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In cancer, immune exhaustion contributes to the immunosuppressive tumor

microenvironment. Exhausted immune cells demonstrate poor effector function

and sustained expression of certain immunomodulatory receptors, which can be

therapeutically targeted. CD244 is a Signaling Lymphocyte Activation Molecule (SLAM)

family immunoregulatory receptor found on many immune cell types—including NK

cells, a subset of T cells, DCs, and MDSCs—that represents a potential therapeutic

target. Here, we discuss the role of CD244 in tumor-mediated immune cell regulation.
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INTRODUCTION

In cancer, immune exhaustion contributes to the immunosuppressive tumor microenvironment.
Immune exhaustion is defined by poor effector function with decreased pro-inflammatory cytokine
production and diminished cytolytic activity caused by soluble and membrane-associated stimuli
derived from tumor and immune cells. In the last decade, research into mechanisms underlying
immune exhaustion, particularly in T cells, has revealed a variety of immunomodulatory
receptors whose sustained expression is associated with chronic infection and cancer. Examples
include Programmed cell Death protein-1 (PD-1) and its ligands (PD-L1 and PD-L2), Cytotoxic
T-lymphocyte- Associated protein-4 (CTLA-4), Lymphocyte-activation Gene-3 (LAG-3), T-cell
Immunoglobulin and Mucin domain-3 (TIM-3), and CD160. Recently, therapeutic checkpoint
inhibitors that target PD-1, PD-L1, and CTLA-4 have been used successfully in a variety of cancers
to ameliorate immune exhaustion and improve patient outcomes. However, treatment responses
remain suboptimal for many patients and further targets for immunotherapy are needed.

CD244 is an immunoregulatory transmembrane receptor in the Signaling Lymphocyte
Activation Molecule (SLAM) family that offers a potential target for immunotherapy. CD244
expression has been demonstrated on natural killer (NK) cells, γδ T cells, basophils, monocytes,
a subset of CD8+ αβ T cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC)
(1–7). After early studies established that CD244 expression on these cell types is altered under
specific pathologic conditions, more recent research has linked CD244 inhibitory signaling to
the maintenance of an exhausted phenotype in NK cells and T cells in chronic infection and
cancer (8–11). However, knowledge of CD244 signaling pathways still derives largely from NK
cell studies, although expression of CD244 adaptor molecules differs between cell types and under
various conditions (see Specific adaptor molecules) (12). Thus, further investigations are needed
to elucidate CD244 signaling mechanisms in the broad repertoire of immune cells on which the

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02809
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02809&domain=pdf&date_stamp=2018-11-28
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:edith.janssen@cchmc.org
https://doi.org/10.3389/fimmu.2018.02809
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02809/full
http://loop.frontiersin.org/people/587700/overview
http://loop.frontiersin.org/people/39508/overview
http://loop.frontiersin.org/people/39510/overview


Agresta et al. CD244 Signaling in Tumor Immunity

receptor is found. In addition, more studies are needed to
delineate the specific functions of CD244 signaling in tumor-
associated immunosuppression. Here, we discuss the role of the
CD244 receptor in tumor-mediated immune cell regulation.

CD244 RECEPTOR

CD244 (2B4) was first identified on mouse NK cells and a subset
of T cells that mediated non-MHC-restricted cytotoxicity.(1)
Subsequently, the structures of mouse and human CD244
were elucidated, the receptor’s ligand was identified as CD48,
and initial observations regarding CD244 functionality were
reported. Because CD244 is expressed on all NK cells (13),
its signaling mechanisms have been best elucidated in these
lymphocytes, although recent work suggests parallel mechanisms
in other cell types (5, 6, 11, 14, 15). The following sections review
the structure of CD244 and its signaling mechanisms.

CD244 Structure
CD244 is an Ig Superfamily Signaling Lymphocyte Activation
Molecule (SLAM) family receptor. Like all SLAM family
receptors, it is a transmembrane receptor comprised of
an extracellular segment with two immunoglobulin (Ig)-like
domains, a transmembrane region, and a cytoplasmic domain
containing tyrosine-based motifs. Unlike other SLAM family
receptors, it does not act as a self-ligand; instead, it binds
CD48, a transmembrane receptor ubiquitously expressed on
hematopoietic cells (16–18). Its cytoplasmic domain includes
four Immunoreceptor Tyrosine-based Switch Motifs (ITSMs)
that interact with a variety of specific adaptor molecules and
are capable of propagating both inhibitory and activating signals
(19, 20).

