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Abstract: Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin
increases insulin sensitivity and has cardio and vascular protection actions. Studies related to
adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this
molecule in asthma. Studies based on various asthma animal models and on the key cells involved
in the allergic response have provided important insights about this relation. Some of them indicated
protection and others reversed the balance towards negative effects. Many of them described the
cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention
or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still
need to be provided. In this article, we will, briefly, present the general actions of adiponectin and
the epidemiological studies supporting the relation with asthma. The main focus of the current
review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From
this perspective, we will provide arguments for and against the positive influence of this molecule in
asthma, also indicating the controversies and sketching out the potential directions of research to
complete the picture.

Keywords: adiponectin; asthma; obesity; eosinophilic inflammation; neutrophilic inflammation;
macrophages

1. Introduction

Asthma is a clinical diagnosis that covers a variety of phenotypes and endotypes.
In the continuous effort towards personalized medicine, remarkable progress has been
made to characterize the specific pathobiological marker or mechanism which best defines
specific endotypes.

The association between obesity and some difficult to treat forms of asthma raised the
possibility of low-grade inflammation, impaired metabolism and dysfunctional adipose
tissue secretion as pathogenic mechanisms. The link between disturbed metabolism and
inflammation is substantiated by the considerable participation of lipids in the immune
reaction in the lung, as components of the immune cell membranes, of proinflammatory
eicosanoids and of anti-inflammatory molecules (resolvins and lipoxins) [1].

Adipocytes have a large secretion panel including molecules with dual function in
metabolism and in the modulation of inflammation. An excess of adipose tissue has
deleterious effects as hyperinsulinemia, which increases airway hyperreactivity, shifts T
lymphocytes to the Th2-type response and promotes mast cell degranulation and airway
remodeling [1].
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Among the numerous molecules secreted by adipocytes, adiponectin (ADPN) is
associated with the healthy obese phenotype. ADPN increases sensitivity to insulin, has
cardio and vascular protection actions and modulates immune responses. Studies related
to ADPN in asthma are far fewer than those dedicated to diabetes or cardiovascular or
renal diseases, but this “versatile player of the innate immunity” [2] has shown a beneficial
role in this pathology. In the current review, we will evaluate this possibility by examining
pro and con arguments.

2. General Considerations

ADPN is the most abundant adipokine secreted by adipose tissue, described for the
first time in 1995, by Scherer et al. [3]. Based on the structural resemblance to complement
factor C1q, it was initially named “adipocyte complement-related protein of 30 kDa” [3]. Struc-
tural similarities with collagens (VIII and X) and tumor necrosis factor alpha (TNFα) were
consequently discovered.

The current name reflects its origin (adipo from the Latin adipous) and its capac-
ity for binding (Latin, necto) among its monomers and to a variety of other chemical
compounds [4]. The human ADPN molecule consists of 244 amino acids and has four
regions: an amino-terminal sequence, a short hypervariable region, a globular domain and
a collagen-like domain [5].

Transcription of the ADPN gene is upregulated by several adipogenic transcription
factors such as nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ),
CCAAT/enhancer-binding protein (C/EBP)-α and -β, forkhead box O1 protein (FOXO1),
sirtuin 1 (SIRT1) and SP1 transcription factor (Sp1) [6]. Post-translational modifications
take place in the adipocyte cytoplasm to facilitate the tri- and hexamerization of the
monomers and, further on, its functionality. Monomers assemble into trimers (which
correspond to the low molecular weight (LMW) forms), hexamers (which correspond to
the medium molecular weight (MMW) forms) and complex, high-order (12–18) multimers
(which correspond to the high molecular weight (HMW) forms) [5].

The excretion of ADPN relies on its binding to internal chaperones, mainly to en-
doplasmic reticulum p44 (Erp44). Through their binding to Erp44, the ADPN oligomers
are retained inside the endoplasmic reticulum. Endoplasmic reticulum oxidoreductin 1
(Ero1) competes the ADPN–Erp44 binding and maintains the secretion. It has been shown
that the inhibition of SIRT1 and/or activation of PPARγ leads to increased expression of
Ero1-Lα [7]; as these transcription factors are regulated by the nutrition status, it has been
suggested that nutrient intake controls the ADPN secretion.

In the steady state, the ADPN-containing vesicles are located in the trans-Golgi
network and traffic through the Golgi/trans-Golgi network to be exported outside the
cell [8] after insulin [9], cAMP [10] or β3-adrenergic stimulation [11]. It has been shown that
in highly fed mice, who develop obesity, the low level of ADPN is related to a reduction
in the expression of β3-adrenergic receptors on adipose cells and the downregulation of
the exchange protein directly activated by cAMP [12]. Restriction of calories and weight
loss are not able to reverse the secretion [13]. However, it should be mentioned that, in
obese patients, the distribution of the ADPN isoforms in plasma (lower HMW and higher
LMW ADPN) is different from isoforms obtained from cultured cells collected by needle
biopsy of the SAT from the same patients. As HMW forms are generally considered to have
a higher biological activity [14], the extrapolation of experimental cell culture studies to
humans still needs confirmation.

Several inflammatory proteins inhibit the translation and/or secretion of ADPN:
IL-6 [15] and C-reactive protein [16] downregulate mRNA expression and reduce ADPN
secretion in a dose-dependent manner. Endothelin 1 acts in differently: it downregulates
the expression but increases the secretion of ADPN [17].
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3. Physiological Role
3.1. Main Roles of ADPN

ADPN is considered an insulin sensitizer and a regulator of energy homeostasis.
In adipose cells, ADPN increases glucose utilization [18] and fatty acid oxidation [19].

In hepatic cells, ADPN suppresses the production of glucose [20]. The same metabolic
effects have also been observed in muscle cells [21]. Overall, these results explain the
increase in insulin sensitivity.

However, contradictory outcomes have been noticed in skeletal muscle regeneration,
contractility and adaptability; these were extensively reviewed elsewhere [22].

The LMW and MMW forms of ADPN cross the blood–brain barrier and have been
credited as influencing autonomic functions and feeding behavior. It is still under debate
in what direction ADPN influences energy homeostasis; arguments derived from animal
studies showed that ADPN both stimulates [23] and inhibits [24] energy intake and/or
expenditure. Caloric restriction [25,26] has shown a positive effect on ADPN secretion.
Adding the metabolic effects on muscular and adipose tissue [27], the overall conclusion
would be that ADPN increases energy efficiency and conservation.

The role of ADPN in inflammation is tissue specific. In the endothelium and adipose
tissue, ADPN has anti-inflammatory effects [28,29], while in the synovia and intestine, the
end result is a proinflammatory one [30,31].

ADPN polarizes the transformation of peripheral monocytes to anti-inflammatory
(M2) macrophages [32], amplifying the response to IL-4 and mediating the decrease in
proinflammatory molecules such as TNFα and MCP-1 in M1 macrophages [33,34]. These
effects were not reproduced in another study which showed that the effects of ADPN
depend on the polarization of the cell; in M1 macrophages, ADPN triggers the expression
of proinflammatory cytokines (IL-6, TNFα, IL-12), whereas in M2 macrophages it induces
the expression of IL-10 [35,36] and IL-1 receptor antagonist [37]. IL-10 secretion is further
enhanced by ADPN’s effects on regulatory T lymphocytes (Tregs) [38].

A possible explanation for these contradictory effects might be the time-dependency
response of macrophages to the external stimuli. In the first 24 h after stimulation, ADPN
induces the expression of the majority of the M1 macrophage markers (including TNFα
and IL-6) and only of a minority of the M2 markers; the expression of the majority of the
M2 markers is significantly reduced [39] during this period and is followed, after 3 days,
by an increase in Th1 orientation of CD4+ T lymphocytes, associated with a response
in IFNγ mRNA expression. In contrast, prolonged stimulation led to an increase in
macrophage resistance to this stimulus, with a reduction in inflammatory cytokines [40].

