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Wireless capsule endoscopy (WCE) is an effective video technology to diagnose gastrointestinal (GI) disease, such as bleeding. In
order to avoid conventional tedious and risky manual review process of long duration WCE videos, automatic bleeding detection
schemes are getting importance. In this paper, to investigate bleeding, the analysis of WCE images is carried out in normalized RGB
color space as human perception of bleeding is associated with different shades of red. In the proposed method, at first, from the
WCE image frame, an efficient region of interest (ROI) is extracted based on interplane intensity variation profile in normalized
RGB space. Next, from the extracted ROI, the variation in the normalized green plane is presented with the help of histogram.
Features are extracted from the proposed normalized green plane histograms. For classification purpose, the K-nearest
neighbors classifier is employed. Moreover, bleeding zones in a bleeding image are extracted utilizing some morphological
operations. For performance evaluation, 2300 WCE images obtained from 30 publicly available WCE videos are used in a
tenfold cross-validation scheme and the proposed method outperforms the reported four existing methods having an accuracy
of 97.86%, a sensitivity of 95.20%, and a specificity of 98.32%.

1. Introduction

Bleeding is a common symptom for many gastrointestinal
(GI) diseases, and thus bleeding detection has great clinical
importance in diagnosing relevant diseases [1]. Conventional
endoscopic techniques, such as gastroscopy and colonos-
copy, face problem in demonstrating small intestine and
cause a lot of pain. As an alternative, wireless capsule endos-
copy (WCE) is getting popularity mainly because of its
noninvasive nature [2, 3]. The small-sized camera along with
the transmitter provides real-time WCE video consisting
numerous images. The main problem here is the long clinical
review period (usually 2 hours or more) to detect bleeding in
the whole GI tract [4]. Moreover, there may be only few
bleeding frames or very small bleeding regions which may
not be detectable by the naked eyes. Hence, automated

scheme to detect bleeding has received much attention
by several researchers. In this regard, the suspected blood
indicator (SBI), a software delivered along with second-
generation capsule, is reported to be one of the very first
attempts to detect WCE bleeding images with moderate
accuracy [5]. The SBI does not reduce the required interpre-
tation time of WCE videos, which is its main goal [6]. This
motivated the researchers to propose new algorithms for
automatic bleeding detection in WCE videos. A region
growing bleeding detection method is proposed in [7] based
on some statistical features where a major limitation is the
necessity of manual identification of a bleeding region at
the beginning. In [8], versatile texture models are used from
different color components as features, followed by an exten-
sive feature selection scheme to detect abnormalities. In [9], a
probabilistic neural network (PNN) is employed for bleeding
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detection based on the features extracted from pixel intensity
values in two different color spaces (RGB and HSV). In order
to overcome the chances of fluctuation of individual pixel
intensity, ratio of pixel intensity values in different color
planes is used [10]. But separable formulation to extract
bleeding region from these ratios of pixel intensity values is
not mentioned. Instead of pixel level operation, in [11],
superpixel-based bleeding detection method is proposed,
which provides significant improvement in bleeding detec-
tion performance at the expense of high computational time
for feature extraction. Moreover, histogram-based features
extracted from intensity distribution are widely used for
bleeding detection [10, 12]. In [13], for different ranges of
red values, the variation in green plane is utilized with the
help of histogram for bleeding detection. Generally, in con-
ventional methods, histograms are obtained from different
color planes and cascaded to extract bleeding detection fea-
tures. For example, in [14], pixel histograms obtained in Y ,
I, and Q color planes are cascaded and used as a feature.
Here, due to considering the whole image, histogram-based
features in cascaded form obtained from different color
planes may not reflect the expected distinguishable pattern
between bleeding and nonbleeding images. Also, their inter-
pretation may become very complex. In [15], for a particular
color space, three-dimensional intensities of each pixel of a
WCE image are mapped into the nearest color (visual word)
to obtain word-based color histogram feature. Here, one
major concern is to determine the optimum number of histo-
gram bins. Also in [15], apart fromWCE image classification,
bleeding region is also identified. For bleeding region detec-
tion, a two-stage saliency map is used which is extracted by
mixing different color channels and using the visual contrast.
Feature extraction from a WCE image, which generally
consists of a large number of pixels, not only involves huge
computational burden but also can degrade the classification
performance, especially when only a small portion of the
entire image contains bleeding. One possible solution to
overcome this problem is to find a region of interest (ROI)
and then extract features from that ROI. If a precise ROI is
obtained and then the histogram feature is extracted from
that particular ROI, a better classification can be obtained.
In this case, even a single plane unlike conventional use of
multiple planes may exhibit quite distinguishable character-
istics, and as a result, this ROI-based feature extraction
scheme not only reduces computational burden but also
provides better classification. Instead of using multiple
planes, it is expected that a better intensity pattern can be
obtained from the histogram of a single plane. Also, obtain-
ing feature from the histogram in a single plane inside the
extracted ROI will reduce computational burden as well as
computational time. In [16], an ROI-based bleeding detec-
tion scheme is proposed using statistical features extracted
from a composite color space defined as Y · I/Q. However, a
major concern here is to precisely select the ROI which
directly dictates the bleeding detection performance. Hence,
extraction of precise ROI in feature-based bleeding detection
schemes has still a great demand. Moreover, accurate identi-
fication of bleeding zones in a bleeding image would be an
added challenge.

