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Research and development within the pharmaceutical indus-
try has become increasingly challenging, as evidenced 
by late-stage development failures due to lack of efficacy 
and problems securing regulatory approval for new drugs.1 
Model-based drug development is a successful alternative to 
the existing empirical drug development path.2–4 This mathe-
matical approach to analyzing pharmacokinetic and pharma-
codynamic data has proved particularly useful in the efficient 
selection of dosages in patient studies.5 More recently, it has 
been recognized that applying modeling efforts earlier in the 
drug development pathway can lead to more efficient clini-
cal trials by (i) including rich, high-quality data from Phase 
1 studies in the analysis of subsequent trials, (ii) including 
biomarker and efficacy endpoints early in the development 
process to design subsequent trials, and (iii) performing clini-
cal trial simulations (CTSs) to predict patient outcome before 
subsequent trials are conducted.6 CTS requires information 
on the expected outcomes of a clinical trial, and model-
based meta-analysis (MBMA) can provide that by pooling 
data across studies to define the mean and variance asso-
ciated with a measured characteristic across studies. In 
a drug development setting, MBMA techniques have been 
used to characterize the dose–response (D–R) relationship 
for statins, biologics for use in inflammatory bowel disease 
and rheumatoid arthritis, antimigraine treatments, trabect-
edin, and latanoprost.7–10 In addition, MBMA has been uti-
lized to define relationships between biomarkers and efficacy 
endpoints using quantitative models.11,12 Quantitative mod-
els support rational dose selection and inform trial design 
decisions with the objective of maximizing the probability of 
success, as recently demonstrated in the treatment of diabe-
tes with rivoglitazone.13 Additional information derived from 
disease and trial models are elements of model-based drug 
development.2 More recently, the drug industry has focused 

on quantitative pharmacology at early stages to inform Phase 
2 dose selection.14

Safety, tolerability, and pharmacokinetics are often the 
primary objectives of first-in-human studies. While these 
studies may show that high doses (e.g., a 700 mg intrave-
nous infusion of a monoclonal antibody) are safe and well 
tolerated, study outcomes may lack biomarker or clini-
cal signs due to the healthy volunteer population studied. 
Understanding the portfolio value of novel compounds is 
a primary objective of a first-in-patient (FIP) study, where 
biomarker or clinical signs may be available to guide drug 
development with a relatively small investment of time and 
resources. Results from this early study may provide insight 
into whether a sponsor should accelerate or slow develop-
ment and/or resource allocation based on an early look at 
the exposure–response relationship. Evidence from such 
a study can be useful in making decisions around progres-
sion to and design of the next stage of clinical development 
(large-scale, patient dose-ranging studies). Sponsors may 
categorize FIP studies as Phase 1 or early Phase 2; rather 
than using a particular numerical term, we refer to this study 
by its function: the first study of a drug in a relevant patient 
population. Two key pieces of information are desired from 
FIP studies. First, the design should demonstrate unambigu-
ous efficacy related to the disease process so that a sound 
decision on proceeding, or not, into further clinical develop-
ment, the so-called “Go/No-Go decision” (G/NG), can be 
made. Second, the design should reveal the relationship 
between drug dose level and efficacy that shapes choices 
of dose and regimen in further clinical development, the so-
called “dose–response  relationship”.