3.2. Mechanism of Action

ADPN binds to four types of receptors: AdipoR1, AdipoR2, T-cadherin and calretic-
ulin. AdipoR1 has a wide distribution, including in lung cells. AdipoR2 is present mainly
in hepatic cells. T-cadherin primarily binds the LMW and HMW isoforms of ADPN [41]
and functions as a reservoir for circulating forms in the endothelium and heart [42]. ADPN
also binds to calreticulin to opsonize apoptotic cells on the surface of macrophages and to
facilitate efferocytosis [43].

The intra-cellular signal of ADPN is transmitted through AMP-activated protein ki-
nase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK) and PPARα. The last two
are activated either directly or as part of the AMPK cascade. Binding to AdipoR1 induces
the most significant signal. AdipoR2 has a more reduced effect on the AMPK signaling
path but is able to activate PPARα. The absence of T-cadherin inactivates the AMPK signal
initiated by AdipoR1/R2, reducing apoptosis [44] and the metabolic effects [45].

AMPK is a key regulator of energy, oxidative status and metabolism [46]. Activated
AMPK also phosphorylates proteins involved in autophagy, mitochondrial function and
cell growth [47] and blocks several inflammatory pathways related to IL-1β or TNFα
activation [48]. The secretion of several cytokines (MCP-1, CXCL10 and CXCL1) was also
blocked by ADPN via the AMPK pathway [48].
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The metabolic effects of ADPN might have a role in the immune response. The
differentiation of CD4+ lymphocytes in effector or regulatory subsets is associated with
distinctive changes in the metabolic status: while activated T effectors produce their energy
mainly by anaerobic glycolysis, Tregs are dependent on AMPK fatty acid oxidation [49].

The induction of eNOS and suppression of iNOS mediated by AMPK were also
detected in the lung [50], representing a way to mitigate nitrative stress, as in the arterial
vessels [51–53].

ADPN activates, directly or through the AMPK, the two isoforms of p38 MAPK in
the skeletal muscle [54], in contrast to TNFα, which activates only the p38 α form. This
difference seems to be responsible for their contrasting effects. However, p38 MAPK α

and β have many other protein interactions in the nucleus or cytoplasm, leading to cell
cycle progression, differentiation, chemotactic signals, glycogen synthesis and coactivation
of PPARγ [55]. Subsequently to AMPK/p38 MAPK activation, PPARα is translocated to
the nucleus of the skeletal muscle cells [56], where it regulates the transcription of genes
related to glucose and fatty acid metabolism [57,58].

In PPARα-deficient mice, the inflammation induced by arachidonic acid and leukotriene
B4 (LTB4) is prolonged [59]. LTB4 activates PPARα, while PPARα promotes the intracellular
breakdown of LTB4, reducing the secretion and balancing the inflammation process to-
wards its resolution [60]. The inhibition of PPARα [61] increases the inflammatory response
in macrophages. In contrast, activators of PPARα reduce the cell infiltrate [62] and the
secretion of proinflammatory cytokines [63]. Nevertheless, these effects might be mitigated
by the negative effect of TNFα, IL-1β and IL-6 on PPARα transcription [64]. Furthermore,
PPARα agonists protect against the inhibition of relaxation induced by irritants [65] in the
airway smooth muscle (ASM) and upregulate eNOS [66].

In obese individuals, PPARα is downregulated in peripheral leukocytes [67], thus
limiting the action of ADPN on these cells. However, in the lung of obese and lean rats it
has similar expression levels and only PPARγ was found to be markedly elevated [68].

ADPN shares with PPARγ insulin sensitization [69], the rise in eNOS [70], the polariza-
tion of macrophages towards the M2 phenotype and the suppression of proinflammatory
cytokines [71]. There is evidence that PPARγ regulates ADPN mRNA levels [72] and
the expression of ADPN receptors [73]. The binding of PPARγ to the ADPN promoter
is inhibited by inflammatory cytokines, such as TNFα [74]. PPARγ directly represses
the transcription of ERp44 [75], leading to higher formation and secretion of the HMW
compound. Clinical data support these findings: a meta-analysis showed that ADPN in
patients treated with thiazolidinediones for type 2 diabetes was about 1 standard deviation
higher than in controls [76]. This might be the reason why lobeglitazone, which has the
benefits of activating both PPARα and PPARγ [77], had such extensive effects on asthma
(reduction in inflammatory infiltrate, hyperresponsiveness, mucus secretion).

3.3. Circulating ADPN

In healthy subjects, ADPN accounts for 0.01–0.05% of the total plasma protein; regard-
less of the short half-life, which is approximatively 75 min [78], ADPN is tethered by the
T-cadherin receptor in the blood vessels and possibly cleaved to the LMW form [79] before
it passes into hepatic and renal cells. While the LMW form passes through the glomeruli
and can be detected in the urine of healthy individuals, renal failure reduces the excretion
of ADPN, particularly of the HMW form [80]. The balance between secretion, removal
and excretion gives a normal value of 3–30 mg/L [81]. The values are lower in healthy,
non-obese children and adolescents (median value ranges between 2.5 and 5.2 mg/L) [81]
and higher in women, such as in elderly women [82], during pregnancy [83] and in women
with a central distribution of fat [84,85]. The circulating level is lower during the luteal
phase of the menstrual cycle [86] and in some forms of cancer [87].

High ADPN levels were associated with high N-terminal prohormone of B-type
natriuretic peptide (NT-pro BNP) [88], a distinctive marker of cardiac failure related to
cardiovascular mortality [89], bone loss [90] and sarcopenia [91].
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Among all controversies related to ADPN, there is an overall consensus on the re-
duction in ADPN secretion in obesity. Low levels of circulating ADPN are also associated
with high risk for diabetes [92], cardiovascular disease [93] and chronic kidney disease [94].
A causal relation between ADPN level and the associated diseases was evaluated in a
Mendelian randomization study [95]. This study confirmed that ADPN was associated
with a healthier metabolite profile (low VLDL, high HDL, low small HDL, low TG, mean
particle diameter of VLDL, ApoAI, low TG, low levels of glucose, insulin, lactate and pyru-
vate, free branched amino acids, saturated fatty acids and systemic inflammatory markers,
blood viscosity, higher acetoacetate and high glutamine). However, the Mendelian random-
ization did not show a direct relation between ADPN and any of these metabolic markers.
The only factors which were not rejected by the analysis were inflammatory markers (IL-6
and fibrinogen). The authors considered that the explanation for the observed associations
was either a form of reverse causality or the result of a residual confounding (obesity, for
example).

4. Adiponectin and Asthma
4.1. Epidemiological Studies

A well-designed longitudinal study [96] showed that an ADPN level lower than
7 mg/L predicts asthma in women. Compared to previous studies, this one was much
larger and was not influenced by gender differences in ADPN secretion, and therefore is
frequently considered as a reference.

We reviewed the PubMed database after the publication of this article. Five longitudi-
nal studies and 27 cross-sectional studies were identified (Table 1). Among these studies,
low ADPN was found more frequently [97–102] than high ADPN [103–105] in asthmatics,
but most of the studies did not focus on ADPN, which led to a considerable heterogeneity,
making comparisons very difficult.

Table 1. Association of adiponectin and asthma in epidemiological studies.

Study Type Study Population Directionality of
Asthma—ADPN Relation Main Results

Baltieri, L. et al.,
2018 [106] Longitudinal 80 bariatric surgery patients with

asthma

↑ ADPN parallel to
clinical status

Association with clinical
status and indirect relation

with weight loss

↑ ADPN in parallel with weight loss and clinical
status improvement

No lung function improvement after
1 year of follow-up.

van Huisstede,
A. et al.,

2015 [107]
Longitudinal

27 bariatric surgery patients with
asthma (BS + A) compared with
12 obese with asthma without

bariatric intervention (NBS + A)

In relation
with weight loss

↑ ADPN in BS + A and did not change in NBS + A
after 1 year of follow-up

Sideleva, O.
et al.,

2012 [108]
Longitudinal

11 obese women with asthma and
15 obese women without asthma

bariatric intervention

No association with weight
loss

At baseline:
APDN in visceral fat significantly lower in asthma

After 12 months:
(a) no modification in ADPN expression in SAT
(b) no modification of AdipoR1, AdipoR2 and

T-cadherin expression in bronchial epithelial cells
(c) no significant difference in BAL ADPN

(d) BAL ADPN not correlated with VAT ADPN

Leão da Silva, P.
et al.,

2012 [109]
Longitudinal

84 asthmatic adolescents, follow-up
1 year after a weight loss

intervention

↑ ADPN parallel to clinical
status

Association with clinical
status

↑ ADPN and ADPN/leptin (A/L) ratio and
improved asthma symptoms after moderate (8–14 kg)

and massive (>14 kg) weight loss

Abd El-Kader,
M.S.,

2013 [110]
Longitudinal 80 obese asthmatic children Indirect relation with weight

loss
↑ ADPN in serum after weight loss in obese asthma

(8 weeks of follow-up)

Tsaroucha, A.
2013 [111] Longitudinal

32 stable adult asthmatics,
37 asthmatics during exacerbation,

22 controls

Indirect relation with severity
and exacerbations

↓ ADPN in severe asthma
↓ ADPN during exacerbations

Mikalsen, I.B.
et al.,

2020 [112]

Cross-
sectional 384 adolescents with atopy No association with

sensitization or lung function
No association between ADPN and lung function

and atopic sensitization
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Table 1. Cont.

