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ABSTRACT: The aim of this study is to evaluate the efficacy of
mesoporous silica nanospheres as an adsorbent to remove
doxorubicin (DOX) from aqueous solution. The surface and
structural properties of mesoporous silica nanospheres were
investigated using BET, SEM, XRD, TEM, ζ potential, and point
of zero charge analysis. To optimize DOX removal from aqueous
solution, a Box−Behnken surface statistical design (BBD) with four
times factors, four levels, and response surface modeling (RSM) was
used. A high amount of adsorptivity from DOX (804.84 mg/g) was
successfully done under the following conditions: mesoporous silica
nanospheres dose = 0.02 g/25 mL; pH = 6; shaking speed = 200
rpm; and adsorption time = 100 min. The study of isotherms
demonstrated how well the Langmuir equation and the experimental
data matched. According to thermodynamic characteristics, the adsorption of DOX on mesoporous silica nanospheres was
endothermic and spontaneous. The increase in solution temperature also aided in the removal of DOX. The kinetic study showed
that the model suited the pseudo-second-order. The suggested adsorption method could recycle mesoporous silica nanospheres five
times, with a modest reduction in its ability for adsorption. The most important feature of our adsorbent is that it can be recycled
five times without losing its efficiency.

■ INTRODUCTION
Everything we use every day at home, at work, in our food, etc.
contains chemicals. Over the past 200 years, a significant
number of chemicals have been introduced into our society
without consideration of their toxicological effects on human
and animal health as well as the environment. However, we can
see that environmental hazards, such as ions, metals, oil
derivatives, and pesticides, have been the subject of regulation
andmonitoring in recent decades, from the 1970s to the present.
The most recent focus has also been on emerging contami-
nants.1−3 Along with their presence in water resources and
wastewater, their transport routes, and accumulation in the
environment, scientific knowledge and understanding of the
potential health risks emerging pollutants pose to humans and
ecosystems is still very limited, which places restrictions on the
most effective strategies to prevent or address their presence.
Regulations governing the environment, water quality, and
wastewater disposal do not cover the majority of developing
contaminants.4,5 The United Nations Educational, Scientific
and Cultural Organization (UNESCO) states that there is an
urgent need to improve scientific knowledge and adopt
appropriate technical and policy approaches to monitor
emerging pollutants in the environmental matrixes, assess their

potential risks to human health and the environment, and
prevent and control their disposal to water resources and the
environment.6

Cancer is one of the most difficult medical problems today,
and it is gaining more and more international attention in both
medical practice and research. Technically speaking, cancer is
characterized as aberrant cell proliferation brought on by a
vicious cell cycle.7 It has become clear that some environmental
and behavioral variables, such as radiation exposure, industrial
pollution, smoking, etc., may put people at risk for developing
cancer. Looking back on the extensive scientific research done in
the field of cancer reveals that while much has been learned
about the etiology, epidemiology, symptoms, diagnosis, and
treatment of cancer, there is still much work to be done to learn
more about this field’s many facets, particularly cancer
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treatment. Today’s cancer therapy has become a multi-
disciplinary area, with contributions from many different
scientific disciplines, including cellular and molecular biology,
genetics, biophysics, biochemistry, and surgery. Oncologists
frequently combine various treatments to treat certain cancers,
and common cancer therapy pathways include immunotherapy,
chemotherapy, radiation, and surgery.8−10

Pharmaceutical medications, known as antineoplastics
(therapeutics), are used to treat certain malignancies. Doxor-
ubicin hydrochloride (DOX), a chemotherapy medication, is
the most often used treatment for solid tumors. The mode of
action brought on by DOX may be divided into two categories:
intercalation-induced cell death and DNA rupturing, and free
radical generation, or ROS, which damages proteins, DNA, and
cell membranes. Due to its poor absorption, severe cardiotox-
icity from free radicals, generation of the metabolite
doxorubicinol, and mitochondrial disruption, DOX should be
avoided. Despite DOX’s negative side effects, it is frequently
given since antineoplastic therapies are so effective. The initial,
untreated DOX waste that is discharged into the environment,
together with its metabolites, has a significant impact on aquatic
life and has the potential to be detrimental to human health.11