However, when first-in-human (healthy volunteer) stud-
ies demonstrate no changes in biomarker or clinical signs, 
it is not clear what study design should be employed for FIP 
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studies. For the purposes of this work, it is assumed that 
safety and tolerability of a drug up to 700 mg via the intrave-
nous route have been established in healthy volunteers prior 
to considering a FIP study. In addition, no dose-selection guid-
ance from biomarker or clinical signs are available in healthy 
volunteers. That is, the drug under consideration only has 
meaningful and detectable biologic impact in a disease state, 
and no safety signals at very high doses of drug are evident. 
If, instead, some measure of biologic impact via biomarker, 
clinical signs, or safety signals were available, this D–R infor-
mation could be used to further tailor the FIP study design 
under consideration.15 One typical FIP study design may be 
to assign the patient either placebo or the highest tolerated 
dose in healthy volunteers (hereafter: concentrated designs). 
Alternatively, patients may be assigned different dose lev-
els across the range of acceptable dose levels  tolerated in 
healthy volunteers (hereafter: distributed design). Further, it 
is assumed that a small (N = 16) FIP trial in  psoriasis patients 
will be used to demonstrate clinical impact. In the context of 
psoriasis trials, the key metric around which decisions are 
taken is the improvement in Psoriasis Area Severity Index 
(PASI) in patients during therapy.16 Early G/NG and D–R can 
be derived from single doses of biologics by monitoring PASI 
over a 12-week window after a single injection.17 Tradition-
ally, a sponsor may elect to move into a larger, dose-ranging 
(Phase 2) study in patients. It is the purpose of this work to 
determine if it is possible to use a smaller (N = 16) FIP study 
to gain insight into the feasibility of a drug before moving into 
larger and more costly studies. Finally, it is assumed that 
positive results for this FIP study are required for further drug 
development in Phase 2.

MBMA can inform trial design by leveraging available data 
to provide a realistic basis for CTS. Assuming a lack of bio-
marker or clinical signs in first-in-human for a candidate drug, 
we use CTS to understand if a FIP trial design can correctly 
identify the properties of successful drugs (“good drugs”) and 
unsuccessful drugs. In general, a FIP trial design, at a mini-
mum, should be able to correctly identify a successfully mar-
keted drug as such with a low false-negative rate (i.e., failing 
to identify a successful molecule as such). In addition, MBMA 
can assist in creating other test cases (“bad drugs”) where a 

FIP trial design should detect poor performance with a low 
false-positive rate (i.e., failing to identify a poor molecule as 
such). To date, the application of meta-analysis to inform FIP 
study design has not been published.

The objective of this analysis was to examine the quality of G/
NG and adequacy of estimated D–R given two FIP trial design 
strategies (concentrated vs. distributed designs). Efficient use 
of clinical trial subjects, time, and resources motivated this 
effort as an investigation of “learn and confirm” using trial simu-
lation.18 MBMA was utilized to provide realistic parameters for 
placebo response, drug potency, and maximal effect for a class 
of efficacious monoclonal antibodies with linear pharmacoki-
netics used in psoriasis which enabled subsequent trial simula-
tion with the goal of optimizing FIP study design.

reSUlTS
Test compound selection
MBMA of biologic treatments for psoriasis.  Data from tri-
als evaluating adalimumab, golimumab, and ustekinumab 
in patients with psoriasis were analyzed using MBMA.19–23 
The log of the mean ratio in PASI score over baseline was 
analyzed using a D–R meta-analysis, yielding model param-
eters for mean % change in PASI score (Table 1).24 For the 
included marketed compounds, adalimumab, golimumab, and 
ustekinumab, the meta database analysis demonstrated that 
an Emax model was adequate to describe the D–R properties 
of these compounds. All of the marketed compounds were 
found to have equal maximum change in PASI % improve-
ment (absolute maximal difference from placebo = 82.3%). 
The placebo rate was small but non-negligible. The marketed 
compounds were found to have different doses that produce 
half of the maximum effect (ED50 = 16.9, 45.5, and 13.9 mg 
for adalimumab, golimumab, and ustekinumab, respectively). 
Figure 1 shows a plot of the expected PASI % improvement 
by dose for these marketed compounds and Table 1 shows 
their Emax model parameters.

Additional test cases. Additional test cases were selected 
where E0, ED50, and Emax were perturbed from the ranges 
suggested by the marketed compounds to understand the 

Table 1 Test case potency parameters and desired trial outcome

group Compound

Simulation parameters Desired trial outcome

Maximal absolute  
difference from placebo  

PaSI % change (%)
eD50  
(mg)