Study Type Study Population Directionality of
Asthma—ADPN Relation Main Results

Huang, F. et al.,
2017 [113]

Cross-
sectional

28 obese adolescents with asthma,
46 obese adolescents without asthma,
58 normal-weight adolescents with

asthma and 63 healthy controls

Lower levels in obesity but no
relation with lung function in

asthmatics

↓ HMW ADPN in obese subjects than the
normal-weight subjects with or without asthma

HMW ADPN not correlated with ↓ FEV1/FVC ratio

Grotta, M.B.
et al.,

2013 [114]

Cross-
sectional

16 asthmatic obese,
16 asthmatic non-obese,
5 non-asthmatic obese,

5 non-asthmatic non-obese

No differences in asthma and
in obesity

Levels of ADPN did not significantly differ among
these groups

Song, W.J. et al.,
2012 [115]

Cross-
sectional

994 participants from the general
population, age ≥65 y No association with asthma No association between asthma and serum ADPN

levels

Barton, J.H.
et al, 2016 [97]

Cross-
sectional

HIV patients, 33 with asthma and 23
with COPD

Lower level in asthma
compared to COPD ↓ ADPN in asthma vs. COPD

Lu, Y. et al.,
2016 [98] Case–control 79 asthma versus

69 controls Lower ADPN in asthma
↓ ADPN in asthma

No direct interaction with BMI was checked, but the
group with asthma had higher BMI

Capelo, A.V.
et al.,

2006 [99]

Cross-
sectional 83 asthma patients, women Indirect relation with BMI in

asthmatics
ADPN serum level inversely associated with BMI

and SAT

Magrone, T.
et al.,

2014 [100]

Cross-
sectional

80 children:
17 non-asthmatics and non-obese,

19 obese,
28 obese asthmatics and
16 non-obese asthmatics

Lower ADPN in obese
asthmatics

↓ ADPN in serum in asthmatic obese compared to
non-obese asthmatics and controls

Aydin, M. et al.,
2013 [101] Case–control 45 asthmatic vs.

30 healthy controls Lower ADPN in asthma ↓ ADPN levels lower in asthma patients compared to
controls

Jensen, M.E.
et al.,

2013 [102]
Case–control

361 particpants:
74 obese asthma,

249 non-obese asthma, 9 obese
control,

29 non-obese control children

Lower ADPN in obese
asthmatics

↓ ADPN in obese asthma versus non-obese controls
No difference in ADPN

between obese and non-obese asthma

Carpio, C. et al.,
2016 [103] Case–control

25 asthma, 23 dyspnea perceived by
patients as asthma (misdiagnosed),

27 controls
No significant relation

Higher (but not significantly) ADPN in asthma
compared to control and misdiagnosed

(self-reported) asthma

Ozde, C. et al.,
2015 [104] Case–control 68 non-obese asthma children and

39 controls Higher ADPN in asthmatics ↑ ADPN in asthma compared to controls, associated
with higher epicardial adipose tissue

Lu, Y. et al.,
2015 [105] Case–control 70 asthmatics and

69 controls Higher ADPN in asthmatics

↑ ADPN in asthma (both obese and non-obese
groups comparison)

A positive association with asthma prevalence was
observed for medium and high tertiles of ADPN

Matsumoto, Y.
et al., 2013 [116]

Cross-
sectional

79 young adults
(14 asthmatics/

62 non-asthmatics), non-smokers

Lower HMW and LMW
ADPN in asthmatics

↓MMW and LMW ADPN in asthmatics
Differences in HMW ADPN were not significant

Multivariate regression analysis of the MMW and
LMW ADPN levels, asthma was found to be more
significantly associated with the LMW ADPN level

than age, waist circumference or HDL-C

Hayashikawa,
Y. et al.,

2015 [117]
Case–control 61 asthmatics versus 175 controls Higher LMW ADPN and

lower MMW in asthmatics

Significantly ↑ LMW ADPN level and significantly ↓
MMW /total ADPN in asthmatics vs. controls after
adjustments for confounding factors in both sexes

Ma, C. et al.,
2019 [118]

Cross-
sectional 122 children with asthma Lower ADPN in severe

asthma
↓ ADPN in severe asthma

Asthma severity was positively correlated with BMI

Ceylan, E. et al.,
2019 [119] Case–control

120 asthmatic patients (47 with
comorbidities and 73 without

comorbidities)
+ 35 healthy controls

No association
No difference in ADPN in asthmatic and controls

No difference in ADPN in asthmatics with or without
comorbidities

Kalmarzi, R.
et al., 2017 [120]

Cross-
sectional 90 asthmatic women

Leptin/ADPN levels
correlated positively with

asthma severity

(a) No correlation between ADPN level with asthma
severity and BMI

(b) Serum leptin and leptin/ADPN levels correlated
positively with asthma severity and BMI and

correlated inversly with FEV1 and FVC

Zhang, X. et al.,
2018 [121]

Cross-
sectional 108 asthmatic patients No relation with obesity and

asthma control
No relation between ADPN, obesity and asthma

control

Ballantyne, D.
et al., 2016 [122] Case–control 96 asthmatics and

46 controls
High resistin:ADPN ratio
associated with severity

↑ Resistin:ADPN ratio in asthma and in severe vs.
mild-to-moderate asthma

Ding, Y. et al.,
2015 [123] Case–control 120 asthmatics and

120 controls, adults
Low ADPN during

exacerbations

↓ ADPN in acute exacerbation
A positive association between the rs1501299 SNP of

the ADIPOQ gene and acute exacerbation
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Table 1. Cont.

Study Type Study Population Directionality of
Asthma—ADPN Relation Main Results

de Lima
Azambuja, R.

et al., 2015 [124]

Cross-
sectional

75 asthmatic patients (25 in each BMI
category)

Lower ADPN with increased
BMI in asthmatics

Indirect association of ADPN
and lung function

↓ ADPN serum level with increase in BMI
Higher ADPN levels associated with lower FEV1 and

FVC

Dogru, M. et al.,
2015 [125]

Cross
sectional

82 non-obese asthmatic children and
28 controls

Lower ADPN in uncontrolled
asthma

ADPN levels in non-obese asthmatics were not
different from controls

↓ ADPN associated with uncontrolled asthma

Newson, R.B.
et al., 2014 [126]

Cross-
sectional

1370 patients: 532 with asthma only,
522 with chronic rhinosinusitis only,

316 with asthma and chronic
sinusitis and 585 controls

Leptin/ADPN ratio
positively associated with the

severity of asthma

Leptin/ADPN ratio positively associated with the
severity of asthma, especially in females

Biagioni, B.J.
et al., 2014 [127]

Cross-
sectional 19 asthmatic patients

Increase in sputum ADPN
after specific inhalation

challenge with plicatic acid

↑ sputum ADPN after plicatic acid challenge,
particularly in non-obese

Sood, A. et al.,
2014 [128] Case–control 44 asthmatics and

44 controls
Inverse relation of sputum

ADPN with asthma

(a) Sputum total ADPN was not correlated with
serum ADPN or BMI

(b) ↓ Sputum total ADPN among asthmatics than
controls

(c) ↑ Sputum total ADPN associated with ↓ odds for
asthma, even after adjustment for systemic adiposity

measures including serum ADPN

Dorevitch, S.
et al., 2013 [129]

Cross-
sectional

350 non-smoking adults and
children

Direct relation with the total
antioxidant capacity in

exhaled breath

ADPN associated with total antioxidant capacity in
exhaled breath

ADPN = adiponectin; BS + A = bariatric surgery patients with asthma; NBS + A = non-bariatric surgery patients with asthma;
BAL = broncho-alveolar lavage; VAT = visceral adipose tissue; SAT = subcutaneous adipose tissue; LMW ADPN = low molecular
weight adiponectin; HMW adiponectin = high molecular weight adiponectin; MMW ADPN = medium molecular weight adiponectin;
HDL-C = high-density lipoprotein cholesterol; FEV1 = forced expiratory volume in the first second; FVC = forced vital capacity;
BMI = body mass index. ↑= increase level; ↓= decrease level.