In mice, two isoforms of CD244 are expressed via alternative
splicing: a long isoform with four ITSMs and a short isoform
with only one ITSM (13, 21). In humans, two isoforms
of CD244 are also expressed via differential splicing of
hnRNA, but both human isoforms have identical intracellular
domains with four ITSMs (22). Structurally, the human
isoforms differ extracellularly by the presence or absence of
five amino acids between the immunoglobulin V and C2
domains. Functionally, the shorter human isoform has increased
affinity for CD48, and its engagement results in increased
calcium flux and increased NK-cell mediated cytotoxicity
in vitro (23).

Specific Adaptor Molecules
The ITSMs of human and murine CD244 bind Src homology
2 (SH2) domain-containing proteins, including SLAM-
associated protein (SAP), associated with activating signaling
(24), and Ewing sarcoma-activated transcript 2 (EAT2) (25),
associated with activating and inhibitory signaling (26, 27),
and phosphatases SHP1 (28), SHP2 (29), and SHIP-1 (30),
associated with inhibitory signaling (Figure 1). In mice
only, the EAT-2-related transducer (ERT) also binds CD244
ITSMs (25). In human NK cells, the c-Src kinase (Csk)
binds the second and third ITSMs (31). CD244 signaling
studies in other immune cell types, which express different

FIGURE 1 | CD244 signaling model based on NK cell studies. CD244 binds

CD48 with high affinity. Intracellular signaling is propagated via interactions

with any of several SH2 domain- containing signaling molecules. Interactions

with SAP (SH2D1A) propagate activating signals in NK cells. Interactions with

SH2 phosphatases SHP1,SHP2, SHIP-1 propagate inhibitory signals in NK

cells. Interactions with EAT2 (SH2D1B) have been shown to propagate both

activating and inhibitors signals in separate studies.

levels of these adaptor molecules, are lacking. Based on NK
cell studies, it is thought that adaptor molecule expression
levels, availability, and competitive binding determine
whether CD244 propagates an activating or inhibitory signal
(8, 24–27, 31–38).

CD244 can mediate activating signals in NK cells in the
presence of adequate concentrations of functional SAP (24)
(Figure 1). In the absence of functional SAP, CD244 is unable
to initiate activating signals in mouse and human NK cells
(32, 33). When SAP is unavailable for recruitment, CD244
instead recruits phosphatases (e.g., : SHP-1, SHP-2), which
leads to the propagatation of inhibitory signals (8, 34–37). In
subsequent investigations, specific adaptor molecule EAT-2 was
also found to produce inhibitory signaling upon binding with
CD244 in C57BL/6 mouse NK cells, reflected by decreased
production of IFN-γ and reduced killing of targets (27). However,
a later set of experiments demonstrated that C57BL/6 mouse
EAT-2A−/− and EAT-2A−/B− NK cells lose CD244-specific
cytotoxicity and IFNγ production compared with WT NK cells,
providing evidence for an activating role (26). Of note, the
initial study demonstrating inhibitory function of EAT-2 in NK
cells did not demonstrate the effect of EAT-2 deficiency on
CD244-CD48 mediated signaling specifically, whereas the later
study demonstrated a CD244-CD48 specific effect. Comparing
the function of SAP and EAT-2 in CD244 signaling, SAP
is able to bind both non-phosphorylated and phosphorylated
ITSMs, while EAT-2 only binds phosphorylated SLAM family
ITSMs (25), which may limit the contribution of EAT-2 to the
determination of activating versus inhibitory CD244 signaling.
For example, in the presence of SAP, the association of inhibitory
adaptor molecule SHP-2 is decreased, while EAT-2 partially
inhibits the binding of SHP-2, but to a lesser degree than
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SAP (25, 38). Likewise, in humans, the association of CD244
with SHP-2 and SAP in transfected NK cells is mutually
exclusive (38).

A mechanistic model demonstrating inhibitory signaling by
CD244 in human NK cells showed that while the first, second,
and fourth ITSMs of CD244 activate NK-mediated cytotoxicity
by binding SAP, the third ITSM was able to bind phosphatases
SHP-1, SHP-2, SHIP, and Csk, and inhibit NK cytotoxicity
(31). However, only one molecule associates with the ITSM at
a time, and the presence of SAP prevented binding of these
phosphatases. This competitive interaction makes SAP essential
to the regulation of activating versus inhibitory signaling from
CD244 in human NK cells.