Water pollution has grown to be a global issue as human
civilization and industrial and agricultural output have
progressed.12−15 Heavy metals, chemical dyes, and antibiotics
are just a few of the dangerous elements that are released into the
water untreated. Pharmaceutical factories and hospitals
manufactured and released a considerable amount of antibiotics.
Therefore, the wastewater was found to comprise tetracycline
(TC), sulfachloropyradazine (SCP), and doxorubicin hydro-
chloride (DOX) with high amounts. As a result, hurting aquatic
species has a highly negative impact on human health, since such
organisms ultimately enter the food chain and end up in the
human body.16,17 Traditional decontamination techniques are
still inadequate and ineffective at removing antibiotic con-
taminants fromwastewater treatment facilities because they only
effectively remove suspended particles and trace levels of soluble
organic pollutants. People are becoming more aware of
environmental issues as the idea of environmental protection
becomes more widely known. Water environment contami-
nation is one of the most important pollution issues, and hence
its solution must be found immediately. Many experts think that
adsorption is a method that offers promise in various research on
the filtration and treatment of sewage. With the employment of
many nanomaterials and their composites for the adsorptive
removal of environmental contaminants, significant progress has
been made in recent years.18

Silica nanospheres have revolutionized modern science with
their ability to adsorb large amounts of material. Adsorption is
the process of capturing molecules from a gas, liquid, or
dissolved solid to the surface of a solid. This type of technology
has been employed in the food and beverage industry for
decades; however, the introduction of silica nanospheres has
opened up an array of new possibilities.19 Silica nanospheres
offer a unique kind of adsorption due to their small pore size and
high surface area. These properties allow them to capture
molecules on the nanoscale, making them ideal for a wide range
of applications. From water purification to drug delivery, these
tiny particles are changing the way we think about adsorption
and how it can be used to benefit society. The most interesting
thing about silica nanospheres is that they can be customized to
target-specific molecules, allowing for precise and selective
adsorption. This means that scientists can use these particles to

filter out unwanted materials, such as bacteria, toxins, and heavy
metals, from liquid solutions and make them safe for human
consumption. With the ever-increasing number of technological
advancements in this field, it is easy to see why silica nanospheres
are becoming an essential tool in modern science.20

The goal of this study is to look at how DOX behaves in
aqueous solutions when it is adsorbed by mesoporous silica
nanospheres. To maximize the mesoporous silica nanospheres’
ability to adsorptively remove DOX from aqueous solution, a
Box−Behnken design and response surface approach were
applied. The factors used in the optimization by the Box−
Behnken design are DOX concentration, solution pH, amount
of adsorber, and time. In order to reduce the nonsignificant
contributions of other components, these factors were selected
based on preliminary findings.

■ MATERIAL AND METHODS
The materials, instruments, and methods are described in detail
in the Supporting Information.
Optimization Method. Individual and collective conse-

quences of the diverse factors, such as adsorbent dose (A), time
(B), solution pH (C), and concentration (D) on the elimination
of DOX were looked into using BBD-RSM. The experimental
results of DOX removal were statistically analyzed using analysis
of variance (ANOVA), as indicated in Table 1.

■ RESULTS AND DISCUSSIONS
Characteristics of Mesoporous Silica Nanospheres.

Preparing mesoporous silica nanospheres is a delicate and
precise process that requires intuition, skill, and patience. To
achieve the desired results, a proper combination of solvents
must be used judiciously. In this instance, acetone, diethyl ether,
and cetyltrimethylammonium bromide (CTAB) are combined
in exact proportions to produce a solution that can then be
processed into nanospheres.20,21 The first step is to combine the
three solvents. Acetone is added first�its volatile properties give
it the ability to penetrate into the structure of the silica while still
providing a stable base for other components. Next, diethyl ether
serves as an activator, and CTAB acts as a cross-linker, ensuring
that the nanospheres remain intact after processing.22,23 Once
the solvents have been properly combined, they are injected into
special molds and allowed to sit overnight. Through a process of
evaporation and dehydration, a highly porous network of silica
spheres forms within the molds. The next morning, the product
is carefully removed by calcination from the molds and checked
for quality. Despite its complexity, creating mesoporous silica
nanospheres is a fascinating and rewarding experience. With
each batch, one develops a greater appreciation of how these tiny
particles can lead to new insights and technological break-
throughs.24

Figure 1A depicts the calcined mesoporous silica nanosphere
adsorbent’s small-angle X-ray diffraction patterns before and
after it had been recycled five times. They exhibit a strong peak at