Some reports found no association at all with asthma prevalence, for example, in the
elderly population [115]. In asthmatics, there was also a lack of association between ADPN
and atopy [106], lung function [106,113] or obesity [114].

The longitudinal studies followed morbidly obese patients undergoing bariatric
surgery, or the evolution and exacerbations of asthma. The first group of studies has
the disadvantage of interfering with the overall effect of weight loss on the evolution of
ADPN secretion. Two bariatric patient studies [106,107] showed a favorable effect of weight
loss on the recovery of the serum levels of the ADPN after 12 months, which was also
found in the general population, after weight loss [110]. In a population of adolescent
asthmatics, 1 year of follow-up, after weight reduction, showed an improvement of the
ADPN/leptin only in those with moderate or massive weight loss [109].

The cross-sectional studies also revealed some controversial results, from low ADPN in
obese asthmatics compared to non-obese asthmatics [100] or in asthmatics, regardless of the
nutritional status [98,101], to high levels of ADPN associated with asthma prevalence [105].
Other studies found no differences between asthmatics and controls [125], or only lower
level of ADPN in obese asthmatics as compared to the non-obese controls [102].

In non-obese patients, asthma was associated with higher levels of serum ADPN as
compared to healthy controls [104]. According to fat localization, the serum ADPN was
inversely associated with BMI and subcutaneous fat [99] and positively associated with
epicardial fat.

The relation of ADPN with exacerbations and the severity of asthma raised another
series of controversies. Low levels during exacerbations [123] or with severity [118,124,126]
were found. In other studies, the broader dysfunction of the adipose tissue was more specif-
ically connected to asthma, as reflected by the relation between ADPN and inflammatory
adipokines, mainly leptin [126] or resistin [122]. Additionally, there were also reports of no
correlation [120,121].

The differences between these findings might be related to age, gender and race-related
variations in ADPN. However, they could also be caused by the ill-defined trajectory of
ADPN from serum to bronchial epithelium and lung cells, resident or migrated from the
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circulation, involved in immunity defense. In this respect, ADPN serum levels might
not be the ideal biological product to measure in asthmatics. There are at least two types
of arguments for this: one study which recruited young adults, who were non-smokers,
found that low serum LMW ADPN was better related to asthma than two of the metabolic
syndrome components (waist circumference and HDL-cholesterol) [116]. Another study
found that the LMW form was increased, but the MMW/total ADPN was the relevant
marker [117].

We might assume, by analogy with what has been described for the central nervous
system, where only the LMW ADPN passes through the blood–brain barrier, that only this
form migrates inside the lung interstitium and cells and is able to induce its protective
effects. This, for now speculative, mechanism needs to be proven in the future. Another
argument might come from research carried out on sputum ADPN in asthmatics. It
showed [128] that there is no direct correlation between sputum and serum ADPN, on the
one hand, and between sputum ADPN and BMI on the other. Both these findings suggest
local specific concentrations of ADPN in the lung. These authors also identified a lower
level of total sputum ADPN in asthma patients, compared to controls. Complementary to
this, Dorevitch et al. [129] found ADPN to be associated with the total antioxidant capacity
of the lung. Taken together, these findings raise the hypothesis that either a deficient
level or a deficient uptake and/or utilization of ADPN in the lung are the events most
probably related to asthma. In this respect, an occupational asthma study [127] revealed
that, after specific challenge with plicatic acid (to confirm asthma related to western cedar
wood exposure), ADPN was increased in sputum and this level gradually diminished
within 24 h.

An interesting analysis of the local ADPN modifications after bariatric surgery and
weight loss was performed by Sideva et al. [108]. Before surgery and weight loss, there
was no difference in BAL and serum ADPN, but there was a reduced expression of ADPN
receptors in VAT and in epithelial bronchial cells in asthmatics. These changes remained
stable 12 months after the intervention only in asthmatics, supporting an independent
mechanism for ADPN regulation as compared to the ones strictly related to obesity.

4.2. Mechanistic Studies

From the extensive literature addressing ADPN’s cellular actions, we have selected
only the reports which are relevant for the pathophysiology of asthma.

4.2.1. Dysfunctional Airway Epithelium

Bronchial epithelium integrity protects against air pollution, allergens or pathogens. In
asthma, dysregulation and even disruption of the integrity of this natural barrier increases
the chance for sensitization and facilitates the action of asthma triggers, thus aggravating
disease evolution. ADPN inhibits apoptosis after cell injury and promotes repair and prolif-
eration of the basal bronchial epithelial cells [130]. ADPN also suppresses TNFα expression
induced by LPS by autophagy [33] and impedes some potential lesion effects of TNFα on
airway epithelial cells. For example, in human primary bronchial epithelial cell cultures,
ADPN reduced the secretion of chemokines for monocytes/macrophages (CCL2) and
mastocytes (CXCL1), chemokines upregulated by TNFα [131], thus limiting inflammation.
In vascular cells, ADPN counteracts the TNFα-related expression of intercellular adhe-
sion molecule-1 and promotion of oxidative/nitrative stress [132,133]. In ADPN double
knockout mice, the high resting alveolar macrophage production of TNFα is suppressed
by ADPN [133]. In addition, the latter study revealed another benefit of ADPN, i.e., the
suppression of matrix metalloproteinase 12 (MMP-12) production. MMP-12 mediates the
degradation of the extracellular matrix and is associated with hyperresponsiveness [134]
and more severe asthma [135].

Whether these experimental effects are transposable in real life is a matter of debate, as
the relation between TNFα and ADPN is more complex than in cellular experiments. In M1
macrophages, ADPN induces secretion of proinflammatory cytokines, including TNFα, IL-
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6 and IL-12 [35]. On the contrary, in adipocytes, the major source of ADPN, TNFα inhibits
the transcription of ADPN [136] and suppresses the multimerization of ADPN [137], which
might decrease the overall effects of ADPN. An interesting study [138] linked the biological
mechanisms of secretion of ADPN with clinical data. The mechanistic part of the study
was based on the already known inhibitory effect of TNFα on ADPN secretion [137,139]
and revealed that eicosapentaenoic acid (EPA) suppressed the palmitate- and LPS-induced
increase in TNFα mRNA expression and NF-κB activation in macrophages. These results
were complemented by a case–control trial, in which the supplementation of the diet
with eicosapentaenoic acid led to an improvement of the metabolic profile and of ADPN
plasma levels [138]. Furthermore, it was shown that the oxidized forms of EPA stimulate
PPARγ [140] which, in turn, enhances the transcription of ADPN.

Air pollutants, such as ozone, disrupt the airway barrier and contribute to a high
rate of exacerbations in asthma [141]. An argument for a protective effect on ADPN
comes from a study on ADPN-deficient mice exposed to subacute ozone levels, in which
neutrophil inflammation and the content of protein in BAL (as marker of cell destruction)
were significantly increased [142] and positively associated with the infiltrate of interstitial
macrophage secretion IL-17. As these modifications were not present in wild-type mice, it
was assumed that ADPN was responsible for them.