The objective of this paper is to develop an efficient
scheme for detecting bleeding images and corresponding
bleeding regions based on precise ROI detection in normal-
ized RGB color plane. Considering the interplane intensity
pattern of the pixels, linearly separable criterions are pro-
posed which can precisely detect ROI from the preprocessed
WCE image. Later, histograms from pixel values of extracted
ROI in normalized color planes of WCE images are analyzed
and taken as features to detect bleeding frames. Histograms
are obtained from pixel intensities of the g plane inside the
corresponding ROI. After that, bin frequency values of this
regional g plane histogram are proposed as features for
bleeding detection. Finally, the K-nearest neighbor- (KNN-)
supervised classifier is employed to separate bleeding and
nonbleeding images. Classification performance is tested
on publicly available WCE video database. Later, from
the selected ROI in the detected bleeding frames, bleeding
regions are extracted by using some morphological opera-
tions. Finally, a postprocessing scheme is introduced to
analyze the bleeding detection performance in continuous
WCE videos. In what follows, three major tasks involved in
the proposed method, namely bleeding frame detection,
bleeding region identification, and video data analysis, are
presented in detail in three different sections followed by
results and concluding remarks.

2. Bleeding Frame Detection

The steps involved to detect bleeding frames from the
WCE images are normalization of RGB color plane, pro-
posed region of interest (ROI) detection, proposed feature
extraction scheme, and classification with K-nearest neigh-
bor (KNN) classifier. Typical examples of some WCE
bleeding and nonbleeding images are shown in Figure 1.
Figure 1(a) represents the prominent bleeding WCE image
whereas in Figure 1(b) bleeding region is very small com-
pared to the whole image. On the other hand, Figure 1(c) rep-
resents clearly distinguishable nonbleeding images whereas
Figure 1(d) represents a nonbleeding image which may have
some bleeding-like pixels.

2.1. Normalized RGB Plane. Generally, the central informa-
tion bearing portion in a given WCE image is surrounded
by some meaningless peripheral black regions as demon-
strated in Figure 1(a). In order to remove these pixels, a
preprocessing scheme is employed by discarding all the sur-
rounding black pixels as demonstrated in Figures 2(a) and
2(d). A color WCE image is a snapshot of the digestive tract
at a given time. However, most of the imaging devices use the
RGB color space which contains both color and intensity
information, that is, the RGB values are different for light
red, dark red, and maroon. Therefore, it is always very
difficult to recognize bleeding through an individual RGB
component. Moreover, a common problem of the WCE
images is that the battery of the capsule weakens over time
[17]. The main disadvantage of RGB-based representation
of images is that a change in the intensity leads to a change
in all the three components [18]. In order to overcome this
problem, in this paper, instead of RGB, normalized RGB
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(denoted by small alphabets rgb) color scheme is utilized for
bleeding detection which is found less sensitive to illumina-
tion changes [19–21]. If i, j is the coordinate of a pixel in
a WCE image, then each pixel in the WCE image is trans-
formed to normalized RGB through the following equations:

r i, j =
R i, j

R i, j + G i, j + B i, j
, 1

g i, j =
G i, j

R i, j + G i, j + B i, j
, 2

b i, j =
B i, j

R i, j +G i, j + B i, j
3

Since the range R i, j , G i, j , or B i, j is from 0 to 255,
the value of r i, j , g i, j , and b i, j can vary from 0 to 1.