CD244 Expression Levels and Signal
Outcome
CD244 expression is altered on different cell types under
various physiologic and pathologic conditions (discussed in later
sections). Alterations in the level of CD244 expression and
the degree of CD244-CD48 ligation appear to contribute to
determination of activating versus inhibitory signaling. CD244
has been shown in vitro to produce an activating function in
murine NK cells when expressed at low surface levels, and an
inhibitory function when expressed at high levels (39), although
the pathway leading to increases in CD244 expression has not
been determined. The inhibitory function can be overcome when
fewer CD244 molecules are engaged or when SAP is over-
expressed in transfectants expressing high surface concentrations
of CD244 (39). This suggests that the CD244-to-SAP ratio is
crucial in determining whether CD244 binding propagates an
activating or inhibitory signal (Figure 2). The role that relative
concentrations of the other CD244-associated adaptor molecules
may play in determining signal type has not yet been elucidated.

CD244 IN NK CELLS

Early Studies of CD244 as an Activating
Receptor in NK Cells in vitro
NK cells are critical for surveillance and eradication of cancer
cells. CD244 is expressed on all NK cells (4, 20), where
its signaling mechanisms were initially characterized. Early
experiments showed that treatment of mouse NK cells with
anti-2B4 monoclonal antibody (mAb) led to increased IFNγ

production and augmented non-MHC-restricted killing of
tumor cells in vitro (1). In addition, CD244-CD48 homotypic
interactions were shown to be essential for optimal human NK
cell proliferation in response to IL-2, as well as contributing
to murine NK cell proliferation, lytic potential, and cytokine
secretion (40, 41). Furthermore, cross-linking of CD244 on
human NK cells using anti-CD244 mAb induced NK cell-
mediated lysis of target cells (2). However, the same study
also found that treatment of cultured human NK cells with
anti-CD244 had an antagonistic effect on IL-2-stimulated
proliferation, suggesting that CD244 could mediate activating or
inhibitory signaling.

CD244 as an Inhibitory Receptor in NK
Cells in vitro and in vivo
Soon after identification of this dual functionality, it was
determined that CD48+ target cells inhibit murine NK cell
effector function, and blocking the CD244-CD48 interaction
with CD244 or CD48 mAb relieves this inhibition, causing
enhanced target cell lysis (36). In addition, CD244 preferentially
accumulates at the interface between NK and target cells
during non-lytic events (36). These results introduced an
inhibitory role for CD244 in mouse NK cells. Findings by Lee
et al. further showed that CD244 ligation inhibits NK cell-
mediated lysis of CD48+ tumor cells and NK cell production
of IFNγ in vitro (37). Correspondingly, in vivo administration
of anti-CD244 mAb significantly decreased the number of
B16F10 syngeneic melanoma lung nodules in wildtype (WT)
mice following intravenous injection (42). However, female
CD244−/− mice showed poor rejection of both CD48(+)
and CD48(–) B16 melanoma cells, suggesting a gender-based
difference in these genetically-modified mice. Further studies
are needed to determine whether this difference exists in
other genetic backgrounds. In both of these studies, CD244−/−

mice demonstrated increased ability to reject CD48(+) B16
melanoma cells compared with WT. Taken together, these
data strongly support an inhibitory role for CD244 in
NK cells.

Inhibitory CD244 signaling in NK cells has also been
demonstrated in human cancer patients. When CD244+ NK
cells were co-cultured with tumor-infiltrating, CD48+CD68+
monocytes/macrophages obtained from patients with
hepatocellular carcinoma, they initially demonstrated increased
TNFα and IFNγ production, followed by exhaustion with
significantly decreased cytokine production and increased
apoptosis (9). This exhaustion did not occur in CD244+
NK cells co-cultured with non-tumor liver-infiltrating
monocyte/macrophages, which exhibited significantly lower
expression of CD48 than those from tumor. Importantly,
the exhaustion seen in NK cells co-cultured with tumor-
associated CD48hi monocytes/macrophages could be overcome
by blocking the CD244-CD48 interaction using anti-CD48
mAb. These observations support a role for CD244 signaling
in the development of NK cell exhaustion in the tumor
microenvironment (Figure 3A).