Table 1. Independent Changeable Range and Level for BBD
Runs

variable symbol −1 0 +1

dose (g/25 mL) X1 0.02 0.135 0.25
time (min) X2 5 52.5 100
pH X3 2 7 12
initial concentration (mol/L) X4 0.00028 0.0012 0.0022
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a 2θ value of 2.3°. As a result, these samples were MCM-41’s
worm-like counterparts.24 The lack of the peak in both of them
at 2θ = 4.0−5.0° demonstrated a lower degree of order in the
mesopores. This was clearly demonstrated by the TEM pictures
of the calcined mesoporous silica nanospheres adsorbent before
and after five cycles of recycling that are shown in Figure 2B. A
typical Bragg’s diffraction peak was preserved and showed the
durability of the mesoporous silica nanospheres adsorbent
network under the employment situation even after the
adsorption of DOX molecules onto the mesoporous silica

surface and recycling it five times. Additionally, as seen in Figure
1A, both materials’ diffraction intensities were largely unaltered.
Mesoporous silica nanospheres adsorbents were shown to be

a type IV isotherm byN2 adsorption−desorption study as shown
in Figure 1B. A broad hysteresis loop is also shown occurring at
P/P0 = 0.49−0.99 and a precarious adsorption step occurring at
P/P0 = 0.36. The N2 isotherms shown in Figure 1B also show
that there was a dip into the adsorbent’s surface area, which was
made up of recycled mesoporous silica nanospheres. The SBET
value of the adsorbent after being recycled five times was found

Figure 1. (A) Calcined mesoporous silica nanospheres adsorbent’s small-angle X-ray diffraction patterns before and after it had been recycled five
times and (B) calcinedmesoporous silica nanospheres adsorbent’s nitrogen adsorption−desorption isotherms before and after it had been recycled five
times.

Figure 2. (A) FESEMmicrograph of the uniformly sized, spherical-shaped silica nanosphere adsorbent, (B) TEM image represents the highly uniform
spherical arrangement of the mesoporous silica nanospheres adsorbent with the mesoporous structure, (C) FESEM micrograph of the mesoporous
silica nanospheres adsorbent after five times recycling, and (D) TEM image of the mesoporous silica nanospheres adsorbent after five times recycling.
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to be 840.86 m2/g, which was less than the mesoporous silica
nanospheres adsorbent (989.25 m2/g). Similar to the surface
area, the recycled adsorbent’s pore volume (0.985 L/g) was
much smaller than the pore volume of the unusable silica
nanospheres adsorbent (1.159 L/g).25,26 The mesoporous silica
nanospheres adsorbent’s pore volume and surface area
decreased after the mesoporous silica adsorbent had been
recycled five times, clearly indicating that the DOX molecules
had been stored inside the pores and were evenly spread over the
surface. These data also show that the high porosity of the
composite adsorbent sample was preserved, which is an
important factor in the mesoporous silica’s ability to bind DOX.
Figure 2A depicts the FESEM of the mesoporous silica

nanospheres adsorbent sample. It is the nanosphere, according
to the FESEMmeasurements. The large slit-like mesopores with
a length of 19−28 nm were uniformly dispersed around the
nanosphere surface in the TEM images, which depict the shape
of nanospheres (Figure 2B). Additionally, the distribution and
contrast of the light and dark portions of the nanospheres’ edges
point to the presence of sizable mesopores with radial
orientation.27

Point of Zero Charge (PZC). pH, which determined as to
which ionic species were present in the DOX solution and the
surface charge of the mesoporous silica nanospheres adsorbent,
was one of the most crucial parameters for DOX sorption. The
pHPZC, at which the positive charges on the surface equal to the
negative charges, was used to determine the surface charge of the
mesoporous silica nanospheres. It was discovered to have a
pHPZC of 6.55 (Figure 3). It was shown that the drug first

adsorbs on the surface of larger holes before diffusing into
smaller ones due to the interaction between negatively charged
silica centers and positively charged doxorubicin hydrochloride
(pH 6). Additionally, it was demonstrated that DOX has a
tendency to self-aggregate on silica surfaces. This indicates that
the mesoporous silica nanospheres have a positive charge on
their surface below this pH due to the protonation of functional
groups and a negative charge above this pH. The adsorption of
DOX is favored when the surface becomes positively charged at
pH < pHPZC.
Batch Experiments. Effect of pH. Utilizing a stock

