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ABSTRACT: Compounds MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ,
and TBZ-PXZ were conveniently synthesized, and they were found to exhibit
TADF properties with lifetimes of 857, 575, 561, 768, and 600 ns, respectively.
These short lifetimes of the compounds might be due to the combination of
small singlet−triplet splitting energy (ΔEST) and benzoate group, which could be
an efficient strategy for the further design of short-lifetime TADF materials.

■ INTRODUCTION
Since the first report of pure organic thermally activated
delayed fluorescence (TADF) emitter,1 TADF materials have
aroused increasing interest, and thus have also become the
third-generation organic luminescent materials2,3 after fluo-
rescent4−6 and phosphorescent materials.7 As the third-
generation organic luminescent material, TADF is a special
radiative transition via reverse intersystem crossing (RISC) of
excitons from the lowest triplet (T1)

8−10 to the lowest singlet
(S1) state,11 and thus obtain a high theoretical quantum yield
of 100%.12,13 Generally, TADF molecules are designed by
introducing a twisted angle between acceptor14 and donor
moieties15,16 to avoid the overlap between the lowest
unoccupied molecular orbital (LUMO)17 and the highest
occupied molecular orbital (HOMO).18 So far, various
electron-accepting moieties have been applied as receptors
for the design and construction of TADF molecules.19

However, benzoate groups have rarely been used as receptors
to study their TADF property.
The delayed lifetime of TADF materials is in the range of

hundreds of microseconds as a result of their endothermic
RISC process.20 Most of TADF materials reveal a long delayed
fluorescent lifetime,21,22 which leads to enhancement of the
triplet-related nonradiative process,23−26 such as triplet−triplet
annihilate (TTA), triplet-polaron annihilate (TPA), and severe
efficiency roll-off at a high current density.
Herein, we report a novel kind of organic luminescent

materials MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ,
and TBZ-PXZ (Figure 1) containing a benzoate group and a
phenoxazine subunit, which not only showed TADF property

in films but also exhibited a shorter lifetime. Especially, short-
lifetime thermally activated delayed fluorescence materials
would be used as promising luminescent materials for organic
light-emitting diodes.

■ RESULTS AND DISCUSSION
Synthesis and Characterization. The synthetic routes of

compound MBZ-oPXZ are shown in Scheme 1. Compound
MBZ-oPXZ was conveniently synthesized in good yields by
palladium-catalyzed cross-coupling reactions of methyl 2-
bromobenzoate with phenoxazine, respectively. Similar syn-
thetic steps were followed for other compounds. The
compounds MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-
PXZ, and TBZ-PXZ could be easily synthesized in good yield.
Their structures were confirmed by 1H NMR, 13C NMR, and
HRMS spectra.

Photophysical Properties. The UV−vis absorption
spectra of MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-
PXZ, and TBZ-PXZ in tetrahydrofuran are shown in Figure
2a. Owing to their similar structures, the absorption bands of
the five compounds are similar. These compounds showed
broad absorption bands 317 and 324 nm, which were assigned
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to π−π* transitions. Their absorption band range of 396 nm
can be assigned to the strong intermolecular charge transfer
(ICT) between the phenoxazine donor moieties and the
benzoate acceptor group. As shown in Figure 2b, we can
achieve color regulation by regulating the strength of ICT
transition. The maximum fluorescence emission peaks are red-
shifted with an increase of the donor’s electron-donating
ability, and are 498 and 536 nm for MBZ-mPXZ and MBZ-
2PXZ, respectively. In addition, TADF materials with the same
donor and different acceptors were studied. When the
acceptors were methyl benzoate, ethyl benzoate, and tert-
butyl benzoate, their fluorescence emission showed similar
properties. The fluorescence peaks of MBZ-oPXZ, EBZ-PXZ,
and TBZ-PXZ were centered at 510, 510, and 509 nm in films,
respectively. Absolute PLQYs of MBZ-mPXZ, MBZ-2PXZ,
MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ in films were 62.55,
54.69, 74.69, 59.42, and 78.74%, respectively. The chromatic
coordinates of these luminescent compounds have also been
studied. For MBZ-mPXZ and MBZ-2PXZ, their fluorescence
CIE coordinates were found to be at (0.22, 0.44) and (0.37,
0.58), respectively. Simultaneously, the fluorescence CIE
coordinates of MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ were
at (0.26, 0.50), (0.27, 0.50), and (0.26, 0.51), respectively.
The transient PL spectra of MBZ-mPXZ, MBZ-2PXZ,

MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ in films were further
conducted to determine whether the triplet excited states were
involved in the delayed luminescence. As shown in Figure 3, it
was found that the DF lifetimes of MBZ-mPXZ, MBZ-2PXZ,
MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ in neat films at room
temperature were 857, 575, 561, 768, and 600 ns, respectively.
It was found that these compounds displayed a distinctive
microsecond-scaled delayed relaxation at room temperature,
which implied the TADF properties of the emitters.