4.2.2. Hyperresponsiveness of the Airway Smooth Muscle

AdipoR receptors were identified in human airway smooth muscle (ASM). In asthma,
ASM is more responsive to external stimuli and has an unbalanced proliferation and
apoptosis rate. In severe asthma, ASM even becomes hypertrophic [143] and secretes
cytokines and extracellular matrix proteins participating in the remodeling process of the
airways.

An altered response (enhanced and/or prolonged contraction) of the ASM to external
stimuli is characteristic for asthma. Its prolonged contraction is due to a decrease in the
activity of SERCA2, the carrier of Ca2+ into the sarcoplasmic reticulum [144], while globular
ADPN is able to upregulate the SERCA in myocytes, at least during ischemia/reperfusion
injury [145].

Another mechanism of hyperresponsiveness is the non-adrenergic, non-cholinergic
inhibition of the relaxation induced by irritants in the respiratory tract. In this respect,
PPARα agonists were protective against such an effect, after exposure to ammonium
persulfate [65].

A panel of cytokines modulate responsiveness of the ASM and, among them, IL-13
plays an important role. IL-13 increases the expression of histamine 1 and of cysteinyl
leukotriene CysLT1 receptors [146] and mediates the phosphorylation of signal trans-
ducer and activator of transcription 6 (STAT6) and mitogen-activated protein kinases
(MAPKs), augmenting the Ca2+ response to histamine [147]. As a consequence, IL-13
enhances the potency of histamine, carbachol and leukotriene D4, as contractile agonists,
in ASM. ADPN overexpression is able to counteract IL-13 actions in mice, after ovalbu-
min acute exposure [148]. In this experiment, overexpression of ADPN was also able to
decrease the expression of omentin and arachidonate 15-lipoxygenase. It is notable that
in allergic asthma, omentin [149,150] and arachidonate 15-lipoxygenase are both upreg-
ulated [151]. Therefore, ADPN’s capacity to neutralize the hyperresponsiveness of the
ASM could be mediated indirectly by the downregulation of omentin and arachidonate
15-lipoxygenase, having as a consequence a reduction in mucus production, inhibition of
CXCL-10, 15-Hydroxyeicosatetraenoic acid (15-HETE) and hydroperoxy-eicosatetraenoic
acid (15-HETE-PE) or eotaxin production [152,153], other contributors to allergic inflamma-
tion.

In asthma, ASM proliferates and the thickness of the ASM layer increases. This
proliferation is a characteristic of the disease [154] which contributes to the aggravation of
the evolution even in the absence of massive concurrent inflammation.
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In ASM, the AMPK signal suppresses the smooth muscle proliferation via the mTOR
pathway [155] and inhibits the proliferative effect of transforming growth factor β1
(TGF-β1) [156]. ADPN is known to stimulate AMPK in vascular smooth muscle [157]
and to suppress pulmonary artery remodeling [158]. Even if we cannot extrapolate the
findings regarding the vascular smooth muscle to the ASM, ADPN remains a candidate for
further investigation of this effect.

Prevention of the proliferation of ASM could be another consequence of the inhibi-
tion of TNFα, because TNFα induces the proliferation of ASM through SOX-18-Notch1
signaling [159]. Notch1 promotes Hes1 expression which, in turn, downregulates the phos-
phatase and TENsin homolog (PTEN) [160]. PTEN is a regulator of cycle cell progression
and blocks proliferation through inhibition of the phosphoinositide 3 kinase/Akt pathway.
Indeed, silencing of PTEN reduced ASM proliferation in asthma [161]. As ADPN interferes
with TNFα secretion, it would be useful to investigate the pertinence of this possible
ADPN effect on the expression of PTEN and, ultimately, on the inhibition of human ASM
proliferation.

In addition to the anti-inflammatory role, PPARα agonists also protect against the
non-adrenergic, non-cholinergic inhibition of relaxation of ASM induced by irritants [65].

4.2.3. Enhanced Mucus Hypersecretion

In the previously mentioned experiment [148], ADPN overexpression interfered with
mucus secretion by inhibiting the expression of omentin and MUC5AC. Omentin is mainly
expressed in goblet cells and correlates to Th2 markers [151]. MUC5AC is secreted by goblet
cells in the surface epithelium and in the terminal secretory ducts of submucosal glands, in
proximal and distal airways [150]. In MAC5AC mucin-deficient mice, the mucus occlusion
was considerably reduced and the hyperresponsiveness to ovalbumin abolished [162].
Downregulation of these two genes by ADPN overexpression, if also proven in human
airways, would indicate another benefit of ADPN in asthma.

4.2.4. Inflammation and Immune Response

The mechanism of allergic asthma starts with the uptake of allergens by epithelial
cells, followed by the secretion of cytokines to activate dendritic cells and type 2 innate
lymphoid cells (ILC2s). Dendritic cells migrate to lymph nodes and present allergens
to naïve lymphocytes, promoting their differentiation to Th2 cells. Th2 cells and ILC2s
will further secrete the Th2 panel of biomarkers (IL-4, IL-5 and IL-13) responsible for
eosinophilic inflammation. In this form of asthma, activation of Th1 functions acts as a
regulator of Th2 activation [163].

The steps of neutrophilic asthma (non-Th2 or Th1 asthma) are not so well defined. A
plethora of triggers (endotoxin, ozone, particulates, virus infection, etc.) [164] cause injury
to epithelial cells, inducing the release of IL-6, IL-8 and LTB4 to attract neutrophiles and
shift immune cells toward Th1 and Th17 helper responses, further increasing IL-8, IL-17,
IL-22, IFNγ and TNFα [165]. The regulatory function is attributed mainly to Treg cells,
both thymus derived and locally induced.

Alveolar and interstitial macrophages participate in the inflammation, acquiring differ-
ent roles during the evolution of the allergic process, for example, during the sensitization
step, M1 (IFNγ-induced) macrophages prevent an allergic reaction, while in a later phase
they promote eosinophilic inflammation and hyperresponsiveness [166]. Defective phago-
cytosis and increased inflammasome formation in relation with airborne particles and
altered efferocytosis were cited as dysfunctional changes of macrophages in asthma [167].
The concept of differentiation into M1 or M2 types of macrophages has been challenged
and, currently, there is more consensus about a polarization spectrum ranging from
IL-4-stimulated macrophages (classically known as “alternative”) to IFNγ-stimulated
ones (classically known as “activated”), with many intermediate forms [168].

The connection of ADPN with several immunological processes in asthma is summa-
rized in Table 2 and will be briefly described below.
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Table 2. Cellular mechanisms of adiponectin relevant for asthma.

Cell Cellular mechanism of ADPN Cellular effect General effect Reference

Macrophages

AdipoR1 and AdipoR2
suppression (by M1 macrophages)
or activation (by M2 macrophages)

In M1 macrophages, induce TNFα,
IL-6 and IL-12

In M2 macrophages, induce IL-10

Pro- or anti-inflammatory
depending on the
polarization of the

macrophages

van Stijn, C.M.
et al., 2015 [35]

38 MAPKs
28 of the 46 M1 markers (including
TNFα and IL-6) and only 3 of the

43 M2 markers

Predominantly
proinflammatory

Cheng, X. et al.,
2012 [39]

Nuclear translocation of FoxO3A
and Atg5 and

microtubule-associated protein
light chain (LC3B), expression with
↑ formation of autophagosome

Inhibition of TNFα formation
induced by LPS Anti-inflammatory Tilija, P.N. et al.,

2015 [33]

AMPK ↓ NFα, IL-6, mieloperoxidase,
eotaxin Anti-inflammatory Zhu, L. et al.,

2019 [169]

AdipoR1 ↑ IL-10, IL-1R and TIMP-1 Anti-inflammatory Kumada, M. et al.,
2004 [36]

PPAR Antioxidative effects Reduction in the epithelial
damage

Dellabianca, A.
et al., 2020 [65]

Binding to calreticulin ↑ Efferocytosis Resolution in the
inflammation

Takemura, Y. et el,
2007 [43]

Adipo −/−mice with high resting
NF, MM-12 ↓ NFα, MM-12 Reduction in the

inflammatory process
Summer, R. et al.,

2008 [123]

Dendritic cells

AdipoR1 and AdipoR2?
PolarizationCD4+ lymphocytes

towards Th1 and Th17
Induction of IL-12 and IL-1β/IL-23

Ag-specific Th1 and Th17
response

Jung, M.Y. et al.,
2012 [170]

AMPK-mTOR?
PPAR?