2.2. Proposed Region of Interest Detection. In order to classify
bleeding and nonbleeding images, descriptive features
from a given WCE image need to be extracted. In most
of the bleeding detection schemes, features are extracted
from the entire WCE image considering all pixels [4, 11].
Bleeding region in aWCE image, in comparison to the whole

area, is generally observed in a smaller zone no matter how
scattered or concentrated. Such a bleeding region is generally
absent in nonbleeding images. Hence, instead of considering
the whole image, if a certain smaller region is considered,
more discriminating features are expected to be obtained
from bleeding and nonbleeding images. In [22], a region of
interest segmentation scheme is implemented as a prepro-
cessing step to discard the meaningless areas found in the
initial capsule endoscopy images. Considering the entire
image for feature extraction not only increases computa-
tional burden but also increases the amount of undesired
information. For example, in some bleeding images, there
may exist a large nonbleeding region. In this case, if features
are extracted by considering all pixels of the entire image,
extracted features representing the bleeding image may be
highly contaminated due to the dominance of nonbleeding
pixels. In order to overcome this problem, in the proposed
method, first a region of interest (ROI) is identified and then
that ROI is used for feature extraction followed by bleeding
image classification. Twofold advantages in ROI-based fea-
ture extraction are reduction in computational burden and
enhancement in the quality of extracted features. In order
to find a simple and efficient ROI detection scheme, pixel

PillCam® SB

(a)

PillCam® SB

(b)

PillCam® SB

(c)

PillCam® SB

(d)

Figure 1: Typical WCE images; (a), (b) WCE bleeding images; (c), (d) WCE nonbleeding images.
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intensities in normalized plane (rgb) of several WCE
bleeding images are analyzed. To demonstrate the distribu-
tion of normalized pixel intensities in preprocessed bleeding
images, a scatter plot is shown in Figure 2. In Figures 2(a) and
2(d), two preprocessed bleeding images are demonstrated.
The distribution of r and b values of bleeding and nonbleed-
ing pixels of these preprocessed images is demonstrated in
Figures 2(b) and 2(e), respectively. The bleeding and non-
bleeding pixels are recognized by comparing the images with
their corresponding ground truth images marked by the
expert clinicians. From these figures, it is evident that most
of the nonbleeding pixels are quite distinctive from the
bleeding pixels in r − b 2D plane. For obtaining a precise
separation between bleeding and nonbleeding pixels in r − b
plane, although choice of a nonlinear separating boundary
is more appropriate, a simple linear separating boundary
may also be taken into consideration which is much easier
to handle. Therefore, a simple linearly separable condition
is proposed as

r i, j ≥m × b i, j , 4

where i, j is the coordinate of a pixel in aWCE image andm
is the slope of the discriminating straight line in r − b plane.
The pixels in a preprocessed image that do not follow condi-
tion (4) are discarded. It can be observed that due to linear

approximation for nonlinearly separated zones in r − b plane,
some additional pixels apart from the desired pixels still
remain in the selected pixels. For further analysis, the
distribution of r and g intensities of the remaining pixels is
shown in Figures 2(c) and 2(f), respectively. Again, it can
be observed that further separation is possible in r − g
domain similar to r − b plane, a separation that can be
approximated to discard the remaining nonbleeding pixels.
Therefore, a second step condition is proposed as