concentration of 2.5 × 10−3 mol·L−1 of DOX, the pH of the
aqueous solution was investigated and studied because it affects

the adsorbent’s surface charge and level of ionization. Figure 4
shows how the starting solution’s pH affected the adsorbed
DOX molecules. As depicted in Figure 4a, the maximum
adsorption for the mesoporous silica nanospheres nano-
composite was seen at pH 6. The adsorption capacity increased
as the starting pH was raised from 2 to 6, and the greatest
amount of adsorption was recorded at pH 6. The shift in surface
charge and the development of limitations to the functional
groups may be responsible for the observed reduction in the
drug adsorption at pH levels higher than 6. Since the DOX
drug’s adsorption capability dramatically decreased when its
color changed at pH levels over 8.5, it may be assumed that at
these pH values, the treatment has actively reacted with the
nanocomposite.
Doxorubicin is a chromophoric anthraquinone- and sugar-

based anthracycline antitumor antibiotic. The Dox structure
contains an amino group; hence, the pH largely determines how
the Dox behaves physicochemically. Figure 4b illustrates that the
protonated form of the DOX is present in an acidic
environment, whereas the nonionized form predominates at
neutral and basic pH levels. The best conditions for adsorption
research are acidic settings, since DOX is stable in the pH range
of 3.0−6.5. It may be assumed that nonionized surface silanol
groups cannot interact with completely protonated amino
groups of DOX given the chemical makeup of silica surfaces in
this pH range. As a result, we cannot anticipate a significant silica
surface adsorption capability for DOX molecules in an acidic
medium. At neutral pH levels, interactions between nonionized
or protonated amine groups and the silica surface may
significantly impact the adsorption process.28−33 The DOX
amino acid’s positively charged amino groups can engage
electrostatically with these ionized silanol groups. Additionally,
the creation of hydrogen bonds between nonionized silanol
groups and neutral drug molecules may occur, adding to the
adsorption process, as seen in Figure 4c.

Effect of Dose. Investigations were done as to how the dose of
nanocomposite affected the adsorption of DOX at pH 6. As
shown in Figure 5, DOX adsorption substantially increased as
the nanocomposite concentration increased from 0.02 to 0.25 g,
and at 0.25 g, the DOX adsorption achieved its maximum level.
As anticipated, the drug adsorption may be enhanced by
increasing the dose of nanocomposite since the active sites are
more readily available. In fact, the saturation of the nano-
composite at this concentration and the instability of the
aqueous solution at higher dosages than 0.25 g/25 mL are what
cause the increase in drug adsorption at this range.
Adsorption Isotherm. Adsorbate behavior and interactions

with the adsorbent are revealed by adsorption isotherms, and
isotherm investigations shed light on how the adsorbate is
distributed between the solution and solid phases during the
adsorption equilibrium. Equilibrium revisions that display the
capacity of the adsorbent and adsorbate are referred to as
adsorption isotherms. The ratio of the amount adsorbed to the
amount that remained in solution at equilibrium at a particular
temperature is known as the adsorption isotherm. The
equilibrium adsorption of chemicals from solutions has been
studied using a variety of isotherm models, including
Langmuir,34 Freundlich,35 Dubinin−Radushkevich,36 and Tem-
kin.37

The homogeneous adsorption energy onto the adsorbent
surface is accepted by the Langmuir isotherm model. It is based
on the hypothesis that monolayer adsorption could happen on a
surface that is even, has a fixed number of similar sites, and has

Figure 3. Point of zero discharge of mesoporous silica nanospheres.
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little to no interaction between the molecules that are
adsorbed.38−41 Based on the surface-supporting sites with
varying affinities or the adsorption of heterogeneous surfaces,
an empirical equation known as the Freundlich model is
developed. The stronger binding sites are thought to be used
initially, and as site occupancy increases, the strength of the
binding weakens. A pore-filling process first causes subcritical
vapors to adsorb onto micropore materials using the empirical
Dubinin−Radushkevich isotherm model. It is used to
distinguish between chemical and physical adsorption. The
Temkin isotherm is based on the hypothesis that the greatest
uniform distribution of bond energy occurs during adsorption
and that the heat of adsorption for all molecules in the phase
drops linearly as the layer is covered. This is shown in Figure 6.
To characterize the isotherm for the adsorption of DOX into