Single-Crystal Analyses. To obtain more insights into the
TADF property of molecular conformations and the crystal
packing of MBZ-mPXZ and MBZ-oPXZ, their single-crystal
structures were obtained. These single-crystal structures were
grown from dichloromethane/petroleum ether by slow solvent
evaporation. As illustrated in Figure 4, the emitter adopted a
highly twisted conformation with dihedral angles between the
benzoate group and phenoxazine subunit in MBZ-oPXZ of
86.75°. Similarly, the dihedral angle between the donor and the
acceptor of MBZ-mPXZ is 77.34°. The nearly vertical donor−
acceptor linkage is conductive to the efficient separation of the
HOMO/LUMO and low electronic coupling, leading to small
ΔEST and subsequently efficient TADF property.27 Besides, the
crystal packing of MBZ-mPXZ and MBZ-oPXZ was also
investigated. As shown in Figures S1 and S2, Supporting
Information, we also found that compared with MBZ-mPXZ,
MBZ-oPXZ showed molecular packing in a compact pattern
because of the more twisted conformation. Moreover, MBZ-
oPXZ and MBZ-mPXZ formed a multiple network structure
due to the C−H···O (2.53−2.635 Å) and C−H···π (2.843−
2.858 Å) intermolecular interactions, which might be powerful
to restrict molecular motions and suppress the nonradiative
decay.

DFT Calculations. The density functional theory (DFT)
calculation for all molecules was performed using GAUSSIAN
09W package.28 All of the molecules were optimized following
the Becke-3−Yang−Parr (B3LYP) functional combined with
the basis set of def2-SVP (Ahlrich split-valence basis set with
polarization functions on heavy atoms). Note that the
dispersion corrections for the nonbonding vdW interaction
were carried out through the Grimme approach using atom
pair-wise additive schemes, the so-called DFT-D3 method.
Finally, the excited states of all optimized structures were
further investigated at the accuracy level of wB97XD/TZVP.

Figure 1. Structures of MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ.

Scheme 1. Synthesis of the MBZ-mPXZ Compound
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The optimized geometry and the electron density distribution
of MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ, and

TBZ-PXZ were investigated by density functional theory
calculations (Figure 5). Five compounds all showed the
separated HOMO and LUMO distributions on their optimized
geometries. The HOMOs are predominantly located on the
electron-donating phenoxazine subunit, whereas the LUMOs
are distributed over the electron-withdrawing benzoate group.
The frontier molecular orbital of MBZ-mPXZ, MBZ-2PXZ,
MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ showed small overlap
mainly on the donor and acceptor units, resulting in the
appreciable ΔEST values, evidenced by the calculated ΔEST
values of 0.0717, 0.0143, 0.0222, 0.0497, and 0.0570 eV,
respectively. Small ΔEST values led to the high efficiency of the
RISC, which could induce the TADF capability.

■ CONCLUSIONS
In conclusion, we have conveniently synthesized compounds
MBZ-mPXZ, MBZ-2PXZ, MBZ-oPXZ, EBZ-PXZ, and TBZ-
PXZ and found that they exhibited TADF properties with
lifetimes of 857, 575, 561, 768, and 600 ns, respectively. By
connecting the donor group with the benzoate unit, we
achieved effective separation between HOMO and LUMO.
The negligible overlap between HOMO and LUMO enables
its CT character and a small ΔEST. The small ΔEST facilitates
fast RISC process and reduces the delayed fluorescence
lifetime. Their short lifetime might be due to the combination
of small ΔEST and benzoate group, which may provide a new
way and an efficient strategy for the further design of short-
lifetime TADF materials.