Correct  
g/ng

estimated  
eD50 within

Marketed examples adalimumab 82.3 16.9 G 8.50–33.8

golimumab 82.3 45.5 G 22.8–91.0

ustekinumab 82.3 13.9 G 6.90–27.7

No-Go examples discontinumab 22.6 11.8 NG 5.90–23.6

mehmimab 40.7 32.1 NG 16.0–64.1

Go examples cuspmimab 58.8 32.1 G 16.0–64.1

lowpomab 82.3 182 G 91.0–364

nopomab 82.3 728 G 364–1460

Placebo response (E0) is 9.5% for all compounds.
ED50, the dose providing half maximal drug response; G/NG, Go/No-Go; PASI, Psoriasis Area Severity Index.
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design performance sensitivity to test compound proper-
ties (Table 1). Hypothetical cases, discontinumab and 
mehmimab, were selected with ED50 within the range of 
the marketed test cases, 11.8 and 32.1 mg, respectively, 
but with poor and marginal maximal absolute difference 
from placebo values of 22.6 and 40.7% assigned to dis-
continumab and mehmimab, respectively. The lower maxi-
mal response is a realistic assumption in the development 
of therapeutics targeted to novel mechanisms. Cuspmimab 
was selected to have the same potency as mehmimab, 
but with slightly higher maximal absolute difference from 
placebo value of 58.8%. Lowpomab and nopomab were 
assigned the maximal absolute difference from placebo 
values equal to those of the marketed test cases, 82.3%, 
but assigned ED50 values that were higher than the mar-
keted cases, 182 and 728 mg, respectively, to test sensitiv-
ity of the analysis to these potentially difficult to develop 
compounds. Figure 1 shows the D–R relationship for these 
additional test cases (discontinumab, mehmimab, cusp-
mimab, lowpomab, and nopomab) and Table 1 shows their 
Emax model parameters.

Design performance metrics
G/NG criteria. Based on the MBMA results of the marketed 
compounds, the G/NG criteria were defined as a 50% point 
improvement from placebo response at the maximum fea-
sible dose. That is, considering the strength of marketed 
molecules in this space and a maximal feasible dose of 
700 mg, a novel agent would need to exhibit at least a 50% 
point absolute improvement in PASI score over placebo to 
be considered for further development. Marketed molecules 
in the space achieve 81–82% absolute improvement in PASI 
over placebo response at the highest feasible dose (700 mg), 
and so these criteria set a relatively permissive advancement 
threshold. Table 1 and Supplementary Table S1 give the 
true values of maximal response, ED50 and placebo response 
used in CTS, and the G/NG decision for a FIP study to be 
deemed successful in providing good G/NG decision making. 

A FIP study design should suggest continued development 
for the marketed test cases, adalimumab, golimumab, and 
ustekinumab, as these compounds demonstrate an 81.8, 
81.0, and 81.9% absolute difference between drug effect 
at 700 mg and placebo effect, respectively. A clinical study 
that suggests discontinuing development of these effica-
cious molecules is a false-negative result. A FIP study should 
suggest discontinuing development for the discontinumab 
and mehmimab cases, having only 22.3 and 39.4% abso-
lute difference between drug effect at 700 mg and placebo 
effect, respectively. A clinical study that suggests continuing 
development of these molecules is a false-positive result. A 
FIP study should suggest continuing development for the 
cuspmimab, lowpomab, and nopomab cases, having 57.3, 
77.0, and 62.6% absolute difference between drug effect at 
700 mg and placebo effect, respectively. As these effects are 
close to the G/NG criteria, we would expect false-negative 
results to be more common than observed for the marketed 
test compounds.

D–R criteria. We define good D–R information as deriving 
an ED

50 estimate from the FIP trial within twofold of the true 
value. That is, if a small FIP study returns an estimate of ED50 
within twofold of the truth, doses selected in the next stage of 
development (Phase 2 dose-ranging) are likely to efficiently 
deliver a refined estimate of ED50. In other applications, the 
criteria of twofold could be relaxed or made more stringent, 
depending on the weight of this information for development 
decisions. Table 1 gives the true values of ED50 used in CTS 
and the range within which an estimate of ED50 must fall for 
a FIP study to be deemed successful in providing good D–R 
information.