CD244 FUNCTION IN CD8+ T CELLS

CD244 Signaling and CD8+ T cell
Exhaustion in Chronic Infection
CD244 is co-expressed on a subset of antigen-experienced,
effector and effector memory CD8+ T cells with other
immunoregulatory receptors including PD-1, LAG3, CD160,
CTLA-4, and TIM-3 in mice and humans (11, 43–45). In
mouse models of chronic viral infection using lymphocytic
choriomeningitis virus (LCMV) clone 13, these T-cells exhibit an
exhausted phenotype (10, 11). As in NK cells, CD244 receptor
concentration affects whether activating or inhibitory signaling
occurs. In LCMV-specific CD8+ T cells with low-intermediate
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FIGURE 2 | Model showing how the relative concentrations of CD244 and SAP may contribute to the determination of activating versus inhibitory CD244 signaling.

(A) Under normal physiologic conditions, NK cells and CD8+ T cells express CD244 at low concentrations. Provided a normal intracellular concentration of SAP is

present,activating signals are propagated upon CD244-CD48 interaction. (B) When SAP concentrations are low,absent,or dysfunctional (unable to bind), such as in

X-linked proliferative disease,CD244 propagates an inhibitory signal upon CD244-CD48 interaction. (C) In the setting of cancer or chronic viral infection,NK cells and

CD8+ T cells express high concentrations of CD244,and normal concentrations of SAP become insufficient to saturate CD244 binding sites upon CD244-CD48

interaction; an inhibitory signal is propagated.

FIGURE 3 | Increased CD244 expression on immune cells in the tumor microenvironment corresponds to increased immunosuppression via effector cell exhaustion

(A,B) and increased production of immunosuppressors by myeloid derived suppressor cells (MDSCs) (C).
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CD244 expression, blocking CD244 with anti-CD48 mAb
decreases IFNγ production (reflecting activating signaling), while
blocking CD244 on exhausted CD8+ T cells with high CD244
expression significantly increases IFNγ production (reflecting
inhibitory signaling) (11). Of note, SAP expression decreases
in effector CD8+ T cells over time (12), suggesting that, as in
NK cells, relative decreases in SAP concentration may lead to
inhibitory CD244 signaling in CD8+ T cells. These findings
support increased CD244 expression as a mediator of CD8+ T
cell exhaustion in the setting of persistent antigen exposure.

In humans, CD244 expression has been shown to be
increased on CD8+ T cells in chronic infection (15, 46–
51). In these infections, CD244 expression correlates with
CD8+CD45RA+CCR7- effector or effector memory subtypes
(46, 47). CD244 expression is higher on virus-specific CD8+
T cells in patients with chronic infection than with acute
infection and correlates with PD1 expression (15, 47). Human
CD8+ T cells with high CD244 expression show evidence of
exhaustion that can be reversed with CD244 blockade (15,
47). Ex vivo, blockade of CD244 using anti-CD244 mAb on
human CD244+CD8+T cells leads to increased virus-specific T
cell proliferation, increased expression of CD107a and perforin
(markers of degranulation), and IFNy, and increased TNFα
and IL-6 in culture supernatants (15, 47, 50, 51). Similarly, the
response to CD244 cross-linking in vitro seems to depend on
the relative expression of CD244, with decreased proliferation
in response to CD244 activation in CD244hi CD8+ T cells
compared to CD244lo/intCD8+ T cells (47). Likewise, the
combination of anti-CD3, anti-CD28, and CD244 cross-linking
increased IFNγ and degranulation only in CD244lo CD8+ T
cells, but not in CD244hi CD8+ T cells. These findings suggest
that, as in mice, CD244 in humans is a marker of CD8+ T
cell exhaustion in chronic infection, and when expressed at high
concentrations, acts as an inhibitory receptor.

CD244 Signaling and CD8+ T cell
Exhaustion in Cancer
In mouse models of cancer, CD244 is expressed on CD8+ T
cells with an exhausted phenotype. In syngeneic C57BL/6 mouse
models of pancreatic adenocarcinoma and lung carcinoma,
frequencies of T-cells exhibiting co-inhibitory receptors CD244,
PD-1, and BTLA were increased in tumor-bearing mice
compared with naïve controls (52). Consistent with a role in T-
cell exhaustion, increased CD244 expression on antigen-specific
CD8+ T cells from the spleens of tumor-bearing mice correlated
with reduced IL-2 and IFN-γ production (Figure 3B).