■ EXPERIMENTAL SECTION
Synthesis of MBZ-mPXZ. A mixture of Pd(OAc)2 (44 mg,

0.2 mmol), Cs2CO3 (977 mg, 3.0 mmol), (t-Bu)3PHBF4 (88
mg, 0.3 mmol), methyl 3-bromobenzoate (677 mg, 2.7 mmol),
and 10H-phenoxazine (458 mg, 2.5 mmol) in toluene (20 mL)

Figure 2. (a) Absorption spectra of MBZ-mPXZ, MBZ-2PXZ, MBZ-
oPXZ, EBZ-PXZ, and TBZ-PXZ in tetrahydrofuran at room
temperature. (b) Fluorescence spectra of MBZ-mPXZ, MBZ-2PXZ,
MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ in neat films at room
temperature. (c) CIE coordinates of the PL (CIE 1931 Chromaticity
Coordinate Calculation).

Figure 3. Transient decay spectra of MBZ-mPXZ, MBZ-2PXZ,
MBZ-oPXZ, EBZ-PXZ, and TBZ-PXZ in a neat film at room
temperature.

Figure 4. Crystal structures of (a) MBZ-oPXZ and (b) MBZ-mPXZ.
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was refluxed under N2 for 48 h. After cooling to room
temperature, the reaction mixture was filtered and the residue
was purified by column chromatography on silica gel to give a
yellow powder (682 mg, yield 86%). Mp: 143−144 °C. 1H
NMR (400 MHz, CDCl3) δ 8.16 (d, J = 7.6 Hz, 1H), 8.05 (s,
1H), 7.68 (t, J = 7.8 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 6.77−
6.63 (m, 4H), 6.59 (dd, J = 10.8, 4.1 Hz, 2H), 5.86 (d, J = 7.6
Hz, 2H), 3.93 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 166.09
(s), 143.93 (s), 139.37 (s), 135.86 (s), 134.04 (s), 133.42 (s),
132.39 (s), 131.28 (s), 129.70 (s), 123.29 (s), 121.64 (s),
115.61 (s), 113.23 (s), 77.37 (s), 77.05 (s), 76.73 (s), 52.42
(s). HRMS (APCI) m/z: [M + H]+ calcd for C20H15NO3,
317.1052; found, 318.1112.

Synthesis of MBZ-2PXZ. A mixture of Pd(OAc)2 (44 mg,
0.2 mmol), Cs2CO3 (977 mg, 3.0 mmol), (t-Bu)3PHBF4 (88
mg, 0.3 mmol), methyl 2,4-dibromobenzoate (292 mg, 1.0
mmol), and 10H-phenoxazine (366 mg, 2.0 mmol) in toluene
(20 mL) was refluxed under N2 for 48 h. After cooling to room
temperature, the reaction mixture was filtered and the residue
was purified by column chromatography on silica gel to give a
yellow powder (697 mg, yield 70%). Mp: 210−211 °C. 1H
NMR (400 MHz, CDCl3) δ 8.35 (d, J = 8.3 Hz, 1H), 7.59 (d, J
= 8.2 Hz, 1H), 7.47 (s, 1H), 6.84−6.44 (m, 12H), 6.07 (d, J =
7.5 Hz, 2H), 5.89 (d, J = 7.4 Hz, 2H), 3.76 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 165.17 (s), 145.37 (s), 144.23 (s),
143.90 (s), 141.38 (s), 135.64 (d, J = 6.7 Hz), 133.64 (s),
133.28 (s), 131.67 (s), 131.12 (s), 123.36 (d, J = 13.2 Hz),
122.34 (s), 121.71 (s), 116.04 (s), 115.71 (s), 113.46 (s),
112.81 (s), 77.38 (s), 77.06 (s), 76.74 (s), 52.81 (s). HRMS
(APCI) m/z: [M + H]+ calcd for C32H22N2O4, 498.1580;
found, 499.1644.

Synthesis of MBZ-oPXZ. A mixture of Pd(OAc)2 (44 mg,
0.2 mmol), Cs2CO3 (977 mg, 3.0 mmol), (t-Bu)3PHBF4 (88
mg, 0.3 mmol), methyl 2-bromobenzoate (677 mg, 2.7 mmol),
and 10H-phenoxazine (458 mg, 2.5 mmol) in toluene (20 mL)
was refluxed under N2 for 48 h. After cooling to room
temperature, the reaction mixture was filtered and the residue
was purified by column chromatography on silica gel to give a
yellow powder (658 mg, yield 83%). Mp: 115−116 °C. 1H
NMR (400 MHz, CDCl3) δ 8.15 (d, J = 7.7 Hz, 1H), 7.75 (m,
J = 10.7, 4.5 Hz, 2H), 7.56 (t, J = 7.6 Hz, 2H), 7.41 (d, J = 7.7
Hz, 1H), 6.72 − 6.65 (m, 3H), 6.62 (m, J = 10.6, 4.4 Hz, 3H),
6.56 (m, J = 10.8, 4.4 Hz, 3H), 5.78 (d, J = 7.7 Hz, 3H), 3.71
(s, 4H). 13C NMR (101 MHz, CDCl3) δ 165.80 (s), 143.86
(s), 138.53 (s), 134.71 (s), 134.08 (s), 133.35 (s), 133.14 (s),
131.64 (s), 128.88 (s), 123.20 (s), 121.26 (s), 115.42 (s),
112.90 (s), 77.38 (s), 77.07 (s), 76.75 (s), 52.57 (s). HRMS
(APCI) m/z: [M + H]+ calcd for C20H15NO3, 317.1052;
found, 318.1107.

