of individuals from the discovery cohort.

serum metabolites represented good predictors to distinguish IBS using microbiota [37]. Here in this study, using fecal microbiota
patients from healthy controls. It was worth noting that the data, the AUC for predicting IBS patients with depression was 0.691
unbalanced sample size among subtypes impaired the efficacy to (95% Cl: 62.31—-75.89) (Fig. 6d). After stratifying IBS patients into
identify subtype-specific microbiome/metabolome features, as rIBS (n = 162), mIBS (n =81) and sIBS (n = 17) subgroups, the AUC
well as their potential to diagnose different subtypes. Therefore, for predicting each subgroup from healthy controls was greater
we only found the mediocre performance of metabolome data than 0.8 (Supplementary Fig. 15a). Specifically, distinguishing rIBS
among inter-subtypes models, such as the IBS-D versus IBS-C from mIBS showed a relatively low AUC of 0.639 (95% Cl: 56.76
(Supplementary Fig. 14e, f). —70.96), indicating mild microbiota shift from rIBS to miIBS

Since IBS is often accompanied by anxiety and depression, there (Supplementary Fig. 15b). Similar trends were observed using fecal
were investigations attempt to differentiate depression status metabolome data (Fig. 6e and Supplementary Fig. 15c, d). Whereas
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Fig. 6 Predicting depression status of IBS patients from multi-omics features. a Receiver operating characteristic curve (ROC) of the RF
model using gut microbiota profiles to classify IBS patients from healthy controls in discovery and validation cohorts. b ROC of the RF model
using the fecal metabolomic profiles to classify IBS patients from healthy controls in discovery and validation cohorts. ¢ ROC of the RF model
using serum metabolome data to classified IBS patients from healthy controls in discovery and validation cohorts. d—f ROC of the RF model
using gut microbiota, fecal metabolomic, and serum metabolomic data, respectively, to train and predict depression status of IBS patients.
AUC value is presented in the format of 95% confident interval. For serum and fecal metabolomic data, only the possibility distributions

derived from untargeted positive ion mode are presented.

based on serum metabolome data, the AUCs for predicting IBS
patients with depression were 0.724 (95% Cl: 65.73—79.07) and
0.691 (95% Cl: 62.24—7593) in positive and negative mode,
respectively (Fig. 6f). All the subgroups including rIBS (n=162),
mIBS (n=81) and sIBS (n=17) could be distinguished from
control, achieving the AUCs of 0.990 and even higher (Supple-
mentary Fig. 15e). These results indicated that metabolome data
may not be good predictors for IBS depressive status, although it
could clearly distinguish IBS patients from healthy controls.

DISCUSSION

This study reported large-scale integrated analysis of microbiome
and fecal/serum metabolome of IBS patients for the first time.
Compared with other diseases’ relationship with microbiome, IBS
patients showed moderate alterations in both gut microbiome
and fecal metabolome compared to that of healthy controls, and
there was no clear separation observed between IBS patients and
healthy controls. Although we did not observe significant changes
in the microbiome of IBS patients, we did notice 23 IBS enriched
species and eight IBS enriched functional pathways. The elevated
glycolysis VI (mammalian) pathway may suggest abnormalities in
energy metabolism involved in IBS; while the elevated synthesis
stearate, androgen, and L-tyrosine pathways may increase the
sensitivity of tyrosine receptor kinase receptors, associating with
adjustment of neuronal transmission strength [38]. The biosynth-
esis of L-lysine represented a functional pathway that enriched in
healthy controls but downregulated in IBS patients, and it was
reported to act as a partial serotonin receptor 4 antagonist and
inhibit serotonin-mediated intestinal pathologies and anxiety [39].
Moreover, tea drinking was observed to be associated with fecal

The ISME Journal (2022) 16:983 - 996

microbiota and metabolites in IBS, which is consistent with a
previous study that tea could have an effect on gut microbiota
[40]. However, more detailed relationship between tea drinking
and IBS still needs further research. In contrast to fecal
microbiome and metabolome, serum metabolites demonstrated
clearly separation of IBS patients from healthy controls. We
observed the serum metabolite THDOC was enriched in healthy
controls and depleted in IBS, and identified negative correlation
between serum level of THDOC with SDS in IBS. This phenomenon
is similar to a previous study that reported reduced serum
concentration of THDOC in women during menstruation epilepsy
with depression [41], suggesting the metabolite may be involved
in the interaction between depression and IBS. In addition, our
data revealed that nearly 50% of the serum metabolites exhibit
significant changes even when adjusting for the linear influence of
dietary habits, and these data might provide important implica-
tions for IBS diagnosis. It is worth noting that we tested the
influence of dietary habits using a linear model. We cannot rule
out non-linear influences as the interactions between diet and
serum metabolome are complicated and not well understood yet.