In human cancers, CD244 also shows increased expression
on exhausted CD8+ T cells. In melanoma, CD244 is increased
in tumor-infiltrating lymphocytes compared with peripheral
blood, and CD8+ T cells from tumor and peripheral blood
show increased CD244 expression compared with CD8+ T
cells from healthy controls (43, 44). CD244 is also co-
expressed on melanoma-associated CD8+ T cells with other
inhibitory receptors, including PD-1, TIM-3 (43, 44), CD160
(43, 45), KLRG1 (44). Because non-hematopoietic cancers do not
generally express CD48, T-cell CD244 signaling likely depends

on the availability of immune cell-cell interactions within these
tumor microenvironments, paralleling the dependence of CD244
signaling in NK cells on local macrophages in hepatocellular
carcinoma (9). In multiple myeloma patients, CD8+ T cells
demonstrated an exhausted phenotype with decreased CD28
expression, decreased proliferation, and decreased degranulation
as measured by mobilization of CD107a (45). These exhausted
CD8+ T-cells co-expressed increased CD244, PD-1, CTLA-4,
and CD160 compared with non-exhausted CD8+ T cells from
healthy controls. Similarly, in AML patients, CD244 expression
was increased on peripheral blood T cells compared to healthy
controls and correlated with PD-1 expression (53). In another
series of AML patients, CD244 expression on T cells was
higher in relapse than in new diagnosis, and the degree of
CD244 expression in relapsed AML was equivalent to that seen
in untreated HIV patients (54). The authors of this second
study did not see any correlation between increased CD244
or PD-1 expression and proliferation or cytokine secretion
in vitro. However, a study by Epling-Burnette et al. demonstrated
increased expression of CD244 and decreased expression of
activation markers CD28 and CD62L on circulating T cells in
myelodysplastic syndrome (MDS) patients, suggesting a link
between increased CD244 expression and T cell exhaustion in
this segment of the MDS/AML spectrum (55).

CD244 FUNCTION IN MYELOID CELLS

Dendritic cells are professional antigen-presenting cells that play
a crucial role in the induction and maintenance of anti-tumor
immunity by cross-presenting tumor antigens and cross-priming
tumor-specific T cells. Importantly, the presence of intratumoral
DCs is known to correlate positively with prognosis in multiple
human cancers (56). However, recent studies have shown that
DCs can play an activating or inhibitory role in the tumor
microenvironment depending on DC subset, maturation status,
and presence of (co-)stimulatory and inhibitory receptors and
cytokines (57). Both mouse and human DC populations express
CD244. Expression is higher on so-called conventional DC
populations compared with plasmacytoid DCs (6). Functionally,
CD244−/− DCs from C57BL/6 mice produce significantly higher
levels of pro-inflammatory cytokines than WT DCs upon TLR
stimulation in vitro (6). In addition to priming T cells, DCs
contribute to anti-tumor immunity by activation of NK cells.
CD244−/− signaling in DCs appears to affect this function:
in vitro, CD244−/− DCs elicit greater NK cell activation thanWT
DCs.(6) Notably, SAP is not expressed at significant levels inDCs,
while EAT-2, SHIP-1, SHP-1, and SHP-2 are all expressed, which
may account for the inhibitory role of CD244 signaling in DCs.
Further studies are required to elucidate the CD244 signaling
pathways in DCs and to determine the influences of the tumor
microenvironment on those pathways.

Myeloid-derived suppressor cells (MDSCs) are highly
suppressive immune cells found in the tumor microenvironment
and in the peripheral blood and spleens of tumor-bearing
hosts. Increased numbers of MDSCs have been associated
with tumor progression (58, 59), metastases (60, 61), and poor
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response to current therapies (62–64). Two morphologically
distinct subtypes of MDSCs have been identified in both mice
and humans: monocytic MDSC (Mo-MDSC: CD11b+ Ly6Chi

Ly6G- in mice; CD33+ HLA-DRlo/− CD14+ in humans) and
granulocytic MDSC (Gr-MDSC: CD11b+ Ly6Clo/− Ly6G+
in mice; CD33+ HLA-DRlo/− CD15+ in humans) (65). Both
subtypes have been shown to produce suppressive mediators
including inducible nitric oxide synthase (iNOS), arginase-1,
indoleamine 2,3 dioxygenase (IDO), IL-10, and TGFβ1 (66–70).
Both MDSC subtypes are known to suppress CD8+ T-cell
function (71–73). Recently, the expression of CD244 has been
described on MDSCs in tumor-bearing mice, with 30–50% of
Gr-MDSC expressing CD244 in four syngeneic tumor models.
Distinct differences in Gr-MDSC function were observed
between CD244+ and CD244– populations. CD244+ Gr-MDSC
significantly suppressed antigen-specific CD8+ T cell response
compared to CD244- Gr-MDSC, which did not suppress.
Additionally, expression of CD244 on Gr-MDSC correlated with
reactive oxygen species (ROS) production and myeloperoxidase
(7) (Figure 3C). The correlation between CD244 expression and
immunosuppressive capacity in these tumor-associated MDSCs
is consistent with the inhibitory role of CD244 signaling in NK
cells and CD8+ T cells in the tumor microenvironment.