↓ IL-12, Il-6, IL-10
expression of ↑ PDL-1 in T

lymphocytes

Increase in Treg, limitation
of the Th2 response

Tsang, J.Y. et al.,
2011 [171]

ILC2 AMPK ↓ IL-33-NF-κB signaling ↓ Traffic of IL-33 from
marrow

Wang, L. et al.,
2021 [172]

Eosinophils AdipoR1? ↓ in and eotaxin ↓ in eosinophils in the lung Amarsaikhan, N.
et al., 2019 [173]

Lymphocyte
Th1

AMPK, mTOR
Suppression of glycolysis

independent of AMPK

↓ in IFNγ and IL17
↓ glycolysis in T17 cells ↓ Th1-mediated response Surendar, J. et al.,

2019 [174]

38 mitogen-activated protein
kinases (MAPKs) ↑ IFNγ and IL-6 Proinflammatory Cheng, X. et al.,

2012 [39]

Proapoptotic effect on
influenza-activated cells

↓ in IFNγ, TNFα and IL-2
by influenza-activated cells ↓ Th1-mediated response Wilk, S. et al., 2011

[175]

Lymphocyte
Th2 AdipoR1, AdipoR2, T-cadherin? Inhibition of IL-13, IL-5 release

after sensitization with ovalbumin
↓ Th2 effects induced by

allergen challenge
Shore, S.A. et al.,

2006 [176]

Treg ↑ IL-10, IL-1Rα Resolution of the
inflammation

Ramos-Ramírez, P.
et al., 2020 [177]

L = interleukin; MAPK= mitogen-activated protein kinase; TNFα = tumor necrosis factor α; AMPK = AMP-activated protein kinase;
AdipoR = adiponectin receptor; TIMP-1 = tissue inhibitor of metalloproteinase 1; FoxO3A = a forkhead box O member of transcrip-
tion factor; Atg = autophagy-protein 5; IL-1Rα = interleukin 1 receptor α; PPARα = peroxisome proliferator-activated receptor α;
MM-12 = matrix metalloproteinase 12; Th = T helper lymphocytes; PDL-1 = programmed death-ligand 1; ILC = innate lymphoid cell;
NF-κB = nuclear factor kappa-light-chain-enhancer of activated B cells; IFNγ = interferon γ; Treg = regulatory T cell. ↑= increase level;
↓= decrease level.

AdioR1 and AdipoR2 are expressed by dendritic cells [170], suggesting a functional
role of ADPN in these antigen-presenting cells, which are best suited to initiate the allergic
response in the lung. Data regarding the ADPN effects on dendritic cells have been rather
contradictory to date. One study showed that bone marrow dendritic cells in contact with
ADPN lowered the expression of costimulatory molecules (CD80 and CD86) and markedly
or moderately reduced the secretion of IL-12, IL-6 and IL-10, respectively [171]. Moreover,
dendritic cells dependent on ADPN increased the expression of programmed death ligand
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1 (PDL-1) in T lymphocytes and drove the differentiation of CD4+ positive cells towards
Treg. The activation of the PD-1 pathway limits the proliferation of the pulmonary ILC2
through metabolic regulation and production of Th2 mediators [178]. Furthermore, PD-L1
expression after OVA challenge of lung dendritic cells, macrophages and B cells is sufficient
to inhibit IFNγ production and to mitigate airway hyperresponsiveness, mucus secretion
and inflammation [179]. The importance of PDL-1 is also suggested by clinical studies, in
which soluble PDL-1 and allergic rhinitis were negatively correlated [180]. Overall, these
effects would oppose sensitization to allergens. In fact, an increase in serum ADPN in mice
sensitized to ovalbumin reduced eosinophil infiltrate and Th2 markers, namely IL-13 and
IL-5, in BAL [178] and blunted the airway hyperreactivity reaction.

A proinflammatory effect of ADPN on dendritic cells was also mentioned in one study,
in which ADPN-activated dendritic cells produced IL-12 and IL-6 and polarized to CD4+
T cell Th1 and Th17 lymphocytes [170]. IL-12 is an inducer of the Th1 response and has
been recovered from BAL of asthma sensitized mice chronically exposed to particulate
matter [181] and from children with severe neutrophilic asthma [182].

Therefore, the effect of ADPN on dendritic cells should be regarded with caution.
Possible differences are related to the type of dendritic cells and to the underlying immune
response as well; the dendritic activation of the Th2 mechanism may be restricted by ADPN,
whereas the Th1/Th17 one may be facilitated.

Sensitization is associated with a lower expression of ADPN receptors (AdipoR1, Adi-
poR2 and T-cadherin) in the lung [176]. It should be acknowledged that sensitization needs
the presence of T-cadherin, as T-cadherin-deficient mice do not develop an allergic response
to ovalbumin [42]. In the absence of ADPN, in bideficient mice (in T-cadherin and ADPN),
the absence of T-cadherin as a protection factor for sensitization was abolished. The authors
concluded that T-cadherin, probably independent of ADPN binding, facilitates migration
of inflammatory cells (neutrophils, eosinophils) in the airways, and downregulates the
proteic components of surfactants to promote the allergic reaction. However, it must be
established if ADPN binding to T-cadherin is able to diminish T-cadherin’s potential for
sensitization or not.

Group 2 innate lymphoid cells (ILC2s) are a cell population present in large numbers
in asthmatic airways [183] and are one of the drivers of acute type 2 inflammation in
the lung [184]. The traffic of ILC2s from marrow to their tissular location is enhanced
by IL-33 [185]. AMPK activation induced by ADPN inhibits the IL-33-stimulated NF-κB
pathway and IL-13 production in ILC2s [172]. This could also affect the initiation of the
Th2 immune response in the lung, as ILC2s are able to act as antigen-presenting cells and
to express IL-5 even in a steady state [186].

Earlier studies highlighted the mutual suppression between the Th1 and Th2 re-
sponses, orchestrated by IFNγ and IL-4, in the differentiation and effector phases [187].
More recent research has shown that in both eosinophilic and neutrophilic asthma, T1 and
T2 inflammation coexists in different proportions [188]. Furthermore, the commitment of
CD4 + T cells from IFNγ double knockdown mice to Th2 (IL-4, IL-10 and IL-13 secretion)
depends on the systemic administration of IFNγ [189].

ADPN plays a role in modulating IFNγ secretion in macrophages and lymphocytes.
Most studies suggest a negative impact on IFNγ production, but few are dedicated to the
alveolar or interstitial lung macrophages. In peripheral monocytes, ADPN promotes the
alternative form [32], although, in others, the proinflammatory type was promoted [39].
However, even M2 macrophages are not a homogenous population and this kind of
polarization does not necessarily activate the resolution of the inflammation. In some
experiments, M2 polarization contributed to the progression of Th2 inflammation via
decreasing interferon regulatory factor 4 [190].

A demonstration of the lowering effect of IFNγ in the lung, induced by ADPN,
comes from a study in which the number of IFNγ-producing influenza-specific T cells was
diminished [175]. This finding could be relevant for viral related forms of asthma. There
was also an experiment showing that ADPN reduces IFNγ and Th17 cell differentiation
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and restrains glycolysis in Th1 and Th17 cells [174]. Overall, the findings described above
would be beneficial mostly in neutrophilic asthma. Another presumptive action of ADPN in
neutrophilic asthma would be the PPARα blockade of LTB4 [60]. In PPARα-deficient mice,
the inflammation induced by arachidonic acid and leukotriene B4 (LTB4) is prolonged [59].
The mechanism of this prolongation is a negative feedback loop between LTB4 and PPARα.
While LTB4 activates PPARα, PPARα promotes the intracellular breakdown of LTB4,
reducing secretion and balancing the inflammation process towards its resolution [60].