r i, j ≥ n × g i, j , 5

where n is the slope of the discriminating straight line in r − g
plane. Out of the remaining pixels after first step threshold-
ing, those pixels are discarded that do not follow condition
(5). The remaining pixels are considered as the desired ROI
in a WCE image. As the desired ROI can be extracted by
imposing two linearly separable conditions after analyzing
interplane intensity variation profiles and these conditions
incorporate all three r, g, and b pixel intensities, therefore,
it is redundant to consider g − b plane. In order to find
appropriate values of m and n, first, wide ranges of m and n
values are tested on several bleeding images by comparing
them with their corresponding ground truth images marked
by expert clinicians. Figure 3 illustrates the ROI detection
procedure. In Figure 3(a), a preprocessed WCE image is
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Figure 2: Scatter plots of normalized values; (a), (d) preprocessed bleeding images; (b), (e) r versus b intensity variation profiles in bleeding
images; and (c), (f) r versus g intensity variation profiles in bleeding images after step 1 thresholding.
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shown. Figure 3(b) shows the pixels that follow condition
(4) with a suitable value of m. Figure 3(c) shows the pixels
that remain in the ROI. These pixels are chosen out of the
remaining pixels from Figure 3(b) that follow condition
(5) with a suitable value of n.

ROI segmentation provides a probable region of bleed-
ing in a test image which does not guarantee whether the
test image is a bleeding image or a nonbleeding image.
Even for a nonbleeding image, an ROI will be extracted,
may be small or scattered, because of the presence of
bleeding-like pixels (mentioned in Figure 4(d)). As a result,
to obtain a decision on the class label of a test image, a
classification step is required. In fact, the idea of extracting
ROI is to assist the feature-based classification scheme
developed in the proposed method, not to take a final
decision just looking at the presence or absence of ROI.
It will only help to reduce the search space for feature
extraction and also provide better accuracy. Therefore, in
order to support the claim whether an image is bleeding
or not, features must be extracted only on the extracted
ROI for classification.

2.3. Proposed Feature Extraction Scheme. For any pattern rec-
ognition problem, feature extraction is the most challenging
task. Therefore, the performance of a bleeding detection
scheme like any pattern recognition problem highly depends
on quality of the extracted features. However, one of the
major obstacles in extraction of quality features is that the
bleeding zone in a bleeding frame may attain any arbitrary
shape covering very small to very large areas. This random
nature of bleeding zones creates problem when overall statis-
tics of the entire image like mean pixel value and minimum,
maximum, or median values are used as features when ROI is
not available, therefore, often results in contamination of
extracted features where small bleeding zones are surrounded
by large nonbleeding zones. However, when the extracted
ROI is available, one may consider that feature normalization
with respect to the target area can overcome the problem of

varying sizes of the region under feature extraction. But, the
major concern here is the number and the choice of statistical
features required for better discrimination between bleeding
and nonbleeding images. In order to overcome these
problems, it is to be ensured that the characteristics of the
bleeding zone, no matter how small or large, must contribute
independently in the feature vector. Hence, in this paper,
histogram of normalized planes at the ROI is proposed as
features. Histogram-based features can clearly reflect the
bleeding areas no matter how small or large in certain bins,
and the property of bleeding is also preserved. In the
proposed method, all the pixels of ROI extracted from a
normalized plane of a WCE image are taken to perform
histogram and frequency in each bin is measured. Therefore,
this histogram-based representation of image pixels should
ensure the presence of any group of bleeding pixels, no
matter how small it is, independently in the feature vector.
As this type of representation reflects the presence of any
group of bleeding pixels in the feature vector, therefore, it is
better to utilize histogram-based feature than to take only
the total number of pixels inside the ROI as feature. As
bleeding is determined through human perception of colors,
it is expected that the histogram representation of bleeding
and nonbleeding images should differ significantly and
ensure the extraction of quality features. To demonstrate
the difference between pixel histograms of bleeding and
nonbleeding images, 64 bin histograms of selected ROI in
normalized color planes are shown in Figure 4. The prepro-
cessed sample bleeding and nonbleeding images are pre-
sented in Figures 4(a) and 4(b), respectively. Figures 4(c)
and 4(d) represent the extracted ROI of bleeding and non-
bleeding images. The histogram values of extracted ROI for
both bleeding and nonbleeding images in r plane are shown
in Figures 4(e) and 4(f), respectively. It can be seen that,
though both the bleeding and nonbleeding histograms
exhibit similar distributions, the pixel count differs signifi-
cantly; this corresponds to extraction of highly distinguish-
able feature. In Figures 4(g)–4(j), the histogram values of

