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Single-cell RNA sequencing is a powerful tool to explore the heterogeneity of breast
cancer. The identification of the cell subtype that responds to estrogen has profound
significance in breast cancer research and treatment. The transcriptional regulation of
estrogen is an intricate network involving crosstalk between protein-coding and non-
coding RNAs, which is still largely unknown, particularly at the single cell level. Therefore,
we proposed a novel strategy to specify cell subtypes based on a cell-specific ceRNA
network (CCN). The CCN was constructed by integrating a cell-specific RNA-RNA co-
expression network (RCN) with an existing ceRNA network. The cell-specific RCN was
built based on single cell expression profiles with predefined reference cells.
Heterogeneous cell subtypes were inferred by enriching RNAs in CCN to the estrogen
response hallmark. Edge biomarkers were identified in the early estrogen response
subtype. Topological analysis revealed that NEAT1 was a hub lncRNA for the early
response subtype, and its ceRNAs could predict patient survival. Another hub lncRNA,
DLEU2, could potentially be involved in GPCR signaling, based on CCN. The CCN
method that we proposed here facilitates the inference of cell subtypes from a network
perspective and explores the function of hub lncRNAs, which are promising targets for
RNA-based therapeutics.

Keywords: cell-specific network, ceRNA, estrogen regulation, lncRNA, subtype
INTRODUCTION

The incidence of breast cancer has increased at a rate of 0.3% per year from 2012 to 2016 in the
United States, largely because of the rising rates of local stage and hormone receptor-positive disease
(1). As estrogen plays a predominant role in breast cancer, understanding the mechanisms of
estrogen regulation holds profound significance in breast cancer research and treatment. The
transcriptional regulation of estrogen receptor (ER) is an intricate network of signaling and
functional processes that is still largely unknown at the single cell level. Recently, the intra-cell
line heterogeneity of breast cancer has been comprehensively characterized through single-cell RNA
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sequenc ing (scRNA-seq) , revea l ing transcr iptomic
subpopulations within cell lines (2). Therefore, investigating
the heterogeneity of estrogen regulation at the single cell level
could shed more light on estrogen mechanisms and potential
breast cancer therapeutics.

As an active metabolite of estrogen, 17b-estradiol (E2) is
essential for both normal breast cells and malignant breast cancer
cells. Zhu et al. performed scRNA-seq on estrogen receptor alpha
positive breast cancer cells stimulated by E2. Their research
revealed a dynamic transcriptional network in which estrogen
signaling promotes breast cancer cell survival and growth by
mediating a metabolic switch (3). They also provided valuable
data resources to explore the heterogeneous response of cells
from the same cell line upon estrogen stimulation.

Dai et al. proposed a probability theory-based method to
construct a cell-specific network for individual cells (4), which
innovatively characterized each cell from the perspective of a
‘stable’ gene network rather than ‘unstable’ gene expression. This
prompted us to propose a novel strategy to characterize single
cells from the perspective of networks. The RNAs interact in a
complicated manner within cells. For example, RNA functions as
microRNA (miRNA) sponges by competitively binding to the
same miRNA, reducing the repression or degradation effect of
the miRNA on the target genes. These RNAs are competing
endogenous RNAs (ceRNAs). Evidence from studies indicates
that long non-coding RNAs (lncRNAs) act as ceRNAs to compete
with miRNAs with mRNAs. For example, NEAT1 was reported to
serve as a ceRNA of ZEB1, which competes withmiR-448 in breast
cancer (5). PTEN, a well-known tumor suppressor, regulates
MALAT1 expression by potentially sponging oncogenic
miRNAs, including miR-17 and miR-20a in breast cancer (6).
Therefore, it is adequate for the characterization of single cells
from the viewpoint of the ceRNA network. Wang et al. applied the
cell-specific network method developed by Dai et al. and
integrated public ceRNA regulations to build a database named
LnCeCell, which comprised the predicted lncRNA-associated
ceRNA networks at single-cell resolution (7). In this study, we
aimed to investigate cell heterogeneity upon estrogen stimulation,
from the perspective of the ceRNA network.