FIP trial design choice
Distributed trial designs. The distributed trial design involves 
assigning psoriasis patients across a range of feasible and 
practical drug dose levels. Here, we assume that the drug 
product is available in a 70 mg/ml presentation and choose 

Figure 1 Dose–response relationships from a meta-analysis of marketed biologics adalimumab, golimumab, ustekinumab (solid lines); the 
hypothetical No-Go test cases discontinumab, mehmimab (short dashed lines); and the Go test cases cuspmimab, lowpomab, nopomab 
(long dashed lines). Expected typical geometric mean percent reduction in PASI (y-axis) vs. dose level (x-axis) are shown with the dose levels 
selected (0, 21, 70, 210, and 700 mg) for simulation study (blue shaded area) shown for reference.
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doses of 21 mg (0.3 ml), 70 mg (1 ml), 210 mg (3 ml), and 
700 mg (10 ml). Given the ED50 estimates from the MBMA 
of marketed test cases (16.9, 13.9, and 45.5 mg), the 21 
and 70 mg dose levels are likely to produce submaximal 
response, whereas the 210 and 700 mg doses are likely to 
product maximal response in psoriasis patients. The results 
of this design are more complex to analyze than for the con-
centrated design, requiring a model of the D–R relationship. 
The design questions involve both the ratio of placebo to 
actively treated patients as well as the number of patients 
assigned to each dose level. Table 2 describes the patient 
allocation choices considered in this work for a small (N = 
16) FIP trial. The distributed designs spread all experimen-
tal information on determining placebo and D–R across the 
range of allowed doses, and differ only in the number of 
patients assigned placebo or active doses (7:1, 3:1, 5:3 and 
1:1 active:placebo).

Concentrated trial designs. The concentrated trial design 
involves assigning all psoriasis patients either placebo or 
the highest feasible drug dose level tested in healthy volun-
teers (700 mg). The results of this design are relatively easy 
to analyze by standard ANOVA techniques, and the only 
design question involves the ratio of placebo-treated patients 
to active drug-treated patients. Table 2 describes the patient 
allocation choices considered in this work for a small (N = 16) 
trial. These designs concentrate all experimental information 
on determining patient response given placebo or the highest 
feasible dose, and the designs differ only in the number of 
patients assigned placebo or the highest feasible dose (7:1, 
3:1, 5:3 and 1:1 active:placebo).

Impact of design choice on g/ng decision making
Marketed test cases. Figure 2 shows the design perfor-
mance for G/NG decision making for the marketed test 
cases adalimumab, golimumab, and ustekinumab, in which 

the correct decision after FIP is to continue development. 
All designs frequently (93–100%) identified the marketed 
biologic test case’s Go decision correctly (Table 3). The per-
centage of correct Go decisions was similar between designs 
with matched active:placebo ratios, differing by 1% (Table 3). 
Design performance was sensitive to placebo patient num-
bers for all designs, favoring designs with an equal balance 
in active and placebo-treated subjects (Table 3).

No-Go hypothetical test cases. Figure 2 shows the design 
performance for G/NG decision making for the hypotheti-
cal test cases, discontinumab and mehmimab, in which 
the correct decision is to discontinue development due to 
lack of competitiveness. All designs frequently (64–95%) 
identified the correct No-Go decision for these hypotheti-
cal test cases (Table 3). An advantage to the concentrated 
design is evident in the percentage of correct No-Go deci-
sions for these hypothetical test cases (Table 3), and the 
advantage was 3–6%. Design performance was sensitive 
to placebo patient numbers for all designs, favoring designs 
with an equal balance in active and placebo-treated sub-
jects (Table 3).

Go hypothetical test cases. Figure 2 shows the design per-
formance for G/NG decision making for the hypothetical test 
cases cuspmimab, lowpomab, nopomab, cases in which the 
correct decision was to continue development. All designs 
frequently (58–98%) identified the correct Go decision for 
these hypothetical test cases (Table 3). For these hypotheti-
cal test cases, the relative advantage between distributed 
and concentrated design was more nuanced that the pre-
vious cases. For cuspmimab, distributed designs were bet-
ter by 2–3% for all matched active:placebo ratios. Figure 2 
shows that the median of the estimates of absolute improve-
ment over placebo deviated from the true value for the con-
centrated designs more so than for the distributed designs. 