According to the results, there are certain associations between
metabolic dysregulation and IBS pathogenesis. For example,
guanine represented the most abundant metabolite in IBS
patients. It was proposed that guanine is involved in a specific
guanine-based purinergic system which is able to affect the
development and structure of neural cells in central nervous
system and correlated with memory and anxiety [42]. The largest
IBS-enriched serum metabolite cluster included three fatty acyl-
CoAs (tetradecanoyl-CoA, myristoleoyl-CoA, and lauroyl-CoA),
suggesting the dysregulation of fatty acid profile may involve in
IBS and depression [16, 43]. Chua et al. showed omega-3
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polyunsaturated fatty acids deficiency in IBS which was ascribed
to substantial effects on the nervous systems. Clarke et al. [44]
suggested omega-3 supplementation may be a putative treat-
ment for IBS. Previously, a population-based cross-sectional study
in IBS had found it was positively correlated to metabolic
syndrome [45], reinforcing the metabolic dysregulation in IBS. In
addition, we found gut microbiota species associated with
dihydropteroic acid, which is an intermediate product for folic
acid. As 11 out of 33 differentially abundant species are associated
with dihydropteroic acid, there is a possibility that IBS-featuring
microbiome could affect disease by modulating the metabolism of
folic acid. However, it is only an inference based on data analyzing,
and not yet measured in cohort study. Further studies are needed
to confirm the potential relationship and biological mechanism
between these species, folic acid, and the pathogenesis of IBS.

Our results suggested a correlation between TRP/serotonin
metabolism and IBS depression comorbidity. The irregularity of
TRP in serum was noticed in IBS-D [46], but its role in IBS-relevant
depression and associated gut microbiome alterations remains
elusive. We identified certain gut bacteria strains such as
Clostridium nexile and Roseburia inulinivorans enriched in IBS
patients with depression, and associated with neuroactive TRP
metabolites alterations in serum. Clostridium nexile could produce
neurotransmitter tryptamine, and some other Clostridium species,
such as C. diffcile, have been reported to increase in patients with
major depressive disorder [47, 48]. Functional analysis indicated
the abundance of L-tryptophan pathway was elevated along with
the severity of depression. We also noticed that there are some
other elevated compounds in the depression group compared
with healthy controls, including kynurenine (KYN), tryptamine, and
histamine. Although more than 90% of the body’s serotonin is
produced in the gut by enterochromaffin cells under the influence
of the gut microbiota, peripheral serotonin does not cross the
blood-brain barrier under physiological conditions. The neuro-
transmitter serotonin is produced locally in the brain through the
enzyme TRP hydroxylase 2 (TpH2). However, it is worth noting that
certain gut bacteria strains can directly regulate TRP utilization
consequently changing its availability to the host, impacting
serotonin levels not only in the periphery but also in the brain. It is
widely accepted that there are three major TRP metabolism
pathways in the gut, leading to serotonin, KYN, and indole
derivatives, respectively. In the case of KYN-producing pathway
overactivation, TRP is massively diverted to KYN production,
causing a deficiency in brain TRP and in neurotransmitter
serotonin production, subsequently leading to depression. Exten-
sive KYN across the blood-brain barrier is also considered critical
to central nervous system disorders. Such cases have been
reported in several diseases. For example, in a study regarding
depression in obesity [49], the authors reported a condition
characterized by chronic inflammation and KYN activation that
contributed to depression. In a study of autistic children [50], it
demonstrated abnormal TRP characterized by preferential trans-
formation from TRP to kynurenic acid. Our finding that KYN was
elevated in the depression group compared with healthy controls
further supports the overactivation of KYN-producing pathway,
suggesting that gut microbiota may indirectly affect central
serotoninergic pathways by modulating TRP availability.

We acknowledged some limitations here in this study. Firstly,
we did not set a strategy of matching patient number among
subtypes of IBS when doing subject recruitment. Analytical results
displayed a certain bias due to the vast predominance of IBS-D in
the discovery cohort, thus impaired the possibility to identify
subtype-specific microbiome and metabolome characteristics,
especially for IBS-M and IBS-U. A more balanced sample size
among subtypes is needed for subtype-specific feature identifica-
tion. Secondly, most differentially abundant species identified in
the discovery cohort only trended in the same direction but did
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not achieve significance in the validation cohort. Considering that
gut microbiota is affected by multiple factors, and that both the
discovery and validation cohort represented combinations of
different IBS subtypes and included high heterogeneity, the
different fecal traits during diarrhea and constipation would
probably affect the robustness of IBS related microbiota features
and impair their application in disease classification. In compar-
ison, serum metabolome showed more stable IBS specific
characteristics in both the discovery and validation cohort, thus
have great power to discriminate IBS patients from healthy
controls. Larger cohort would help to better characterize the
complicated gut microbiome alterations. Thirdly, our results
suggested a correlation between TRP/serotonin metabolism and
IBS depression comorbidity. We proposed a hypothesis that gut
microbiota of IBS patients with depression might favor TRP/
serotonin metabolism along the KYN-producing pathway thus
affecting the TRP availability and serotonin levels in the brain.
However, this is only an inference based on literature. Considering
that the TRP/serotonin mediated gut-brain cross-talk is complex
and remains poorly understood, extensive investigations based on
in vitro and in vivo models are needed to uncover the exact
mechanism.

Finally, IBS is a collection of gastrointestinal syndromes with no
clear pathogenesis observed in certain organs. The partially
understood pathophysiology, and consequently the absence of
universally accepted biomarkers, severely limited efficient diag-
nosis and therapeutic approaches. Our multi-omics study revealed
IBS specific serum/fecal metabolome alterations and their relation-
ship with gut microbiome, highlighted the massive alterations of
serum metabolites which empower to recognize IBS patients,
suggested potential roles of metabolic dysregulation of fatty acids
and folic acid in IBS pathogenesis, and offered new clues to
understand IBS depression comorbidity. Our study provided a
valuable resource for future studies to understand host-gut
microbiota relationships in IBS, and would facilitate potential
clinical applications of IBS featured microbiota and (or)
metabolites.
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