Liu et al. developed a sample-specific network (SSN) method
to construct a personalized network for individual patients,
based on the expression profile of these patients (8). Inspired
by the SSN method, we designed a novel strategy to construct a
cell-specific ceRNA network (CCN) by integrating a cell-specific
RNA–RNA co-expression network (RCN) with an existing
ceRNA network. The cell-specific RCN was first constructed
from single cell expression profiles with the aid of predefined
reference cells, provided by the SSN method. After incorporating
Abbreviation: ESR1, estrogen receptor alpha; RCN, RNA–RNA co-expression
network; ceRNAs, competing endogenous RNAs; CCN, cell-specific ceRNA
network; scRNA-seq, single-cell RNA sequencing; lncRNAs, long non-coding
RNAs; E2, 17b-estradiol; ERGs, estrogen regulated genes; GO, Gene Ontology; ER,
estrogen receptor; SSN, sample-specific networks; CGC, Cancer Gene Census;
GAD, Genetic Association Database; METABRIC, Molecular Taxonomy of Breast
Cancer International Consortium; TCGA, The Cancer Genome Atlas; DEGs,
differentially expressed genes; GEO, Gene Expression Omnibus; FPKM, fragments
per kilo base of transcript per million reads mapped.
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public ceRNA networks into the RCN, the CCN was obtained.
To dissect the heterogeneity of the cell response to estrogen,
RNAs in CCN were enriched with estrogen response hallmarks.
The edge biomarkers for the early estrogen response subtype
were also identified in the CCN; NEAT1 had high average degree
among the early response cells, and ceRNA survival analysis
indicated that NEAT1 and its ceRNAs could predict patient
survival. Moreover, we inferred the function of another hub
lncRNA, DLEU2, which might be involved in GPCR signaling,
based on both Gene Ontology (GO) and REACTOME pathways.
In summary, we established a novel method to construct a CCN
and provide single-cell network-related insights into estrogen
regulation in breast cancer.
MATERIALS AND METHODS

Data Pre-Processing
We downloaded the scRNA-seq data from Gene Expression
Omnibus (GEO) (accession number: GSE107858). Following
the filtering process described in the paper (3), we performed
further analysis on 84 MCF-7 cells. RNAs with fragments per
kilo base of transcript per million reads mapped (FPKM) >1 in at
least 25% (84 × 0.25 = 21) of the cells were used for further
analysis. The filtering parameter is referred to the paper (9). The
dataset GSE107863 for T47D was an independent validation
cohort to support the findings obtained using MCF-7 cells.

CeRNA Network From starBase
The ceRNA network was downloaded (10) (http://starbase.sysu.
edu.cn/) using the Web API. The ceRNAs for all mRNAs,
lncRNAs, and pseudogenes were downloaded using default
parameters. The ceRNA network contained 308,266 ceRNA
pairs composed of 18,942 RNAs. The complete information is
presented in Table S1.

Gene Sets for Markers
We obtained the known cancer-related genes from the Cancer
Gene Census (CGC) database (http://cancer.sanger.ac.uk/cosmic/
census), which contains 576 genes (11). Other 876 cancer-related
genes were also downloaded from the Genetic Association
Database (GAD) database (http://geneticassociationdb.nih.gov/).

Functional gene sets “HALLMARK_ESTROGEN_RESPONSE_
EARLY” and “HALLMARK_ESTROGEN_RESPONSE_LATE”
were downloaded and extracted from the hallmark gene sets of
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/, v7.2).
REACTOME pathways and biological processes information of
GO was also downloaded from MSigDB.

We downloaded the transcript annotation from Ensembl and
obtained 215,307 annotations. The transcript ID, transcript type,
and HUGO Gene Nomenclature Committee (HGCN) symbols
were downloaded from Ensembl. Further, the annotations whose
transcript type belonged to “lincRNA” or “antisense”were extracted
as the lncRNAs. We obtained a total of 1,794 lncRNAs. In addition,
we also downloaded the lncRNA annotation file lncipedia_5_0_
hg19.gtf (full database) from LNCipedia (12). Considering that
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some lncRNAs had alternative names, we extracted the Ensembl ID,
gene_alias and gene_id for each lncRNA. The lncRNA information
from either Ensembl or LNCipedia was used to annotate
the lncNRAs.

ER is the most important hormone receptor in breast cancer.
We also screened the differentially expressed genes (DEGs)
between ER-positive and ER-negative patients from public
cohorts and denoted as ER_DEGs markers. The raw read counts
for breast cancer was downloaded from The Cancer Genome Atlas
(TCGA). The R package DESeq2 (13) was used for differential
analysis. 22,946 DEGs were identified with adjusted p <0.05. The
Z-score scaled expression profile of Molecular Taxonomy of
Breast Cancer International Consortium (METABRIC) was also
downloaded. T-test was used as the statistical method to calculate
the p value of gene expression difference between ER+ vs ER−
samples. The p value was then adjusted by fdr method using the R
package fdrtool (14). As a result, we obtained 2,951 DEGs with fdr
adjusted p <0.05.
Constructing a CCN Based on
Reference Cells
The SSN method was developed by Liu et al. to construct a
personalized network for individual patients based on their
expression profiles (8). Briefly, a reference network can be
constructed using the Pearson correlation coefficient (PCC)
between molecules based on the expression data of the reference
samples. After a new sample is added to the reference samples, the
perturbed network can be similarly constructed. Then, the
differential network is constructed by the edges with significantly
changed correlation between the reference and perturbed networks.