the mesoporous silica nanospheres sorbent, it was determined
that the Langmuir isotherm model was the most appropriate
one, as seen in Figure 6. The Langmuir models, however, were
shown to be the most isotherm fitting. And because the
adsorption energy was 17.2 kJ·mol−1, the process was
chemisorption (Tables S2 and S3).
Adsorption Kinetics. The rate of molecule contact into the

supernatant may have an effect on the physicochemical
adsorption, and thus it is important to evaluate and investigate
the mechanism of adsorption in terms of kinetic changes. A
greater knowledge of the real process is also provided by the
kinetic study of adsorption. In fact, monitoring and adjusting the
effective parameter with an accurate assessment of the

adsorption kinetics will increase the adsorption efficiency
(Tables S3 and S4). The experimental data with four chosen
models�pseudo-first-order,42 pseudo-second-order,43 interar-
ticular diffusion,44 and Elovich45�was modified and analyzed
for the current study. Figure 7 displays the kinetic models that
were used to analyze the experimental results of DOX
adsorption.46 Because DOX molecules had more interaction
with the created and constructed system, the kinetic tests
showed that drug adsorption was boosted in Table S4.
According to experimental findings that suit kinetics models,
the simultaneous increase in the dose of the nanocomposite and
the contact duration led to improved DOX adsorption. As
shown in Figure 7, the pseudo-second-order kinetic model has
also effectively predicted the experimental results when
compared to the other kinetic models, and when the same
conditions are taken into consideration, a higher level of
agreement is shown.47,48

Adsorption Thermodynamics. It is crucial to examine
how temperature influences adsorption because of practical
applications.49 The adsorption investigations were conducted at
five different temperatures, as seen in Figure 8. The small
increase in adsorption potential for that conduct from 1.39 to
1.99 mmol·g−1 confirms that DOX adsorption onto mesoporous
silica nanospheres is endothermic.50 This finding may be the
result of enhanced adsorption abilities brought about by an
increase in the colored molecule mobility and rate of DOX
molecule diffusion over the mesoporous silica nanospheres
adsorbent surface with higher temperature,51 the equilibrium
constant for adsorption. Thermodynamic factors affecting the
adsorption of DOX include entropy (ΔS°), enthalpy (ΔH°),
and the alterations of Gibbs free energy (ΔG°), via the van’t
Hoff and Arrhenius equations, were measured and assessed, as
displayed in Table S5.
Knowing the ideal temperature at which adsorption is most

feasible and spontaneous is crucial in industrial settings and
water treatment facilities. Depending on the temperature, DOX
can either spontaneously or involuntarily adsorb onto adsorbent
surfaces. By utilizing the temperature at which the standard free
energy is zero (T0), followed by the lowest temperature at which
the process may be regarded as spontaneous, the temperature
range can be anticipated.52 In this instance, 266.71 K has been
calculated as the DOX’s zero standard free energy temperature
(T0). The low T0 values demonstrate that the tested adsorbents
can remove DOX even at very low temperatures.
BBD Optimization. Table 2 displays the experimental setup

and anticipated outcomes for the elimination of DOX. The

Figure 4. (a) Impact of pH on the adsorption of DOX, (b) distribution graphs of the protolytic forms of DOX, and (c) surface silanol groups.

Figure 5. Mesoporous silica nanosphere dosage effect on DOX
adsorption.
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following regression equation from a quadratic model showed
the link between response and operating parameters.
Coded equation

= + × + ×

+ × + ×
+ × + ×
+ × + ×
+ × + ×
+ × + ×
+ × + ×

q A B

C D

AB AC

AD BC
BD CD

A B

C D

1.54649 0.04652 ( 0.0363083 )

( 0.0223058 ) 0.139504

( 0.001375 ) ( 0.000335 )

0.01062 0.02362
( 0.002505 ) 0.0304975

( 0.0267652 ) 0.0623673

0.046271 ( 0.0079465 )

e

2 2

2 2

The equation stated in terms of coded factors allows one to
predict the reaction for certain concentrations of each
ingredient. The high levels of the components are by default
expressed a s +1 and the low levels as −1. The coded equation
may be used to compare the factor coefficients and estimate the
relative weights of the components.
Actual equation

= + ×

+ ×
+ × + ×
+ × ×
+ × × + ×
× × + × ×
+ × ×
+ × ×
+ × + ×
+ × + × ×

q 1.58983 0.0223772 pH

( 227.578 concentration)

( 1.69176 dose) 0.00230783 time

( 0.284818 pH concentration)