(a) (b) (c)

Figure 3: ROI extraction steps; (a) preprocessed bleeding images; (b) extracted image after first step thresholding; and (c) extracted ROI.
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extracted ROI for both bleeding and nonbleeding images in g
plane and in b plane are shown, respectively. Similar type
of characteristics can be observed in case of g plane and b

plane. Finally, in order to acquire the final feature vector,
bin frequencies of histogram at the extracted ROI in dis-
criminating color plane are used.
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Figure 4: Histogram of ROI in normalized plane; (a) preprocessed bleeding image; (b) preprocessed nonbleeding image; (c) ROI of a bleeding
image; (d) ROI of a nonbleeding image; (e) distribution of r values inside the ROI of a bleeding image; (f) distribution of r values inside
the ROI of a nonbleeding image; (g) distribution of g values inside the ROI of a bleeding image; (h) distribution of g values inside the
ROI of a nonbleeding image; (i) distribution of b values inside the ROI of a bleeding image; (j) distribution of b values inside the ROI of a
nonbleeding image.
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2.4. K-Nearest Neighbor (KNN) Classifier. After the extrac-
tion of quality features, the widely used K-nearest neighbor-
(KNN-) supervised classifier is used for classifying the
bleeding and the nonbleeding images. In the K-nearest
neighbor classifier, a distance function is computed between
the train and test data sets. Then distances from K neighbor-
ing train data sets are considered to classify a test data of
WCE image frame. A class membership is given to an image
frame by the KNN classifier after classification. The class
label assigned to a test object is determined from the votes
of the majority K nearest neighbors. In the proposed method,
to classify a test data, the Euclidean distance is used for
considering the class labels of K nearest image patterns. After
extensive experimentation with different values of K , a
suitable value of K is determined to attain the best output.

3. Bleeding Region Detection

Once a bleeding image is detected successfully, automatic
marking of the bleeding region will be initially helpful for
the physicians to analyze the diseases. Automatic bleeding
region detection can provide several benefits, such as quick
visualization of the bleeding regions and exploring the
changes in bleeding characteristics in consecutive video
frames. Therefore, a bleeding region detection scheme is
described in this section.

3.1. ROI Extraction. After obtaining the bleeding image
frames, the bleeding region is detected in those bleeding
image frames to be discussed in this section. Analyzing
different WCE bleeding images, it is found that for WCE
bleeding images the proposed two-step ROI extraction
algorithm is sufficient to detect the bleeding region in those
images. At first, a preprocessed bleeding WCE image is taken
and ROI is extracted using the conditions (4) and (5) as
shown in Figure 3. An ROI appears clearly like a mask, which
contains possible bleeding region in a bleeding image.

3.2. Morphological Operations. Extraction of ROI provides a
set of probable bleeding pixels in a bleeding image. Generally,
a single isolated pixel may not be a candidate for the bleeding
zone. Such pixels may arise due to intensity variation. More-
over, homogeneity is also an important issue to detect a
smooth bleeding region in a bleeding image. In the proposed
bleeding region detection method, two stage morphological
operations are carried out on a bleeding image [23]. At first,
the morphological erosion is done to remove small-scale
details from a binary image which simultaneously reduces
the size of regions of interest, too. This removal of small-
scale details reduces the discretely located bleeding pixels
in the out image. After that, morphological dilation is done
to join disparate elements in an image. Thus, the morpho-
logical dilation makes a previously discontinuous bleeding
region continuous.

4. Bleeding Video Analysis

4.1. Postprocessing. After bleeding image detection, the
proposed scheme is applied to different continuous bleeding
videos. As a nonbleeding frame in a bleeding video cannot

occur in a discontinuous manner, a postprocessing scheme
is proposed in video analysis to remove this discontinuity.
If a frame is detected as nonbleeding, whereas the previous
and the next image frames are recognized as bleeding ones,
the frame is declared to be a bleeding one. This postproces-
sing scheme helps to remove the discontinuity in occurrence
of nonbleeding frames in a continuous video and thus to
remove falsely detected images.