Table 2 Distributed and concentrated design dose level assignments (mg)

Subject  
number

Distributed designs Concentrated designs

7 active: 
1 placebo

3 active: 
1 placebo

5 active: 
3 placebo

1 active: 
1 placebo

7 active: 
1 placebo

3 active: 
1 placebo

5 active: 
3 placebo

1 active: 
1 placebo

1 0 0 0 0 0 0 0 0

2 21 21 0 0 0 0 0 0

3 21 21 21 21 700 0 0 0

4 21 21 21 21 700 0 0 0

5 0 0 0 0 700 700 0 0

6 70 70 0 0 700 700 0 0

7 70 70 70 70 700 700 700 0

8 70 70 70 70 700 700 700 0

9 210 0 0 0 700 700 700 700

10 210 210 210 0 700 700 700 700

11 210 210 210 210 700 700 700 700

12 210 210 210 210 700 700 700 700

13 700 0 0 0 700 700 700 700

14 700 700 700 0 700 700 700 700

15 700 700 700 700 700 700 700 700

16 700 700 700 700 700 700 700 700
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For lowpomab and nopomab cases, distributed designs at 
the 7:1 active:placebo ratio were better by 2%, at the 3:1 
active ratio equal to the concentrated designs, and at the 5:3 
and 1:1 active:placebo ratios worse by 2–7%.

Impact of design choice on D–r information
Concentrated designs, by definition, offered no information 
regarding D–R. The results for the distributed designs are 
reported below.

Figure 2 Design performance for Go/No-Go decision making for the marketed test cases adalimumab, golimumab, ustekinumab (top panel); 
the No-Go test cases discontinumab, mehmimab (lower left panel); and the Go test cases cuspmimab, lowpomab, nopomab (lower right panel). 
Estimates of PASI improvement over placebo at the highest dose are shown on the y-axis for each compound by design type (distributed and 
concentrated from left to right) and active to placebo ratios (from left to right) as boxplots. Go/No-Go criterion (PASI improvement over placebo 
at the highest dose > 50%) is shown as a solid, red, horizontal line and the true for simulation is shown as a dashed, black, horizontal line.
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Table 3 Percentage of simulated trials providing the correct Go or No-Go development decision

group Drug

7 active:1 placebo 3 active:1 placebo 5 active:3 placebo 1 active:1 placebo

Distributed 
(%)

Concentrated 
(%)

Distributed 
(%)

Concentrated 
(%)

Distributed 
(%)

Concentrated 
(%)

Distributed 
(%)

Concentrated  
(%)

Marketed  
Examples

adalimumab 94 94 98 98 99 99 99 100

golimumab 94 93 97 98 99 99 99  99

ustekinumab 95 94 98 99 99 99 99 100

No-Go  
examples

discontinumab 78 81 87 90 91 94 92  95

mehmimab 64 67 70 75 74 78 75  81

Go  
examples

cuspmimab 60 58 60 58 61 58 61  59

lowpomab 90 88 94 95 95 97 94  98

nopomab 68 66 69 69 70 72 66  73
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Marketed test cases. All distributed designs frequently (45–
65%) identified the marketed biologic test cases D–R correctly 
(Table 4). The success rate was ranked  golimumab (ED50 
= 45.5 mg) > adalimumab (ED50 = 16.9 mg) > ustekinumab 
(ED50 = 13.9 mg), which corresponds to the ED50 rank for 
these compounds (Table 1). Gaining an accurate ED50 esti-
mate for these potent molecules was challenging, given the 
sample size (N = 16) and doses (21, 70, 210, and 700 mg) 
used in this simulation study. Design performance was sen-
sitive to placebo patient numbers for all designs, favoring 
designs with a 7:1 balance in active and placebo-treated 
subjects (Table 4).