( 0.000582609 pH dose) 4.47158 10

pH time 212.724 concentration dose

( 0.0546196 concentration time)

0.00558307 dose time
(0.00107061 pH ) 66899.9 concentration

3.49875 dose ( 3.52199 10 time )

e

5

2 2

2 6 2

where qe (mmol/g) is the estimated DOX adsorption capacity
and pH (A), concentration (B), dose (C), and time (D), which
are the linear terms. A2, C2, B2, and D2 in this equation also
denote quadratic terms, whereas AD, BC, BD, and CD denote
interaction terms. The above equation’s positive and negative
signs represent the parameters’ respective antagonistic and

Figure 6. Adsorption isotherm models of adsorption of DOX onto mesoporous silica nanospheres.
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synergistic effects.Using the equation stated in terms of the
actual factors, it is feasible to predict the reaction for certain
concentrations of each element. Here, the levels for each
component should be stated in their original units. This
equation should not be utilized to determine the relative
importance of each factor since the coefficients are scaled to take
into account the units of each element and the intercept is not at
the center of the design space.
The Model F-value of 47.61 suggests that the model is

significant. As indicated in Table 3, there is just a 0.01%
probability that noise could cause an F-value this big.
When the P-value is less than 0.0500, model terms are deemed

significant. In this instance, important model terms were A, B, C,
D, CD, A2, B2, and C2. If the value is higher than 0.1000, the
model terms are not significant. If your model contains many
extraneous words than those required to maintain hierarchy,
model reduction could improve it.

Figure 7. Kinetic isotherm models of adsorption of DOX onto mesoporous silica nanospheres.

Figure 8.Thermodynamics of DOX adsorption onto mesoporous silica
nanospheres.
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The lack of fit F-value of 3560.60 demonstrates the
importance of the misfit. A big lack of fit F-value has a noise
probability of 0.01%, which is extremely low. The discrepancy is
less than 0.2 since the Predicted R2 of 0.8815 and the Adjusted
R2 of 0.9589 are reasonably in agreement.
Adeq precision measures the signal-to-noise ratio. The ideal

ratio is at least 4. This ratio of 27.389 shows a strong enough
signal. To move about the design space, we utilize this model.

The excellent concordance between experimental and
anticipated responses is seen in Figure 9a. Remaining is the
discrepancy between experimental and anticipated responses.
The residual diagrams for DOX removal capability utilizing
mesoporous silica nanospheres in various modes are shown in
Figure 9b−d (normal plot, residuals vs predicted, and residual vs
run number). In the normal probability plot of Figure 9b, which
depicts the typical pattern of the mistakes, the data points form a
straight line. In Figure 9c,d, the plots of residuals against run
number and residuals against predicted efficiency also illustrate
the quadratic model’s applicability and the data’s random
distribution devoid of any trends.
Response Surface Plotting. To assess the impact of each

parameter on the response, the anticipated responses were
created as 2D contour, cubic, and 3D surface plots, which are
displayed in Figure 10. Two essential plot parameters were
changed, while the other values remained the same for each plot.
The ability to anticipate the DOX removal capacity for different
values of the applied parameters can be found by using the
contour and surface plots. Figure 10 shows the contour and
surface diagrams for DOX elimination percentage as a function
of time and dosage (a), initial concentration, and pH (b), as well
as the dose and contact time of mesoporous silica nanospheres
(c). From Figure 10a, it can be observed that with the increase in
time, the adsorption capacity was increased as well, and the
adsorbent dose was 0.2 g/25 mL. Based on Figure 10b, higher
initial DOX concentration resulted in higher adsorption
capacity. With an increase in DOX content, fewer open surface
sites on the adsorbent are available, which lowers the adsorption
efficiency and raises the adsorption capacity. Finally, fromFigure
10c, the adsorption capacity was optimum at 100 min and with
an adsorbent dose of 0.02 g/25 mL.
Mechanism of Interaction. Given the chemical makeup of

both doxorubicin and silica surfaces, it is possible to hypothesis
that the physical interactions between the Si-OH groups of the
mesoporous silica nanospheres surface and the −NH2 groups of
DOX macromolecules are what primarily cause adsorption.
Positively charged −NH2 groups of DOX and ionized Si-OH
groups may interact electrostatically. Additionally, leftover
unprotonated amine groups contribute to the adsorption
process by forming hydrogen bonds with the Si-OH groups of