The changed correlation follows a new type of distribution,
which is called the “volcano distribution”. The tail areas of this
distribution are similar to those of the normal distribution based
on the Kolmogorov–Smirnov test with random sampling.
Therefore, the statistical hypothesis Z-test was used to evaluate
the significance level of the changed correlation because of the
central limit theorem (15).

Liu et al. selected 8–17 normal samples as reference samples
to construct an SSN. They also ensured that the SSN is robust
and stable for the different reference sample sizes. Inspired by the
SSN method, 20 MCF-7 cells captured at 0 h were selected as the
reference cells in this study (Figure 1A). The reference network
was constructed using the PCC. The RNA–RNA correlation was
deemed significant with a p-value <0.05. For cells at 3, 6, or 12 h,
we added one cell to the reference cells and recalculated the
RNA–RNA correlation (Figure 1B). We retained a correlation
network, named the perturbed network, containing significant
RNA–RNA relationships with a p-value <0.05.

Next, we compared the significant RNA–RNA interactions in
the perturbed network and reference network to keep only the
edges with significantly changed correlations (Figure 1C).
Figure 1D shows how to test the significance of the changed
correlation (DCorrelationN) between a pair of RNAs. According
to the SSN theory proposed by Liu et al. (8), the differential
correlation followed a normal distribution, and the significance
could be evaluated based on the Z-test.
Frontiers in Oncology | www.frontiersin.org 3
Z =
DCorrelationN−mDCorrelation

sDCorrelation
=
DCorrelationN

1−Correlation2N
N−1

,

where N is the number of reference cells.
From the expression perspective, the ceRNAs were positively

correlated. Therefore, we considered only the positive and
significant differential RNA–RNA interactions as candidate
ceRNAs (Figure 1E). The ceRNA network from StarBase was
further used to filter the ceRNA network to ensure its biological
importance (Figure 1F).
Functional Enrichment of Genes
in the CCN
The hypergeometric test was used to evaluate whether the genes
in the CCN were significantly enriched in functional gene sets.

P = o
x≥n

Cx
N ˙Cm−x

M−m

Cm
M

whereM is the total number of genes in the background network,
N is the number of genes in a functional gene set, m is the
number of genes in the CCN, and n is the number of CCN genes
shared by the functional gene set.
Topology Analysis of CCN
The R package igraph was used to calculate the topological
features of RNAs in the CCN (R 4.0.2). The degree of RNA is
the number of direct neighbors in the ceRNA network. RNAs
with a high degree can be termed as hub RNAs, which play a
pivotal role in maintaining the ceRNA–ceRNA relationships
within CCN. The betweenness of RNA i can be calculated with
the formula

Bi = ∑
s≠i≠i

dst(i)

dst
,

where RNA s and t are RNAs in the CCN different from RNA i,
dst represents the number of the shortest paths from s to t, and dst
(i) is the number of the shortest paths from s to t that i lies on.
For RNA s and t, the ratio is the proportion of the shortest path
that RNA i lies on. The sum of the ratios of all RNA pairs is the
betweenness centrality of RNA i. The closeness coefficient is the
average closeness of RNA i to other RNAs in the network. It is
calculated as

C(i) =
1
di

=
n−1

os≠idsi
,

where dsi represents the distance between RNA i and
other RNAs.
Survival Analysis of CeRNAs
A recently published paper (7) has provided a web tool, “ceRNA
survival”, to perform survival analysis for ceRNA composed of
April 2021 | Volume 11 | Article 656675
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lncRNA–miRNA–mRNA, based on The Cancer Genome Atlas
(TCGA) datasets. The web tool was used to perform multivariate
Cox regression analysis based on miRNA, mRNA, and lncRNA
expression, without co-factors.

Gene Set Enrichment Analysis
GSEA (16) was performed using Preranked utility implemented in
the standalone version of the GSEA software (v 4.1.0). The RNA
sequencing dataset of DLEU2 knockdown was downloaded from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/), with
accession number GSE162677. We ranked the genes according
to the fold change in expression (FPKM.siDLEU2/FPKM.siNC).
The fold change was log2 transformed before GSEA.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

CCN Construction Based on Reference
Cells
The CCN was constructed following the workflow shown in
Figure 1 (more details in Materials and Methods). Briefly, the
edges with significant differential correlation between the reference
network (Figure 1A) and perturbed network (Figure 1B) were
used to construct a cell-specific RCN (Figure 1C). miRNA targets
are negatively regulated by miRNAs. RNAs competitively bind to
the same miRNAs as ceRNAs. Chen et al. generated a ceRNA
network for each subtype of breast cancer, based on the principle
of positive co-expression and shared miRNAs (17). Therefore, the
A