5. Result and Discussion

In this section, the experimental results obtained from the
proposed method are presented to show and compare the
efficiency of the proposed method by considering 2300
WCE images. These WCE images are selected from publicly
available and very widely used 30 WCE videos [24]. Among
these 2300 WCE images, 450 show signs of bleeding and
the rest of them show signs of nonbleeding.

5.1. Parameter Identification. 65 bleeding images are used to
determine the appropriate values of m and n by comparing
them with their corresponding ground truth images marked
by expert clinicians. At first, each of these 65 images is used to
check pixel level accuracy of step 1 thresholding. This pixel
level accuracy can be defined as

Accuracypixel =
N tbp +N tnbp

N t
, 6

Here, N tbp, N tnbp, and N t are the number of true bleeding
pixels, the number of true nonbleeding, and the total number
of pixels in a preprocessed WCE image, respectively. For
demonstration purpose, the pixel level accuracy of step 1
thresholding of 4 images on varied ranges of m values
is shown in Figure 5(a). It is evident from analysis that
m = 2 8 has the highest pixel level accuracy percentage for
most of the images. In Figure 6(a), mean and standard
deviation of pixel level accuracy of step 1 thresholding are
demonstrated using different values of m for 65 bleeding
images. From the statistical measures, it is observed that
m = 2 8 provides the highest accuracy mean (70.71%) and
the lowest standard deviation (7.63%). Next, to find the
appropriate value of n, wide ranges of n values are tested
on those 65 bleeding images to check ROI detection accuracy
keeping m fixed to 2.8. To demonstrate, the pixel level
accuracy of ROI segmentation of 4 images on varied ranges
of n values while keeping m to 2.8 is shown in Figure 5(b).
It is clear from the figure that both n = 1 8 and 2.0 have
almost the highest equal accuracy percentage for m = 2 8.
In Figure 6(b), mean and standard deviation of pixel level
accuracy of ROI detection are demonstrated using different
values of n keeping m = 2 8 for 65 bleeding images. It is
evident from the statistical measures that ROI segmentation
with m = 2 8 and n = 2 0 provides the highest pixel level
mean accuracy (88.54%) and the lowest standard deviation
(3.64%). However, one may think to find the appropriate
values of m and n simultaneously. But if the appropriate
values of m and n are searched sequentially, then the
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search space to find the appropriate values of m and n will
definitely reduce.

5.2. Performance of Bleeding Frame Detection. The initial
size of these images is 576 × 576 pixels. After removing
the square-shaped peripheral black region, the images
become size 512 × 512 pixels. Then, the corner black pixels
are removed to obtain the circular information bearing
region. After that, each image is converted to rgb color
space from RGB color space using the relationships pro-
vided in (1), (2), and (3), respectively. Then, the ROI is
extracted from each bleeding and nonbleeding image using
the relationships provided in (4) and (5). Histograms are
obtained individually from g and b planes for each image
at the corresponding ROI keeping the number of bins
constant for every image. The bin centers are computed
by equally dividing the overall range of g and b values
into the number of bins chosen. Finally, by taking the fre-
quency at each bin of the histogram inside the ROI provides
the proposed feature vector. A KNN classifier is used for
classification. Tenfold cross-validation scheme is used to
evaluate the classification performance.

During classification of bleeding and nonbleeding
images, four distinct cases may arise regarding the detection
of WCE bleeding images, namely, false bleeding detection
(Fb), false nonbleeding detection (Fnb), true bleeding
detection (Tb), and true nonbleeding detection (Tnb). To
evaluate the performance of the bleeding detection method,
sensitivity, specificity, and accuracy [25] are ideal criterions
which can be calculated as follows:

Sensitivity =
〠Tb

〠Tb +〠Fnb
, 7

Specif icity =
〠Tnb

〠Tnb +〠Fb
, 8

Accuracy =
〠Tb +〠Tnb

〠Tb +〠Fnb +〠Tnb +〠Fb
9

To extract features from histograms, different numbers of
bins are used in the proposed method. The results are shown
in Table 1. These features are used to investigate the bleeding
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detection efficiency of the proposed method. Considering the
size of the feature vector, the 64 bin histograms of g plane for
selected ROI show the best result among them with an
accuracy of 97.86%, sensitivity of 95.20%, and specificity of
98.32%. In a similar way, different values of K are used in
the KNN classifier to evaluate the performance of the
proposed method. K = 5 shows the best result among them.
The results are shown in Figure 7. In these cases, the appro-
priate number of bins and the value of K are determined
globally. However, one may consider to choose histogram
statistics instead of histogram bin frequencies as features.
To demonstrate the goodness of histogram statistics, differ-
ent statistical measures, such as mean, variance, skewness,
kurtosis, and energy of g plane histogram are taken as fea-
tures in cascade. The classification performance of histogram
statistics is evaluated using KNN classifier with K = 5. But
these features show poor performance having an accuracy
of 86.79%, a sensitivity of 57.89%, and a specificity of
93.52%. Therefore, it is evident from the classification
performance of histogram statistics that it is not a good
discriminating feature. In Table 2, comparison among results
obtained from 64 bin histograms of different color planes
such as r, g, and b planes of normalized RGB color domain,
H plane of HSV color domain, Y and Q planes of YIQ color
domain, and L, A, and B planes of CIE − LAB color domain
using the same ROI and the same KNN classifier with
K = 5 is demonstrated. Similarly, in Figure 8, comparison
between results obtained in g plane with ROI and the whole
image is shown. From Figure 8 and Table 2, it is evident that
the g plane histogram using ROI shows the best result in
terms of all three performance indices. Finally, to assess the
result obtained by the proposed method, it is compared with
those obtained by the methods proposed in [12, 16, 26] and
the uniform local binary pattern (LBP) feature proposed in
[4]; here, the LBP features are extracted from RGB color
plane. In [12], RGB-indexed image is used for feature extrac-
tion which requires binary coding for each image. In [16], a
transformed color plane Y · I/Q is proposed but this method
uses hardQ = 0 thresholding. For consistency of comparison,
KNN classifier with the same value of K (K = 5) is used in all
four methods. The results are demonstrated in Table 3. From
the data represented in Table 3, it is evident that the proposed
method performs better than the other four methods in
terms of all three performance indices. Among these perfor-
mance indices, sensitivity is the most important one as it
represents the true bleeding detection accuracy and the pro-
posed method outperforms the other four methods in terms
of sensitivity with a significant margin.

5.3. Performance of Bleeding Region Detection. After obtain-
ing the bleeding frames, experimental results obtained from
the bleeding region detection are mentioned in this section.
The efficiency of the bleeding region detection scheme is
presented by considering 65 WCE bleeding images. The
preprocessed images are converted to rgb color space from
RGB color space using the relationships provided in (1),

Table 1: Effect variation of histogram bin numbers on classification
performance of the proposed method.

Histogram bin Accuracy Sensitivity Specificity

16 bin 96.82% 90.97% 97.89%

32 bin 97.37% 94.66% 98.01%

64 bin 97.86% 95.20% 98.32%

128 bin 97.20% 94.96% 97.97%
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Figure 7: Effect of variation of K of KNN classifier on classification
performance.

Table 2: Performance variation of different color domains.

Color planes Accuracy Sensitivity Specificity

r 94.81% 84.02% 97.36%

g 97.86% 95.20% 98.32%

b 96.23% 91.67% 97.29%

H 97.15% 93.64% 97.99%

Y 95.56% 92.84% 96.17%

Q 96.82% 92.66% 97.70%

L 94.91% 82.43% 97.81%

A 95.67% 85.87% 97.95%

B 95.87% 87.63% 97.80%
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Figure 8: Performance comparison between normal and segmented
images in g plane.
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(2), and (3), respectively. Then, the ROI is extracted from the
bleeding images using the conditions in (4) and (5). After
that, two stage morphological operations are carried out on
a bleeding image. At first, the morphological erosion is done
to remove small-scale details from a binary image followed
by morphological dilation to join disparate elements in an
image. To quantitatively assess the region detection perfor-
mance, a pixel-based comparison between the bleeding
regions and the ground truth labeled by the expert clinicians
is performed. The three performance indices used in this
experiment are the false negative ratio (FNR), the false
positive ratio (FPR), and precision [27, 28] which are
calculated as