In fact, the modulation of PPARα expression by inhibitor or activator molecules leads
to significant consequences for asthma. For example, the inhibition by MK-866 (a more
selective inhibitor of PPARα as compared with other PPARs) [61] increased the inflamma-
tory response to mono(2-ethylhexyl) phthalate in alveolar macrophages. Fenofibrate, a
PPARα activator, reduced the airway cell infiltrate and the inflammatory markers (IL-4,
IL-5, TNFα, macrophage-inflammatory protein-2 and monocyte chemoattractant protein-1)
in a dose-dependent manner, after ovalbumin challenge in sensitized mice [62]. In another
experiment, besides a reduction in IL-4 and TNFα, fenofibrate inhibited IL-17 and IL-23 ex-
pression in the lung [63]. The effect was comparable to the one induced by dexamethasone.
Nevertheless, these effects might be mitigated by the negative effect of TNFα, IL-1β and
IL-6 on PPARα transcription [64], as mentioned above.

As an effect on macrophage polarization, differentiation of CD4+ cells is modulated in
more than one way. For example, instead of reducing IFNγ on polyclonally activated CD4+
cells, as shown above, ADPN increased IFNγ production via the p38 MAPK signal [39].

Regarding eosinophilic asthma, several experiments showed ADPN-related benefits.
In experimental asthma, the Th2 response was reduced after infusion of ADPN [166].
ADPN was also able to reduce eotaxin secretion [148] and eosinophil chemotaxis and adhe-
sion capacity promoted by eotaxin, via AdipoR [191]. There is also some evidence regarding
interference with the chitin-mediated mechanism [185] of eosinophil recruitment. In this
latest study, chitin inhalation reduced AdipoR1 receptors in lung leukocytes, particularly in
eosinophils; coaspiration of chitin and ADPN significantly decreased the lung eosinophil
infiltrate. Furthermore, the process was not restricted to the recruitment of the circulating
cells, as pre-incubation of bone marrow-derived eosinophils with ADPN decreased the
migration to peripheral tissues mediated by eotaxin. Concordant results were found in
APN-deficient mice who presented higher levels of circulating eotaxin and eosinophil
chemotactic protein 2 and developed more severe lung eosinophil infiltrates [192].

Many of the positive actions of ADPN concern the anti-inflammatory effect and Treg
activation. ADPN restores the emphysema-like phenotype, characterized by increased pro-
duction of TNFα and matrix metalloproteinase 12 in ADPN-deficient mice [133]. Binding of
ADPN to calreticulin brings back the efferocytosis capacity of macrophages [43], a defense
mechanism impaired in asthma, which contributes to the chronicization of inflammation
and airway remodeling [167].

Tregs suppress inflammation by upregulating immunosuppressive molecules
(IL-10, TGF-β, IL-35) and cytolytic molecules, depriving lymphocytes of trophic cytokines
(IL-2), downregulating tissue receptors and preventing the acquisition of proinflammatory
functions in all types of lymphocytes (B and T cells, NK, monocytes), ILC2 cells, antigen-
presenting cells, mast cells, eosinophils and neutrophils [193]. In asthma, Treg depletion
facilitates sensitization [194] and maintains an active inflammation process [195] and active
Th2 response [196].

Peripheral Tregs express more AdipoR1 than thymus-derived ones. Globular ADPN
increases the secretion of IL-10 in peripheral Tregs, particularly in a Th2 milieu [38], in
macrophages, monocytes and dendritic cells [37]. In macrophages, IL-10 induces the mRNA
expression of the tissue inhibitor of metalloproteinase 1 (TIMP-1) [36]. The TIMP-1 level is
significantly higher in asthmatics compared to controls [197], in association with one or
several matrix metalloproteinases. In fact, the TMP-1 increase should be considered as a
mechanism to compensate the accelerated turnover of the extracellular matrix produced by
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the matrix metalloproteinases. In line with this assumption, in TMP-1-deficient mice, the
allergic Th2 inflammation is exacerbated [198].

Human Tregs have a different metabolism than conventional Tregs, showing an
increased rate of glycolysis and fatty acid oxidation and higher oxygen consumption [199].
Knowing the capacity of ADPN to mobilize cellular energy reserves, mainly to increase
fatty acid oxidation and glycolysis via AMPK and PPARα signaling, it would be interesting
to explore these mechanisms in Tregs.

In summary, from the mechanistic point of view, both Th2 and Th1 phenotypes of
asthma might benefit from ADPN. Interesting regulatory mechanisms have been proposed
with positive effects in some experimental studies. Different results were published de-
pending on the types of cells, strain of mice, cell culture environment and interaction with
other cytokines. There are indeed few clinical data, therefore the numerous ADPN effects
that must be considered a challenge to be carefully handled.

4.2.5. Airway Remodeling

Remodeling of the airways might be considered the final result of the patholog-
ical mechanisms in asthma. The complexity of airway remodeling has been recently
revised [200] and below we will describe only the processes for which data regarding
ADPN influence were found.

The inflammatory process itself and/or the asthma attack triggers (e.g., particles, irri-
tants) create reactive oxygen species, which generate tissue damage, release of endogenous
DAMPs and myofibroblast differentiation. All these effects have an impact on epithelial cell
dysfunction, ASM proliferation and fibrosis, which are key elements of airway remodeling.
Oxidative stress in the adipose tissue reduces the secretion of ADPN [201]. In the lung,
ADPN protects against oxidative stress induced by cigarette smoke extract [202] and by
airway sensitization in obese mice [193]. NF-κB and inducible nitric oxide synthase (iNOS)
are also suppressed by ADPN. The induction of eNOS and the suppression of iNOS in
the lung [50] represent ways to mitigate nitrative stress. The AMPK signal upregulates
eNOS activity and reduces reactive oxygen species (ROS) [51]. In accordance with this,
ADPN suppressed the ROS formation induced by the lipopolysaccharide palmitic acid, in
monocyte cellular lines, by AMPK activation [52]. In high-fat diet-fed mice sensitized to
ovalbumin, ADPN reduced the markers of inflammation and of oxidative stress [203].

Remodeling includes the interstitium and the activity of the matrix metalloproteinases.
The level of extracellular matrix metalloproteinase 9 (MM9) in serum was significantly
decreased after bariatric surgery, and this decrease was corelated with the increase in
ADPN [27]. This might have implications for asthma, as MM9 was also elevated in serum,
sputum and BAL, in asthmatics [203]. However, no matter how important MM9 is for
asthma, the study mentioned above [27] was not meant to identify whether there was a
connection between MM9 and ADPN variation or if it was merely a coincidence, therefore
a possible role of ADPN in MM9 remains uncertain.

The AMPK signal suppresses smooth muscle proliferation via the mTOR pathway [154].
In asthma, ASM produces various cytokines, such as monocyte chemoattractant protein 1
(CCL2), which, in turn, promotes fibrocyte migration and ASM hyperplasia in asthma [204].
Downregulation of CCL2 by ADPN potentially prevents this complication of asthma in
human primary bronchial epithelial extract [131]. The same protective effects on ASM
hyperplasia were obtained from the comparison between wild and ADPN −/− mice with
asthma [205]. In this study, intranasal instillation of ADPN in ADPN −/− mice prevented
the remodeling of the airways, namely the increase in airway smooth muscle thickness and
peribronchial inflammation.

ADPN inhibits fibrotic gene expression (e.g., for collagen) [206] in cultured fibroblasts.
This effect is mediated by the inhibition of transforming growth factor-β (TGF-β) by the
AMPK signal [156]. The inhibitory effect is best documented in hepatic tissue [207]. In
acute lung injury, PPARα agonists suppressed TGF-β1, accelerating the recovery [208], but



Int. J. Mol. Sci. 2021, 22, 8971 15 of 27

in patients with chronic interstitial lung disease, high ADPN and ADPN/leptin levels were
associated with exacerbations [209].

To date, some positive results in asthma have been communicated, namely on the
inhibitory effect of fenofibrate on the phenotypic transition of fibroblasts to myofibrob-
lasts [210]. Another compound with a preventive effect on airway remodeling, BSYQF, acts
through complete restoration of ADPN gene expression in the lung [211], but it is not yet
clarified which of its multiple effects (inhibition of ASMC proliferation and of peribronchial
collagen deposition and restoration of mitochondria functionality) is determined by the
expression of ADPN.