B

D

E

F

G

C

FIGURE 1 | Workflow of constructing the CCN. (A) Reference cells were selected, and the corresponding RCN was constructed and referred to as “Reference
network”. (B) One cell k was added to the reference cells, and the corresponding RCN was constructed and referred to as the “Perturbed network”. (C) Edges were
compared between the “Reference network” and “Perturbed network” to obtain a cell k-specific RNA–RNA network. (D) One edge composing of two RNAs was
compared and tested for its significance level, based on the differential correlation (DCorrelationN). (E) Only the positive edges in the cell k-specific RNA–RNA network
were candidate edges in the CCN. (F) We downloaded the ceRNA network from starBase. (G) An example of a CCN. The yellow nodes represent lncRNAs, and
node size is proportional to its degree in the CCN.
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positive RCN appeared to be a candidate ceRNA, based on ceRNA
theory (Figure 1E). The ceRNA network from starBase was
further used to reduce false-positive ceRNA relations (Figure
1F). As an example, we have demonstrated the ceRNA network
for the cell MCF-7 12 h (RHM266) in Figure 1G.

Estrogen Receptor Alpha Co-Expressed
With Known Marker Genes
ESR1 plays an important role in breast cancer. Therefore, we first
examined its interactors in the cell-specific RCN, which is
schematically shown in Figure 1E. We selected cells at 3, 6,
and 12 h, in which ESR1 had a degree larger than 25. The known
estrogen-regulated genes (ERGs), such as KLF4 (Figures 2A–F)
and TSKU (Figures 2A, C), were significantly positively
correlated with ESR1. Akaogi et al. reported high expression of
KLF4 in ER-a-positive patients. KLF4 was found to bind to the
DNA-binding region of ER-a and inhibit the binding of ER-a to
Frontiers in Oncology | www.frontiersin.org 5
estrogen response elements in the promoter regions (18). Known
cancer-related genes from CGC, such as MYD88 (Figures 2A,
D),DDX10 (Figures 2B, F),MLLT6 (Figure 2D), BCL10 (Figure
2F), and KAT6A (Figure 2F) also interacted with ESR1. The
expression of MYD88 could be modulated in a single nucleotide
polymorphism (SNP)- and estrogen-dependent fashion (19).
Breast cancer-related genes from GAD were also identified as
ESR1 interactors, including TP53BP1 (Figure 2B), SRA1 (Figure
2D), and BBS4 (Figure 2E). Low expression of TP53BP1 is
associated with increased local recurrence in breast cancer
patients treated with conserving surgery and radiotherapy (20).
In addition to these protein-coding genes, ESR1 was also co-
expressed with non-coding RNAs such asMIR302B (Figure 2C)
and MIR4426 (Figure 2E). LncRNAs MIR181A1HG (Figure
2A), ATP1A1OS (Figure 2B), and LINC00094 (Figure 2D)
were also shown to cross-talk with ESR1. ER_DEGs frequently
interacted with ESR1 within individual cells (Figures 2A–F).
A B

D E F

C

FIGURE 2 | ESR1 interactors in cell-specific RCN. The yellow nodes represent lncRNAs, purple nodes represent miRNAs, green nodes represent GAD genes, blue
nodes represent CGC genes, khaki nodes represent estrogen regulated genes, salmon nodes represent DEGs between ER+ vs ER− patients from either TCGA or
METABRIC, and gray nodes represent genes with an unknown “biological” label. The RCN is shown for the (A) MCF-7 3 h (RHM254), (B) MCF-7 3 h (RHM278),
(C) MCF-7 3 h (RHM279), (D) MCF-7 6 h (RHM301), (E) MCF-7 12 h (RHM224), and (F) MCF-7 12 h (RHM250) cells.
April 2021 | Volume 11 | Article 656675
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These results indicate that the cell-specific RCN reflect the genes’
regulations of breast cancer.

We also constructed a cell-specific RCN based on the
expression profiles of the T47D dataset. ESR1 was also co-
expressed with known marker genes, including known ERGs,
cancer-related genes from CGC, ER-DEGs, and breast cancer-
related genes from GAD (Figure S1).

The CCN was then constructed by integrating the RCN with
the starBase ceRNA database, which was developed based on
CLIP-Seq data. The average numbers of edges and lncRNAs in
the CCN are shown in Table 1. The average number of edges
decreased after E2 stimulation, from 882 edges (3 h) to 662 edges
(12 h). Meanwhile, the average number of lncRNAs decreased
from 16 (3 h) to 14 (12 h). In contrast, there were more than
1,600 edges on average in the CCN from the T47D dataset.
However, on average, five lncRNAs were involved in the CCN.