FNR =
〠FN

〠FN +〠TP
, 10

FPR =
〠FP

〠FP +〠TN
, 11

Precision =
〠TP

〠TP +〠FP
12

Here, true positive (TP) cases are when the bleeding
pixels are correctly labeled as bleeding while false positive
(FP) are the ones incorrectly labeled as the bleeding. True
negative (TN) represent the regions that are correctly
labeled as nonbleeding while the false negative (FN) repre-
sent the regions which are not labeled as the bleeding but
should have been. In Figure 9, qualitative results for the
bleeding area detection based on the extracted ROI are
presented using four different preprocessed bleeding images.
The first column is the preprocessed bleeding images while
the second column shows extracted ROI of corresponding
images, and the third column shows the detected bleeding
region after morphological operations. The final column
represents the ground truth for the bleeding area labeled by
the expert clinicians. It can be observed that the bleeding
areas are accurately detected by the proposed bleeding region
detection scheme. To assess the result obtained by the pro-
posed bleeding region detection scheme, it is compared with
those obtained by the method proposed in [15]. A two-stage
saliency extraction method to localize the bleeding areas in
WCE images is proposed in [15]. The results are demon-
strated in Table 4. From the data represented in Table 4, it
is evident that the proposed method performs better than
the method in [15] in terms of precision and FPR.

5.4. Performance in Continuous Bleeding Videos. In this
subsection, the experimental results obtained from the
proposed method are presented to show the efficiency of
the proposed method by considering five continuous videos.
Each video is one-minute long and has 100 image frames.
Each image frame in those five videos is classified according
to the proposed bleeding frame detection scheme. Then, the
postprocessing scheme is followed to remove the discontinu-
ity in occurrence of nonbleeding frames in a continuous
video. To evaluate the performance, sensitivity, specificity,
and accuracy are used as criterions. Leave-one-out cross
validation scheme is used to evaluate the classification
performance. The results are demonstrated in Table 5. This
is to be noted that in video number 5 all the images are
bleeding images. Therefore, the term specificity is not
defined for that video. The excellent result in the table
ensures the goodness of the proposed segmented image-
based histogram feature.

6. Conclusion

In this paper, an efficient ROI extraction scheme is proposed
based on rgb domain in a WCE image. Histogram represen-
tation of a WCE image in the extracted ROI in normalized
plane is found very suitable for discriminating bleeding and
nonbleeding images. It is observed that the use of rgb domain
histogram provides significantly better performance than
that of conventional RGB color space. Especially the bin fre-
quencies of the rgb histogram inside the ROI, the difference
of the number of pixels in two cases (bleeding and nonbleed-
ing) is found very prominent. Therefore, all bin frequencies
are used in the proposed feature vector. Moreover, it is
observed that the use of histogram in g plane provides
superior performance in comparison to r or b plane. For
the purpose of classification, the simplest KNN classifier is
employed which offers ease of implementation. The perfor-
mance of proposed features in classifying bleeding and non-
bleeding images is evaluated in terms of accuracy, specificity,
and sensitivity, and it turns out that the proposed method
outperforms other four compared methods in terms of all
three performance indices. Out of these detected bleeding
images, bleeding region is detected based on the extracted
ROI. Morphological operations in region detection helps to
make the bleeding region smooth. Finally, the proposed
bleeding detection method is applied to several continuous
videos. The performance of the method in continuous videos
ensures the goodness of the feature. Therefore, the proposed
automatic bleeding image detection scheme with improved
performance will reduce the burden of the clinicians in
reviewing large number of WCE images.

Table 3: Comparison of classification accuracy among different methods (%).

Parameter Uniform LBP [4] Method in [26] Method in [12] Method in [16] Proposed method

Accuracy 91.50 77.15 94.50 93.00 97.86

Sensitivity 79.25 83.50 93.00 93.50 95.20

Specificity 94.56 75.69 94.88 94.00 98.32
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