No-Go hypothetical test cases. All designs had lower fre-
quency (14–32%) of identifying D–R correctly for the No-Go 
hypothetical cases than for the marketed biologic test cases 
(Table 4). Again, the success rate was ranked mehmimab 
(ED50 = 32.1 mg) > discontinumab (ED50 = 11.8 mg), which 
corresponds to the ED50 rank for these compounds (Table 1). 
Design performance was sensitive to placebo patient num-
bers for all designs, favoring designs with a 7:1 balance in 
active and placebo-treated subjects (Table 4).

Go hypothetical test cases. All designs had lower frequency 
(23–53%) of identifying D–R correctly for the Go hypothetical 
cases than for the marketed biologic test cases (Table 4). In 
contrast to the marketed and No-Go test cases, the success 
rate was ranked lowpomab (ED50 = 182 mg) > cuspmimab 
(ED50 = 32.1 mg) > nopomab (ED50 = 728 mg). The doses 
tested (21, 70, 210, and 700 mg) bracket the lowpomab and 
cuspmimab ED50, but lower than the nopomab ED50. Design 
performance was sensitive to placebo patient numbers for all 
designs, favoring designs with a 7:1 or 3:1 balance in active 
and placebo-treated subjects (Table 4).

DISCUSSIOn

CTS has been demonstrated in the design of Phase 2 and 
later trials with notable impact.25–28 Previous uses of MBMA 
appear in the literature such as benchmarking a compound 
(post-study) against a field of competitors and powering a 
confirmatory trial against an expected result from an active 

competitor.23,24 These two tools are combined in this work to 
evaluate designs for a FIP study for a class of compounds.

We have evaluated concentrated designs (subjects dosed 
placebo or 700 mg intravenous) and distributed designs (sub-
jects dosed placebo or 21, 70, 210, or 700 mg) for small simu-
lated FIP (N = 16) studies in psoriasis. Concentrated designs 
offered only a marginal improvement in G/NG decision mak-
ing (1%) over distributed designs for the marketed biologic 
test cases. Concentrated designs offered improvement in 
G/NG decision making (3–6%) over distributed designs for 
the No-Go hypothetical test cases. The relative improvement 
in G/NG decision making for the two designs were more 
nuanced for the Go hypothetical cases, but the differences 
were nominal (3–7%). These results suggest that either 
design type has good G/NG decision making properties for 
novel compounds tested in psoriasis, and either design type 
can frequently identify novel compounds with good or poor 
marketing potential. Overall, a 1:1 and 5:3 active:placebo 
ratio produced the best performance for the concentrated 
and distributed designs, respectively.

Only the distributed designs offered information regard-
ing D–R properties of a compound. Good D–R information 
was obtained 45–65, 14–32, and 23–53% for the marketed, 
No-Go, and Go test cases, respectively. Test cases where the 
correct G/NG decision was “No-Go” yielded the lowest rate 
of obtaining correct D–R information. However, given that a 
drug would be terminated at this stage of development, not 
having a clear understanding of the D–R is of small conse-
quence. Overall, a 7:1 active:placebo ratio produced the best 
performance for the distributed designs, respectively, in con-
trast to the 1:1 or 5:3 active:placebo ratio favored for G/NG 
decision making. This analysis suggests that N = 16 subjects 
and the dose levels selected (21, 70, 210, and 700 mg) is not 
adequate to routinely (>80%) recover an ED

50 estimate within 
twofold of the true value. Prospective trial design on number 
of subjects and/or dose selection could be used to increase 
the rate at which a design recovers an ED50 estimate within 
twofold of the true value.

Increasingly, small (FIP) studies in the development of 
biologics are conducted in patients and information on drug 
effect is utilized to move directly to large dose-ranging stud-
ies. Techniques established for late-stage confirmatory clin-
ical trials provide a straightforward method for statistically 
testing evidence of biological activity in small patient stud-
ies. This approach is best served by studying the maximal 
contrast of a compound against placebo or an active com-
parator. However, this approach deviates from the “learn-
ing” mode of early clinical trials and places emphasis on 
“confirming” drug effect. Moving directly to deduction (con-
firmation) of efficacy is efficient, in the sense that it is rapid 
and of low cost. However, this bypasses a crucial induction 
(learning) step, i.e., learning how efficacy relates to a con-
tinuum of doses. Thus, the next learning step (Phase 2) 
begins with a deficiency that must somehow be corrected 
by addition of cost and time (more dose arms and larger 
enrollment, adaptive study designs, etc.), thereby decreas-
ing efficiency. This work shows that, for a small decrease in 
the ability to make a correct G/NG decision, a distributed 
trial design provides D–R learning that can provide advan-
tage in Phase 2.