Cell Subtypes Inferred by CCN
Cell type classification assumes high importance in single cell
heterogeneity. Therefore, we defined cell subtypes by integrating
CCN and the estrogen response hallmark. We retrieved estrogen
early response and late response hallmarks from MSigDB. For
each CCN, we extracted all the RNAs and performed a
hypergeometric test to evaluate the extent of RNA enrichment
occurring in these hallmark stages.

We selected one CCN at each time point as an example. The
CCN was significantly enriched in the early response hallmark
for MCF-7 3 h (RHM223, Figure 3A, p = 0.0002), MCF-7 6 h
(RHM300, Figure 3B, p = 6.61E-8), and MCF-7 12 h (RHM265,
Figure 3C, p = 3.69E-5). Among all 64 cells (3, 6, and 12 h), 41
were enriched in the estrogen early response hallmark (Figure
3D, p < 0.05). Three out of 64 cells were enriched in the estrogen
late response hallmark (Figure S2). Similarly, the cells T47D 3 h
(T47D_3 h_2B6), T47D 6 h (T47D_6 h_2H8), and T47D 12 h
(T47D_12 h_D8) were enriched in the early response hallmark
(Figures S3A–C). In the T47D dataset, seven cells were classified
as early response cells (Figure S3D).

We further classified all 64 cells into two subtypes: early
response ones and others. Traditionally, the nodes (RNAs in the
network) were screened for biomarker identification. As a
complex disease, breast cancer is induced by a set of
dysregulated and synergetic genes rather than a single gene.
Therefore, network biomarkers are more advantageous for
characterizing disease states. Here, we explored the edge
markers of both the cell subtypes. We selected the top 20
ceRNA–ceRNA relationships that only appeared in one cell
subtype. From the heatmap, we could clearly distinguish the
early response subtype from the other subtype (Figure 3E). A
similar result is shown in Figure S3E for the T47 dataset.
Frontiers in Oncology | www.frontiersin.org 6
CeRNAs of Hub LncRNA Can Predict
Patient Survival
Topological characterization of the CCN is crucial for identifying
the pivotal genes that substantially contribute to gene regulation
upon E2 stimulus. For all the CCNs, we analyzed the topological
features, including degree, betweenness, and closeness
coefficients. We focused on lncRNAs in the CCN with a high
degree in the early response subtype. The top five lncRNAs are
listed in Table 2. The average degree for all lncRNAs in the early
response subtype is in Table S3.

The role of NEAT1 in breast cancer has been widely
investigated. It is also a hub lncRNA in the CCN of early
response cells with an average degree as high as 5.14. Cells
with a degree ≥20 for NEAT1were selected. SMAD4 and NF1, the
known cancer-related genes in the CGC database, are the
common ceRNAs of NEAT1 in all six CCNs (Figures 4A–F).
Another CGC gene, PTEN, appears in five of these six ceRNA
networks. WWTR1, a CGC gene, is the ceRNA of NEAT1 in cell
MCF-7 3 h (RHM254, Figure 4A) and MCF-7 6 h (RHM271,
Figure 4B). The GAD genes PRKCA, PRLR, and POLK function
as ceRNAs of NEAT1 in cell MCF-7 3 h (RHM254, Figure 4A),
MCF-7 6 h (RHM271, Figure 4B), and MCF-7 12 h (RHM265,
Figure 4C), respectively. For cell MCF-7 3 h (RHM255, Figure
4D), we identified the ERGs XRCC1 and RAPGEFL1 as ceRNAs
of NEAT1. For cell MCF-7 6 h (RHM271), ERGs RAPGEFL1 and
SLC7A2 are ceRNAs of NEAT1. TET2, a CGC gene, is the ceRNA
of NEAT1 in cell MCF-7 6 h (RHM250, Figure 4E).

Among NEAT1 ceRNAs in the six CCNs, we noted that the
ceRNA–ceRNA relationship of NEAT1 and ZFX in MCF-7 12 h
(RHM266, Figure 4F) has been recently validated (21).
According to a previous study (21), NEAT1 and ZFX
competitively bind to miR-138-5p. Next, we performed
multivariate Cox regression analysis for the NEAT1–ZFX–miR-
138-5p regulation axis using the “ceRNA survival” tool of
LnCeCell (7). We divided all breast cancer patients from
TCGA into two groups, based on the median expression value
of NEAT1–ZFX–miR-138-5p. Patients with high NEAT1–ZFX–
miR-138-5p expression had worse overall survival than those
with low expression (Figure 4G). Moreover, we curated from
starBase that miR-493-5p and miR-513a-5p are significantly
shared by NEAT1 and ZFX. Because the expression of miR-
513a-5p is not available in the TCGA dataset of breast cancer, we
tested the prognostic potential of NEAT1–ZFX–miR-493-5p. As
shown in Figure 4H, the NEAT1–ZFX–miR-493-5p axis was also
an unfavorable prognostic marker of breast cancer.