Table 2. Actual DOX Removal Capability from the
Experimental Design Matrix with Mesoporous Silica
Nanospheres

removal capacity qe
(mmol/g)

pH
concentration
(mol/L)

dose
g/25 mL

time
(min) actual predicted

2 0.000276 0.135 52.5 1.5496 1.57
7 0.00124153 0.135 52.5 1.54684 1.55
2 0.00124153 0.25 52.5 1.515 1.50
2 0.00124153 0.02 52.5 1.5322 1.54
7 0.00124153 0.25 5 1.3618 1.39
7 0.00124153 0.135 52.5 1.546 1.55
12 0.000276 0.135 52.5 1.6419 1.67
12 0.00124153 0.25 52.5 1.60346 1.59
7 0.000276 0.135 5 1.4907 1.50
7 0.00124153 0.135 52.5 1.546 1.55
7 0.00220706 0.135 5 1.43797 1.43
7 0.00220706 0.135 100 1.71045 1.70
7 0.000276 0.135 100 1.7732 1.78
7 0.000276 0.25 52.5 1.6627 1.65
2 0.00124153 0.135 5 1.3578 1.34
7 0.00124153 0.02 5 1.4727 1.50
7 0.000276 0.02 52.5 1.776 1.74
12 0.00124153 0.02 52.5 1.622 1.64
7 0.00124153 0.135 52.5 1.5468 1.55
7 0.00124153 0.135 52.5 1.5468 1.55
7 0.00124153 0.25 100 1.73089 1.73
12 0.00124153 0.135 100 1.70968 1.71
7 0.00124153 0.02 100 1.7198 1.72
12 0.00124153 0.135 5 1.437 1.41

Table 3. ANOVA for Trials Utilizing Mesoporous Silica Nanospheres to Remove DOX

source sum of squares df mean square F-value p-value

model 0.3369 14 0.0241 47.61 <0.0001 significant
A�dose 0.0260 1 0.0260 51.38 <0.0001
B�time 0.0158 1 0.0158 31.30 <0.0001
C�pH 0.0060 1 0.0060 11.81 0.0040
D�concentration 0.2335 1 0.2335 462.03 <0.0001
AB 7.563 × 10−6 1 7.563 × 10−6 0.0150 0.9044
AC 4.489 × 10−7 1 4.489 × 10−7 0.0009 0.9766
AD 0.0005 1 0.0005 0.8925 0.3608
BC 0.0022 1 0.0022 4.42 0.0542
BD 0.0000 1 0.0000 0.0497 0.8269
CD 0.0037 1 0.0037 7.36 0.0168
A2 0.0046 1 0.0046 9.19 0.0090
B2 0.0252 1 0.0252 49.92 <0.0001
C2 0.0139 1 0.0139 27.48 0.0001
D2 0.0004 1 0.0004 0.8104 0.3832
residual 0.0071 14 0.0005
cor total 0.0071 10 0.0007 3560.60 <0.0001 significant
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the mesoporous silica nanospheres.53 Adsorption is significantly
influenced by cooperative forces between DOX molecules, in
addition to the direct interactions between DOX and the
mesoporous silica nanospheres. DOX is known to have a
propensity for self-assembling into higher-order oligomers or
dimers in aqueous solutions. The presence of additives, the
acidity of the solution, and DOX macromolecule concentration
all have a significant impact on howmuch agglomeration occurs.
When aromatic chromophores are arranged in a parallel or
antiparallel fashion on the silica surface, it may be hypothesized
that additionally, in a solution, the aglycone moieties of DOX
stack. The π−π stacking interactions between adsorbed DOX
molecules are to blame for this propensity.54−57 Therefore, the
π−π interactions and hydrophobic interactions between
molecules of DOX that have been adsorbed and those that
have been given from solution are what cause DOX polylayers to
develop on the silica surface at pH 6.0. Setting the pH to 6 may

help with the adsorption process since increasing the ionic
strength promotes the self-association of DOX. Maybe sodium
ions help the stacking of the chromophores by screening the
positively charged DOXmolecules or by creating intermolecular
interactions. Given the shape of the pore structure of
mesoporous silica nanospheres, it is quite likely that DOX
polylayers will form, particularly on the external surface of
mesoporous silica nanospheres. When adsorbed DOX concen-
tration is substantially lower than what is required for the
creation of a monolayer and pH is lowering, polylayer
organization does not occur.58