Table 4 Percentage of simulated trials providing an ED50 estimate within two-
fold of the true value

group Drug

7 active: 
1 placebo 

(%)

3 active: 
1 placebo 

(%)

5 active: 
3 placebo 

(%)

1 active: 
1 placebo 

(%)

Marketed 
examples

adalimumab 59 57 52 49

golimumab 65 65 61 58

ustekinumab 55 53 47 45

No-Go ex-
amples

discontinumab 18 17 14 14

mehmimab 32 32 29 28

Go ex-
amples

cuspmimab 45 44 40 38

lowpomab 52 53 51% 48

nopomab 25 24 25 23

ED50, the dose providing half maximal drug response.



www.nature.com/psp

CTS to Inform Phase 2: Concentrated vs. Distributed FIP Designs in Psoriasis
Dodds et al.

7

A limitation of this work is that safety analysis was not 
included into decision making. For illustrative purposes, the 
focus was on efficacy, yet the principle should hold that a 
distributed design would be more informative for safety end-
points as well. If safety signals were detected by a distributed 
design with a D–R pattern, the sponsor would have guidance 
on an appropriate dose-selection strategy to take forward, 
balancing efficacy and safety. In contrast, if a safety signal 
was detected by a concentrated design, the sponsor would 
have no guidance on how lower doses may reduce the safety 
signal. Another potential drawback to the distributed designs 
is that they require analysis of response using an assumed 
model form. However, MBMA may provide this model, draw-
ing on the observed D–R relationship from a number of tri-
als to formulate this model. Finally, the marketed test cases 
selected in this study have observable clinical response 
after a single dose, but this may not be true for many other 
therapeutic areas that may require multiple doses and lon-
ger observation periods. However, the methodology laid out 
here and the implication that a distributed design can provide 
dose–responsive information with only small loss in G/NG 
power are also compatible with small, multiple-dose stud-
ies in indications for which longer observation periods are 
required.

In this work, a clinically relevant endpoint (percent change 
in PASI for psoriasis patients) was selected as an illustra-
tion. Other endpoints that are not “registrational” in nature 
(e.g., biomarkers, clinical signs, etc.) are amenable to this 
type of analysis. However, when a “registrational” endpoint is 
available, our instincts pull us towards traditional, late-phase 
confirmatory analyses to demonstrate that the drug is differ-
ent from placebo. Our instincts, examined under the condi-
tions in this paper, are not supported: concentrated designs 
are not substantially better for demonstrating a drug “works” 
than distributed designs in this context. Moreover, distributed 
designs offer information regarding the D–R properties of a 

compound, which facilitates better design of the pivotal dose-
ranging Phase 2 study.

MeTHODS

MBMA of biologic treatments for psoriasis. A MBMA was 
performed of publically available data from randomized con-
trolled trials of approved compounds in psoriasis and pso-
riatic rheumatoid arthritis. Data to inform the meta-analysis 
were found via literature search (PubMed) and review of ref-
erence lists from previous meta-analyses, clinicaltrials.gov, 
conference abstracts, and corporate websites. The included 
data represented 27 trials of antitumor necrosis factors, 
ustekinumab, and methotrexate. The MBMA proceeded as 
joint modeling of the probability of achieving PASI 50, 75, 90, 
and mean percent improvement in PASI score. Placebo and 
treatment effect were modeled for each drug. The placebo 
response was assumed to be different for each trial and the 
treatment effect was modeled using an E

max model with a 
different Emax for each endpoint and drug class. We evalu-
ated impact of endpoint, drug, drug class, regimen, indica-
tion (psoriasis vs. psoriatic rheumatoid arthritis), failure of 
prior treatment, baseline PASI score, disease duration, age, 
weight, and gender on model parameters. For this paper, the 
model for percent improvement in PASI score was used.