AsNEAT1 is one of the hubs in CCN, we further used the web
tool Kaplan–Meier Plotter (https://kmplot.com/analysis) to
perform relapse-free and metastasis-free survival analysis for
NEAT1. Three probes from the microarrays were mapped to
NEAT1. The mean expression of the probes was used for the
survival analysis of NEAT1. High and low NEAT1 expression
levels were divided according to the median expression level. As
shown in Figure 4I, NEAT1 was a prognostic marker for breast
cancer, based on relapse-free survival analysis. However, NEAT1
was not a predictor of metastasis-free survival in breast cancer
(Figure 4J).
TABLE 1 | Average number of edges and lncRNAs in CCN.

Group Average number of edges Average number of lncRNAs

3 h 882 16
6 h 809 16
12 h 662 14
April 2021 | Volume 11 | Article 656675
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We also constructed CCNs based on the T47D dataset.
NEAT1 is not a hub lncRNA in the CCNs of T47D cells. The
top five lncRNAs in the early response cells are shown in Table
S2 for the T47D dataset. Topping the list is PITPNA-AS1. But
there is no available siLncRNA dataset for PITPNA-AS1.
Therefore, we focus on MALAT1, which has the second largest
degree. MALAT1 has been widely investigated for its role in
breast cancer. Cells with a degree ≥10 forMALAT1 were selected
(Figures S4A–C).MALAT1 interacts with known ERGs, cancer-
related genes from CGC, ER-DEGs, and breast cancer-related
genes from GAD, which is consistent with the results from the
MCF-7 dataset. The ceRNA–ceRNA relationships of MALAT1–
ZFP36L2, MALAT1–PGRMC2, and MALAT1–PDS5B were
Frontiers in Oncology | www.frontiersin.org 7
shared among the three cells (Figures S4A–C). The ceRNA
survival analysis revealed that they were unfavorable prognostic
markers for breast cancer (Figures S4D–F). Survival analysis of
the hub lncRNA MALAT1 demonstrated that MALAT1 was a
prognostic marker of relapse-free survival (Figure S4G) but not
metastasis-free survival (Figure S4H).

Function of the Hub LncRNA Can Be
Inferred With CCN
Function prediction and interpretation of lncRNAs are
important factors to dissect their biological mechanisms.
Therefore, we tried to infer the function of the hub lncRNA
DLEU2, which has not been characterized well in breast cancer.
A B

D

E

C

FIGURE 3 | Cell subtypes inferred by the CCN. The RNAs in the CCN were enriched into estrogen early response hallmark, as determined by a hypergeometric
test. We showed significant enrichment of RNAs in the CCN of the (A) MCF-7 3 h (RHM223), (B) MCF-7 6 h (RHM300), and (C) MCF-7 12 h (RHM265) cells to the
early response hallmarks. (D) The minus log10 transformed p-value calculated by a hypergeometirc test for all cells at 3, 6, and 12 h. The dashed line represents the
significance threshold, p = 0.05. (E) The heatmap of differential correlation (DCorrelation) in all cells that were classified into two subtypes: early response cells vs.
others. Blue represents loss of correlation in the “Perturbed network”, while red refers to the gain of correlation in the “Perturbed network”.
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The silencing or overexpression is a commonly used measure
of lncRNA function inference. We searched the GEO database
for RNA-sequencing datasets generated by siLncRNA or
overexpression of DLEU2. As a result, we found that the
dataset for siDLEU2 (GSE162677) matched our criteria.

Differential expression analysis is a commonly used method
to explore the function of lncRNAs, especially for in silico
TABLE 2 | LncRNAs with top degree in early response subtype.

Official_Symbol Average_degree

OIP5-AS1 5.36
NEAT1 5.14
DLEU2 4.06
GABPB1-AS1 3.43
DLEU1 2.77
A B

D E F

G

I

H

J

C

FIGURE 4 | NEAT1 interactors in the CCN. The interactions between NEAT1 and its ceRNAs in the (A) MCF-7 3 h (RHM254), (B) MCF-7 6 h (RHM271), (C) MCF-7
12 h (RHM265), (D) MCF-7 3 h (RHM255), (E) MCF-7 12 h (RHM250), and (F) MCF-7 12 h (RHM266) cells. The survival analysis of NEAT1 and its ceRNA ZFX
binding to (G) miR-138-5p and (H) miR-493-5p. The relapse-free (I) and metastasis-free survival analysis (J) performed by Kaplan–Meier Plotter for NEAT1.
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experiments. The significantly affected biological functions
associated with DLEU2 expression could be theoretically
identified based on functional enrichment of the genes affected
by DLEU2. However, the dataset GSE162677 is generated from a
cervical cell line. Thus, it is not suitable for the functional
interpretation of DLEU2 in estrogen regulation in breast cancer.