Therapeutic Considerations and
Discussion
CD244 is a SLAM family receptor with activating and inhibitory
signaling capacities implicated in the functions of NK cells,
T cells, DCs and MDSCs in the tumor microenvironment.
CD244 appears to predominantly propagate inhibitory signaling
in tumor-associated immune cells, but the interplay of factors
determining activating versus inhibitory signaling has not been
fully elucidated. Increased cell suface density of CD244 and
decreased or absent concentrations of functional SAP have both
been identified as factors associated with inhibitory signaling
(39), while conversely, decreased CD244 density and normal
concentrations of functional SAP have been associated with
activating signaling (8, 36, 37, 42, 74, 75). In addition, binding to
the ITSMdomains of the CD244 receptor is a competitive process
with SAP preferentially binding over the adaptor molecules
associated with inhibitory CD244 signaling (8, 34, 35, 38). These
patterns suggest that the ratio of SAP to CD244 is critical to
the determination of activating versus inhibitory signaling by
this receptor. We theorize that the inhibitory signaling seen in
exhausted immune cells with increased CD244 expression occurs
because the increased density of CD244 decreases the ratio of
SAP to CD244, allowing binding of one of the other adaptor
molecules and propagation of an inhibitory signal. Future studies
will test this hypothesis in tumor-associated T-cells, DCs, and
MDSCs, as differential expression of these molecules is expected
to affect the proposed mechanism.

Corresponding to inhibitory signaling in NK cells, CD244
demonstrates an inhibitory function when expressed at higher
concentrations on CD8+ T cells that demonstrate an exhausted
phenotype in chronic viral infection and cancer (10, 11, 46, 47,
50, 52, 76). Furthermore, in MDSCs from tumor-bearing mice,
CD244 expression correlates with suppression of antigen-specific

CD8+ T cell function and production of suppressive molecules,
suggesting a role for CD244 signaling in the immunosuppressive
function of these cells. CD244−/− DCs produce increased
levels of pro-inflammatory cytokines and increased activation
of NK cells, reflecting inhibitory CD244 signaling in DCs.
Taken together, these findings suggest that CD244 signaling on
NK cells, CD8+ T cells, DCs, and MDSCs may contribute to
immunosuppression in the tumor microenvironment.

The evidence that inhibitory CD244 signaling contributes
to immunosuppression in the tumor microenvironment
suggests that targeting CD244 could provide a strategy for
overcoming resistance to existing checkpoint inhibitors by
multiple mechanisms. For example, blocking CD244 signaling
on exhausted CD8+ T-cells may ameliorate the exhausted
phenotype and contribute to re-activation of memory CD8+ T
cells in cancer. Blocking CD244 signaling on DCs may increase
pro-inflammatory cytokine release and activation NK cells and
CD4+ T cells. Finally, blocking CD244 signaling in MDSCs
may decrease the suppressive capacity of these cells, which
are known to correspond with more aggressive disease and
resistance to current therapies (62–64, 77–79). Importantly,
CD244−/− mice appear phenotypically normal with normal
maturation of the immune cell repertoire and a normal lifespan
compared with other C57BL/6 laboratory mice, suggesting that
therapeutic CD244 blockade could be feasible from an adverse
effects standpoint. Thus, targeted anti-CD244 therapy could
be of benefit as an adjunct to existing checkpoint inhibitors
or even conventional chemotherapy strategies with limited
myelosuppression.

Besides the effect on immune cells, recent evidence suggests
a direct effect of CD244 signaling on CD244-expressing tumor
cells. Specifically, CD244 signaling may also play a role
in leukemogenesis, adding to its potential as a therapeutic
target. A recent study shows that knock-down of CD244
in human leukemia cell lines produces markedly impaired
proliferation in vitro and in vivo, while the repopulation ability of
hematopoietic stem cells remains unimpaired following CD244
knockdown (80). Furthermore, in a mouse model of AML,
leukemogenesis is dramatically delayed upon CD244 deletion.
CD244 may therefore represent a unique therapeutic target if
future studies confirm its role as a direct anti-leukemia target
and support the hypothesis that it mediates immunosuppressive
function in the tumor microenvironment.
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