Clinical trial simulation. To bound the percent improvement in 
PASI score [−∞%, 100%] in the real domain, the ratio of on 
treatment PASI score (PASItreatment) over baseline PASI score 
(PASIbase) was simulated in the log domain according to the 
following equation:

 (1)

where E0 reflects the placebo response; Emax: the maximal 
drug response; and ED50: the dose providing half maximal 
drug response. Please note that the parameters E0, Emax, and 
ED50 reflect the response in the log domain. A similar trans-
formation was used for the meta-analysis.

Variability at the subject level was added using a linear 
model (slope = sERR, intercept = iERR) of SD, dependent 
on LPASI:

 (2)

 (3)

where Y is the subject-level PASI response in the log domain. 
Note that sERR is given with a negative sign, as LPASI is neg-
ative. Only one PASI observation was simulated per subject. 
The parameters of the between-subject variance model were 
selected to recover the between-subject variability observed 
in the PHOENIX 1 and 2 trials for ustekinumab.21 Mean 
and between-subject variability percent PASI improvement 
(point: mean, lines: ±SD) for placebo, 45-mg ustekinumab, 
and 90-mg ustekinumab from the simulations (red) and 
PHOENIX2 data (blue) are compared in Figure 3. Note that 

LPASI log
PASI

PASI
Dose

ED Dose
treatment

base

max

50

= = +
+







⋅
E

E
0

Y = +LPASI sERR*LPASI+iERR *( ) ε

ε ~ , . .N 0 1 0 32 0 30( ) = =sERR iERR−

Figure 3 Arithmetic mean and between-subject variability percent 
PASI improvement (point: mean, lines: ±SD) for placebo, 45-mg 
ustekinumab, and 90-mg ustekinumab from the simulations (red) 
and PHOENIX2 data (blue).21
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the between-subject variability decreases with increasing 
response (but not as much as expected with a simple additive 
error model in the log domain), which motivated this choice 
of variance model.

Trials, (N = 9,999; the maximum allowed using NONMEM 
7.2, ref. 29) for each of the eight designs and eight drugs 
were simulated (N = 16 subjects per trial) using Eqs. 1–3 
using NONMEM 7.2 on a cluster. Each design was given as 
a single control stream, each containing the eight drugs, and 
processed using message passing interface parallelization 
on six cores (8 designs × 6 cores/design = 48 cores). Total 
simulation and back-estimation time was less than 2 days.

For each simulated trial, estimates of population typical 
Emax, E0, ED50, sERR, and iERR were obtained using an esti-
mation model that varied by design type and subject dose 
assignment:

 (4)

Thus, the drug effect (Edrug) at the maximum feasible dose 
(700 mg) is derived by observation (concentrated designs) or 
estimated (distributed designs):

 (5)

Given the log transformation, eEdrug  is the geometric mean 
ratio of on treatment PASI over baseline PASI and 1–eEdrug  is 
the PASI % improvement from baseline, including placebo 
response, at the maximum feasible dose. The G/NG criteria 
for each simulated trial were calculated after back-transfor-
mation of Edrug and E0 to the original scale for PASI percent 
change from baseline and then cast as a binary outcome by 
comparison to the G/NG criteria of a 50% absolute difference 
from placebo:

 (6)

The G/NG criteria were contrasted with the correct G/
NG decision at the true values of Edrug and E0 used in the 
simulation.

The rate at which a design resulted in a correct G/NG deci-
sion was then computed by summing the number of correct 
G/NG decisions and dividing by the number of trials (9,999).

Similarly, the "D–R" criteria for each simulated trial were 
calculated and contrasted with the true value (ED*

50) used in 
the simulation, after back-transformation to the real domain:

 (7)

The rate at which a design resulted in good D–R informa-
tion was then computed by summing the number of good 
D–R and dividing by the number of trials (9,999).

See Supplementary Methods online for model specifica-
tion and estimation steps.
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