4.2.6. Vascular Modifications

An abnormal function of the endothelium contributes to inflammation and tissue
damage in asthma. Reduced flow mediated dilatation, increased vascularity, a blunted
response of airway blood flow to albuterol, an increased number of progenitor vascular
cells after allergen challenge and high levels of angiopoietin and VEGF [212] were reported
in asthma. There is no consensus about ADPN’s influence on blood vessels, as both
angiogenic and anti-angiogenic effects have been described. In mice with overexpression
of ADPN, VEGF in brain microvessels was increased via the AMPK signal [213]. In human
coronary artery endothelial cells, ADPN suppressed VEGF’s effects through cAMP/PKA
signaling, namely the induction of reactive oxygen species formation and transvascular
cell migration [214]. In mice exposed to house dust mites, the inhibition of VEGF signaling
lessened the development of inflammation and airway remodeling [215]. However, it
remains to be proved whether ADPN acts in the same way in coronary arteries and in lung
vessels.

To the best of our knowledge, there are no data related to ADPN’s effect on endothe-
lium dysfunction in asthma. Therefore, it is uncertain how the experimental data presented
above translate into benefits for asthma or, on the contrary, accentuate the pathological
mechanisms.

4.2.7. Reduction in Respiratory Muscle Strength

Extensive literature has been dedicated to the effects of ADPN on skeletal muscle.
ADPN improves the autophagy and regenerative capacity of the muscle, reduces endo-
plasmic reticulum stress and increases contractility [22]. Nevertheless, different studies
have pointed out contrasting results about ADPN’s effects on muscle regeneration [216] on
the one hand, and on muscle waste [217] on the other. Ineffective muscular contraction,
inadequate muscle strength [218] and a reduction in respiratory muscle mass are important
aggravating factors for asthma. The role of ADPN in preventing deterioration or restoring
functionality remains to be clarified by future research.

4.2.8. Obesity-Related Asthma

The severity of the asthma–obese phenotype is a consequence of multiple factors
(Figure 1). As the majority of ADPN originates in adipose tissue, many studies have
investigated this molecule in an attempt to decipher the mechanisms of the asthma–obese
phenotype. Indeed, the impaired secretion of soluble factors by obese adipocytes had
proinflammatory effects on airway epithelial cells [219], and weight loss restored this
balance and attenuated the inflammation. The non-eosinophilic pattern of inflammation
and the activation of non-Th2 adaptative mechanisms has shown increasing importance,
although eosinophilic inflammation is sometimes present in this form of asthma.
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Most epidemiological studies found low serum ADPN levels in obese asthmatics,
particularly in women [124,220]. However, the relation with the severity of asthma, as-
sessed by the degree of bronchial obstruction, was inconstant; both negative [124] and
positive [221] relations between ADPN and lung function were found. Reversibility to
normal levels of ADPN, after body weight reduction, were correlated with improvement of
asthma [100], but did not necessarily imply a resolution of the airway inflammation [222].
The impact of weight loss created a new classification of the obese–asthma phenotype
into early- and late-onset obese asthma [223], attributing more influence to inflammation
in the first group and to the impairment of the respiratory mechanics in the second one.
The different endotypes of the asthma–obese phenotype might explain the lack of inter-
action between obesity and asthma, in terms of airway inflammation, described in some
studies [224], and the distinctive results related to weight loss.

Polymorphisms of the ADIPOQ gene, in particular the G allele of rs822396 and T
allele of rs1063537, were associated with an increased risk for asthma, while variants
rs11760956, rs11763517 and rs2167270 were protective [225]. Both polymorphisms were
related to low ADPN [226] and asthma [123]. Interestingly, the protection was lost in
overweight individuals [225]. We do not know if this corresponds to the reduced expression
of AdipoR1 in overweight patients and the “recuperation” of normal expression in severe
obese patients [178]. In this experimental model [178], AdipoR1 expression in regulatory
lymphocytes (Tregs) in the lung was reduced in obese mice but, in excessive obesity, the
expression was increased. In allergic obese mice, AdipoR1 was also increased. Notably,
both Tregs of the thymus and of peripheral origin were reduced. In OVA-sensitized mice,
the AdipoR1+Treg level was significantly reduced independent of the body weight.

The inflammatory status generated by adipose tissue is well documented and metabolic
inflammation was linked with metabolic syndrome-related diseases, but also with COPD
and asthma. A large number of M1 macrophages, CD4 + Th1 cells, CD8 + T effector cells
and mast cells and a small number of M2, CD4 + Th2, eosinophils and Tregs were found
in adipose tissue from obese individuals, but the systemic effects of these findings are not
always straightforward. For example, the high level of tryptase secreted from the mast
cells resident in adipose tissue was not correlated with respiratory symptoms [227]. In
terms of the type of airway infiltrate, the findings are also very contradictory, ranging from
typically eosinophilic to predominantly neutrophilic non-Th2 forms [228].

Animal studies have tried to decipher the substrate of the hyperresponsiveness related
to obesity and to the proportion of lean/fat mass. In a study on particulate matter-induced
AHR in mice [229], serum ADPN was reduced only in those who gained weight after a
high-fat diet and who also showed a higher fat mass for the same weight gain.
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In obese sensitized mice and in non-obese asthmatic mice, systemic administration of
ADPN was able to reduce lung cell infiltrate and the concentration of TNFα, eotaxin and
myeloperoxidase (MPO) in BAL, after ovalbumin challenge [130]. Interestingly, there was
no difference between asthmatic obese and asthmatic lean mice in terms of BAL eotaxin
concentration, but MPO was higher in the obese mice. Some of these findings contrast
with those from a study which compared obese women with and without asthma [230].
In this study, asthmatics had higher serum eotaxin, positively correlated with ADPN. The
same positive correlation of ADPN was also found with regulated upon activation normal
T cells, expressed and secreted (RANTES), while with IFNγ, the relation was the inverse.

In obese asthmatic mice, a large number of macrophages were found in the lungs [231].
After house dust mite challenge, the expression of total, M1 and M2 macrophage markers
and of both Th2 and non-Th2 cytokines increased in the lungs. Considering ADPN’s
effects on macrophage polarization [43,167,170], the ADPN-specific influence in house dust
sensitization deserves further examination.

Obesity reduces the number of Tregs in lung and adipose tissue [178]. The previously
mentioned effects of ADPN on Tregs and on IL-10 secretion could help restore homeostatic
balance.

Finally, some arguments on the significance of ADPN in obese asthmatic individuals
derive from ADPN agonist utilization. It was demonstrated that ADPN agonists reduce
IL-4, TNFα, IL-17 and IL-23 expression in the lung [63]. The magnitude of this effect was
comparable to the action of dexamethasone. Nevertheless, these effects might be mitigated
by the negative effect of TNFα, IL-1β and IL-6 on PPARα transcription [64]. Another factor
of mitigation might be the downregulation of PPARα in obese individuals, a characteristic
that was confirmed in peripheral leukocytes [67], but needs to be confirmed in lung cells.
An indirect confirmation consists in the detection of a similar expression of PPARα and
AdipoR in the lungs of obese and lean rats [68]. Regarding the significance of ADPN
modulation of PPARs in asthma, it is notable that PPARα and PPARγ expressions are
upregulated in the lung tissue of OVA-challenged obese mice [232].

5. Conclusions

ADPN has a great potential to interfere with the pathological mechanisms of asthma.
Most of its beneficial effects were demonstrated in animal models and in cell cultures, with
inconsistencies related to the type of asthmatic inflammation, cells and methodology of the
experiment.

Clinical data rely mainly on the association of serum ADPN with various unfavorable
types of evolution in asthma in a few prospective cohorts. As regards the obesity pheno-
type, it also seems that ADPN (and probably other adipokines) has beneficial effects in a
subgroup of asthmatics.

There is a certain need to clarify the implication of ADPN in the complex and heteroge-
nous inflammatory process of asthma and to adequately investigate the diverse endotypes
of asthma. Although some promising results have been published to date, ADPN has many
unknowns to be revealed in order to accurately identify its significance for asthma.
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