In MCF-7 cells at 12 h (RHM227), DLEU2 had the highest
number of ceRNAs. GSEA was used to enrich RNAs in the CCN.
The RNAs in RHM227 were significantly enriched in the up-
regulated genes after siDLEU2 (Figure 5A), which indicates that
the genes in the CCN may have similar expression changes after
siDLEU2 in breast cancer. Therefore, we further predicted
DLEU2 function based on the genes in the CCN and used the
Frontiers in Oncology | www.frontiersin.org 9
hypergeometric test to explore the function of DLEU2 by
functional enrichment of RNAs in the CCN of RHM227. The
functional terms of the GO and REACTOME pathways were
downloaded from MSigDB (v7.2). The top 10 most significant
biological processes from GO and pathways from REACTOME
are shown in Figures 5B, C, respectively. The most significant
GO and REACTOME pathway was GPCR signaling. It should be
noted that the biological process “ION_TRANSPORT” was also
significantly enriched by RNAs in the CCN of RHM227.

Next, we focused on the ceRNAs of DLEU2 in the CCN of
RHM227. SOS1 is involved in GPCR signaling from both GO
and REACTOME, while GPR180 participates in GPCR signaling
from GO. TSPAN13, a ceRNA of DLEU2, is also a known marker
A B

D E F

G H

C

FIGURE 5 | Function inference of DLEU2 via the CCN. (A) GSEA of RNAs in MCF-7 12 h (RHM227) cell to RNAs affected by siDLEU2. The top 10 functional terms
from the (B) biological process of GO (GO_BP) and (C) REACTOME pathways enriched by RNAs in the CCN of MCF-7 12 h (RHM227) cell, as determined by the
hypergeometric test. The interested terms are colored in blue. DLEU2 and its ceRNAs (D) SOS1, (E) GPR180, and (F) TSPAN13 have prognostic potential for breast
cancer. The relapse-free (G) and metastasis-free survival analysis (H) performed by Kaplan–Meier Plotter for DLEU2.
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of late estrogen response. It synchronizes with other genes to facilitate
ion transport. We retrieved the miRNAs shared by DLEU2, SOS1,
GPR180, and TSPAN13. Multivariate Cox regression analysis of
ceRNAs demonstrated their prognostic potential in breast cancer
(Figures 5D–F). Furthermore, relapse-free and metastasis-free
survival analysis using Kaplan–Meier Plotter (https://kmplot.com/
analysis) revealed that DLEU2 can predict relapse-free survival
(Figure 5G) but not metastasis-free survival (Figure 5H).

To validate the possibility of inferring lncRNA functions via the
CCN, we also predicted the function of MALAT1, based on the
CCN of T47D cells. The dataset GSE110239 is an mRNA profile
generalized by RNA-sequencing for the mammary tumor mouse
model PyMT. Mouse genes were mapped to human gene symbols
using the R package biomaRt. The genes in the cell T47D_6 h_2C12
was significantly enriched in the up-regulated genes after MALAT1
KO (Figure S5A). Further functional analysis of RNAs in the CCN
showed that they were enriched in the pathway of “fatty acid
metabolism” (p = 0.015). The “fatty acid metabolism” has also
been reported to be enriched by DEGs between BPA exposure and
control in mouse liver. Several DEGs were key drivers, such as
Apoa2, Akr1c12, andMalat1 (22). This provides additional support
for the function inference of lncRNAs via the CCN.
DISCUSSION

The scRNA-seq technique has become a powerful tool for the
elucidation of intra-tumor and intra-cell line heterogeneity in
breast cancer (2, 23). Estrogen regulation generally involves not
only individual molecules but also molecular networks.
Therefore, identifying the CCN upon E2 stimulus is crucial to
elucidate the cellular heterogeneity of estrogen regulation at the
system level. The CCN is directly constructed based on the
single-cell gene expression profile to avoid the bias caused by
subjective cluster information. Moreover, Dai et al. demonstrated
that gene associations, rather than gene expression, can stably
portray biological processes in individual cells (4). We merged
ceRNA relations with a cell-specific RCN, which reduced the
false-positive RNA–RNA associations.

ESR1 is a pivotal regulator of breast cancer. From the cell-specific
RCN, we found that ESR1 interacted with known ERGs, such as
KLF4 and TSKU. Other known cancer-related genes from CGC and
GAD were also significantly correlated with ESR1. In addition to
these protein-coding genes, miRNAs (for example, MIR302B and
MIR4426) and lncRNAs (for example, MIR181A1HG, ATP1A1OS,
and LINC00094) were predicted to interact with ESR1. MiR-302
(including miR-302b) sensitizes MCF-7 cells to adriamycin and
mitoxantrone (24, 25). LINC00094 has been reported as a super-
enhancer-associated ce-lncRNA that promotes cell growth in
esophageal squamous cell carcinoma (26). It should be noted that
GSE107858 only performed polyA RNA sequencing, without
miRNA or lncRNA sequencing. The miRNAs or lncRNAs in the
expression profile come from the process of mapping reads to the
reference genome.