Reusability. The capacity of adsorbents to regenerate
significantly improves the efficiency of pollutant removal.
Mesoporous silica nanospheres used for drug adsorption again
after going through regeneration (desorption method) showed
excellent removal efficiencies of 97 in the first cycle. The DOX’
first cycle clearance efficiencies are discovered to be comparable

Figure 9. (a) Actual and anticipated values of the fitted model for DOX adsorption are correlated, (b) as are residuals’ normal probability plots, (c)
externally studentized residuals against expected values, and (d) residuals against the run number.
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to those attained with fresh mesoporous silica nanospheres.
Following that, three additional cycles demonstrated removal of
mesoporous silica nanospheres for the removal of DOX in a
decreasing order from 98.6 to 93.2%, which is still a respectable
result in the process of removing pharmaceutical contaminants
from the aqueous phase.59 Figure 11 illustrates how the

nanocomposites’ medication clearance efficacies decreased to
84.2% after four regeneration cycles. The following adsorption
and desorption cycles may have caused the surface character-
istics of the mesoporous silica nanospheres to degrade, which
might account for the decreased efficiency. The functional
groups that are present on the mesoporous silica nanospheres
would have been exhausted by washing with distilled water. We

use water and ethanol in a variety of desorption procedures as
well as mechanical forces.60

Comparison with Other Adsorbents. Mesoporous silica
nanospheres are used as the adsorbent in Table 4 to compare

and contrast the best DOX adsorption power with the other
adsorbents described before.58,60−64 It is obvious that our
adsorbent mesoporous silica nanosphere adsorption has a
significantly high absorption capacity compared to the other
adsorbents.
Application of Real Samples. To evaluate the perform-

ance of the composite made of mesoporous silica nanospheres,
two samples of industrial waste were supplied. These two
samples were from Ismailia’s industrial zone. We discovered that
a sizable amount of the paint industry’s industrial drainage
sample had mixed debris made up of polishing glaze colors and
tile. As a result, the samples were given 48 h to settle before the
dust was eliminated using a filter made of many layers of linen.
The substance was once more sedimented after 48 h. The filter
paper was used to remove the ultrafine dust residue, which
exposed a bright blue color with a blank absorption of 302 nm.
Filtration and sample preparation were finished. Under optimal
conditions, the adsorption of the DOX was investigated. 64.2

Figure 10. Surface and contour plots for DOX adsorption by mesoporous silica nanospheres.

Figure 11. Regeneration efficiency of mesoporous silica nanospheres.

Table 4. Adsorption of DOX by Various Adsorbents

adsorbent Qm (mg/g) reference

pristine MWCNTs 185.2 [58]
GO@Fe3O4@MSNP@CS 390 [60]
MSAC 135.89 [61]
Zr-MOF 646.78 [52]
GO 909 [63]
Fe3O4@ZIF-8 804.84 [64]
mesoporous silica nanospheres 1021 this work
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and 96.8%, respectively, of the dye was absorbed. According to
the study’s findings, it is possible to effectively remove colors
from industrial effluent resources by employing mesoporous
silica nanospheres.

■ CONCLUSIONS
In this work, novel mesoporous silica nanospheres were
successfully synthesized, characterized, and applied for the
removal of DOX. The results demonstrate that mesoporous
silica nanospheres are an effective and high-performance
adsorbent for DOX removal. The ideal experimental settings
for increased DOX elimination were found using the Box−
Behnken design and response surface methods. Four different
factors, including solution pH, DOX concentration, dose, and
time, were used in the optimization. Mesoporous silica
nanospheres have been described as having unique character-
istics and a great deal of potential as an adsorbent. This research
also showed that various surface morphologies, functional
groupings, and huge surface regions are important character-
ization elements. The Langmuir model was used to calculate the
qm for DOX of the mesoporous silica nanospheres since it best
matched the experimental outcomes. This value was 1.88 mmol·
g−1. The kinetic investigation further showed that interparticle
diffusion was not the main mechanism driving the adsorption of
DOX on mesoporous silica nanospheres, and the experimental
kinetic results confirmed the PSO model. In addition, the
following environmental conditions were excellent for attaining
themaximumDOX: shaking speed = 200 rpm; t = 100min; dose
= 0.02 g; and pH = 6. Mesoporous silica nanospheres had been
recycled five times with high efficiency.
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