Synthesis of EBZ-PXZ. A mixture of Pd(OAc)2 (44 mg,
0.2 mmol), Cs2CO3 (977 mg, 3.0 mmol), (t-Bu)3PHBF4 (88
mg, 0.3 mmol), ethyl 2-bromobenzoate (616 mg, 2.7 mmol),
and 10H-phenoxazine (458 mg, 2.5 mmol) in toluene (20 mL)
was refluxed under N2 for 48 h. After cooling to room
temperature, the reaction mixture was filtered and the residue
was purified by column chromatography on silica gel to give a
yellow powder (679 mg, yield 82%). Mp: 98−99 °C. 1H NMR
(400 MHz, CDCl3) δ 8.18 (d, J = 7.7 Hz, 1H), 7.75 (t, J = 7.6
Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 7.7 Hz, 1H),
6.60 (m, J = 22.3, 18.2, 7.5 Hz, 6H), 5.77 (d, J = 7.7 Hz, 2H),
4.15 (q, J = 7.0 Hz, 2H), 1.05 (t, J = 7.0 Hz, 3H). 13C NMR
(101 MHz, CDCl3) δ 165.71 (s), 143.75 (s), 137.92 (s),
134.70 (s), 134.20 (s), 133.28 (d, J = 10.4 Hz), 132.21 (s),
128.95 (s), 123.22 (s), 121.15 (s), 115.34 (s), 112.78 (s),
77.37 (s), 77.06 (s), 76.74 (s), 61.60 (s), 13.59 (s). HRMS
(APCI): m/z calcd for C21H17NO3 [M + H]+ 331.1208, found
332.1270.

Synthesis of TBZ-PXZ. A mixture of Pd(OAc)2 (44 mg,
0.2 mmol), Cs2CO3 (977 mg, 3.0 mmol), (t-Bu)3PHBF4 (88
mg, 0.3 mmol), tert-butyl 2-bromobenzoate (691 mg, 2.7
mmol), and 10H-phenoxazine (458 mg, 2.5 mmol) in toluene
(20 mL) was refluxed under N2 for 48 h. After cooling to room
temperature, the reaction mixture was filtered and the residue
was purified by column chromatography on silica gel to give a
yellow powder (673 mg, yield 75%). Mp: 103−104 °C. 1H
NMR (400 MHz, CDCl3) δ 8.07 (d, J = 7.6 Hz, 1H), 7.70 (t, J
= 6.9 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 7.7 Hz,
1H), 6.69−6.53 (m, 6H), 5.79 (d, J = 7.5 Hz, 2H), 1.24 (s,
9H). 13C NMR (101 MHz, CDCl3) δ 165.47 (s), 143.69 (s),
136.75 (s), 134.42 (s), 134.21 (s), 132.82 (s), 132.57 (s),
128.92 (s), 123.31 (s), 121.08 (s), 115.28 (s), 112.76 (s),
82.28 (s), 77.37 (s), 77.05 (s), 76.73 (s), 27.57 (s). HRMS
(APCI): m/z calcd for C23H21NO3 [M + H]+ 359.1521, found
360.1570.
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General information, X-ray crystallographic data, sym-
bolic Z-matrix, and 1H NMR and 13C NMR spectra
(Figures S1−S12) and crystal data and structure

Figure 5. Calculated spatial distributions of the HOMO and LUMO
energy densities of (a) MBZ-mPXZ, (b) MBZ-2PXZ, (c) MBZ-
oPXZ, (d) EBZ-PXZ, and (e) TBZ-PXZ.
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refinement for MBZ-oPXZ and MBZ-mPXZ (Tables S1
and S2) (PDF)
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