Heterogeneous cell subtypes upon E2 stimulus were inferred
by enriching RNAs in CCN to the estrogen response hallmark.
Frontiers in Oncology | www.frontiersin.org 10
The results showed that 68.7% (44/64) of the cells were
responsive to E2 stimulation, and 93.2% (41/44) of them were
early response cells. We then classified the cells into two
subtypes: early response cells and the remaining cells. The
correlation differences of the top 20 edges are shown for each
subtype in Figure 3E. Among these edge markers, some gene
components are not differentially expressed along the time series,
which means that they cannot be identified by traditional
differential analysis based on gene expression. Regarding the
edges of GATA3-AS1 and HDAC7, neither is a differentially
expressed gene. However, the edge of GATA3−AS1 and HDAC7
had a significant correlation difference in several early response
cells. GATA3–AS1 has been reported to be involved in triple-
negative breast cancer progression and immune escape by
stabilizing the PD-L1 protein and degrading the GATA3
protein (27). In contrast, the edge of AATF and ERLIN2
showed no correlation difference in early response cells but
had a correlation difference in other cells. Although AATF and
ERLIN2 are not DEGs, AATF silencing may be utilized to evoke
apoptosis and regulate the expression of ERs in MCF-7 cells (28).
ERLIN2 has been reported to promote cell survival by regulating
endoplasmic reticulum stress in breast cancer. Moreover, its
regulation by miR-410 is ER-dependent (29).

LncRNA-associated ceRNAs have been investigated in breast
cancer. To explore such key lncRNAs and their ceRNAs,
topological features such as degree were utilized to identify
lncRNAs that function as hub nodes in the CCN. NEAT1 is
the top hub gene observed in the early response subtype,
indicating its pivotal role in estrogen regulation. The ceRNAs
contain ERGs or cancer-related genes. Intriguingly, NEAT1 and
its ceRNAs can also serve as prognostic markers for breast
cancer, which further reveals that the constructed CCN has
potential clinical applications.

CCN was used to predict lncRNA function. The RNAs in the
CCN of one T47D cell were significantly enriched in the up-
regulated genes after MALAT1 KO (Figure S5A). Functional
enrichment results implied that RNAs in the CCN participated
in the pathway of “fatty acid metabolism”, which has also been
reported to be associated with BPA exposure, mainly driven by
RNAs including MALAT1 (22). This provides evidence for the
functional inference of lncRNA via the CCN. We noticed that the
hub lncRNA DLEU2 had not been functionally characterized well
in breast cancer. Therefore, the public siRNA datasets of DLEU2
were selected to infer the function of DLEU2. The GSEA results
(Figure 5A) indicate the feasibility of the functional interpretation
of lncRNAs via RNAs in the CCN. Functional terms fromGO and
REACTOME both demonstrated thatDLEU2 is involved in GPCR
signaling. In addition, the ceRNAs of DLEU2 can also predict
patient survival in breast cancer. These results can facilitate the
speculation of the biological functions of hub lncRNAs, which
have not been characterized.

The current CCN method had several limitations. We used
the gene expression profile in FPKM, which was biased when
comparing gene expression among samples. We also did not
consider the impact of inter-sample normalization on our
results. In this study, we considered only the positive and
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significantly differential RNA–RNA interactions as candidate
ceRNAs, in view of direct miRNA targets. Negative
correlations are also important because they might be
translated as indirect targets of miRNAs sponged by particular
ceRNAs. Therefore, the anti-correlated and significantly
differential RNA–RNA interactions were added to the
candidate ceRNAs. As a result, the anti-correlation will
increase the size of cell-specific RCN (Figure S6 and Table S4)
and CCN (Figure S7 and Table S4), but do not consequentially
increase the significance of CCN enrichment in estrogen early
response hallmarks (Figure S8). Moreover, it does not affect the
function inference of lncRNAs via CCN (Figure S7).

To conclude, we proposed a novel strategy for constructing a
CCN by integrating reference cell-based cell-specific RCNs and
public ceRNA networks. This CCN provides new insights into the
inference of cell subtypes by incorporating functional gene set
information. Hub lncRNAs in the early response subtype and their
ceRNAs could be potential prognostic markers for overall survival
and relapse-free survival. This CCN also provides a new
perspective to infer the functions of uncharacterized hub
lncRNAs, which are potential targets for RNA-based therapeutics.
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