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Abstract: Human cytomegalovirus (HCMV) encodes a number of viral proteins with 

homology to cellular G protein-coupled receptors (GPCRs). These viral GPCRs, including 

US27, US28, UL33, and UL78, have been ascribed numerous functions during infection, 

including activating diverse cellular pathways, binding to immunomodulatory chemokines, 

and impacting virus dissemination. To investigate the role of US28 during virus infection, 

two variants of the clinical isolate TB40/E were generated: TB40/E-US28
YFP

 expressing a 

C-terminal yellow fluorescent protein tag, and TB40/E-FLAG
YFP

 in which a FLAG-YFP 

cassette replaces the US28 coding region. The TB40/E-US28
YFP

 protein localized as large 

perinuclear fluorescent structures at late times post-infection in fibroblasts, endothelial, and 

epithelial cells. Interestingly, US28
YFP

 is a non-glycosylated membrane protein throughout 

the course of infection. US28 appears to impact cell-to-cell spread of virus, as the US28 

virus (TB40/E-FLAG
YFP

) generated a log-greater yield of extracellular progeny whose 

spread could be significantly neutralized in fibroblasts. Most strikingly, in epithelial cells, 

where dissemination of virus occurs exclusively by the cell-to-cell route, TB40/E-FLAG
YFP

 

(US28) displayed a significant growth defect. The data demonstrates that HCMV US28 
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may contribute at a late stage of the viral life cycle to cell-to-cell dissemination of virus. 

Keywords: human cytomegalovirus; BAC recombineering; viral GPCR US28; virus 

dissemination; virus growth; membrane protein biology  

 

1. Introduction 

Human cytomegalovirus (HCMV) is a widespread pathogen that infects a vast majority of the 

world’s population [1]. HCMV is the prototypic β-herpesvirus, characterized by its extended 

replication cycle, restricted host range, and cytopathic effect of pronounced cell swelling [2]. Infection 

of the healthy, immunocompetent host is typically asymptomatic, with pressure from the immune 

system leading to establishment of lifelong latent infection within cells of the myeloid lineage [3]. 

Infection of the immunologically immature or reactivation of latent infection during times of 

immunosuppression can result in significant disease [4]. In fact, HCMV infection during solid organ or 

hematopoietic stem cell transplant can have severe implications for the host and can ultimately  

prove fatal [5].  

The exceptionally large HCMV genome encodes for over 200 genes [6], including four putative 

homologs of cellular G protein-coupled receptors (GPCRs): the HCMV-specific US27 and US28, and 

the β-herpesviruses-conserved UL33 and UL78 [7]. GPCRs, also known as seven-transmembrane 

domain proteins, are integral membrane receptors that sense extracellular ligands to trigger signal 

transduction networks and coordinate cellular responses [8]. Once activated, these receptors undergo a 

conformational change, causing activation of an associated heterotrimeric G protein and leading to 

production of intracellular secondary messenger molecules to induce downstream signaling pathways. 

HCMV infection is known to modulate a number of host cellular responses, including intracellular 

calcium levels, cyclic AMP (cAMP) production, inositol phosphate hydrolysis, and activation of 

phosphatidylinositol-3-kinase (PI3K) [9]. As constituents of the virion [10–12], several of the 

HCMV-encoded GPCRs regulate a number of these pathways immediately following infection. Both 

US28 and UL33 signal constitutively and can alter inositol phosphate production and activation of 

NF-κB and cAMP response elements (CRE) [13,14]. Furthermore, US28 can bind CC chemokines to 

induce increases in intracellular calcium levels and migration of infected cells [15,16]. Although it 

shows no constitutive activity [17], US27 was recently found to enhance signaling mediated by 

endogenous CXCR4, resulting in enhanced calcium mobilization and chemotaxis [18]. To date no 

activating ligands or signaling properties have been attributed to UL78. 

Another intriguing characteristic accorded to HCMV-encoded GPCRs is their contribution to 

dissemination of virus in vitro. UL78 appears to impact virus growth in both endothelial and epithelial 

cells [12]. Additionally, UL78 supports infection by coordinating the timely delivery of viral DNA into 

the nuclei of infected cells [12]. US27 is required for efficient spread by the extracellular route and 

influences virus growth in fibroblasts and endothelial cells [19]. Expression of the murine 

cytomegalovirus (MCMV) ortholog M33 protein was shown to be necessary for virus dissemination 

in vivo but not in tissue culture [20]. An MCMV mutant lacking the GPCR M78 exhibited a growth 

defect in culture and reduced pathogenicity in mice [21]. The implication of HCMV-encoded GPCRs 
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as virulence factors to enhance infection is quite intriguing, as their presence within infected cell 

membranes [22,23] could allow cell-cell communication and modulation of signaling networks within 

neighboring cells to facilitate propagation. 

To determine the role of US28 in HCMV dissemination, mutational analysis of the TB40/E clinical 

isolate was performed. A YFP derivative of US28 (TB40/E-US28
YFP

) localized as large perinuclear 

structures at late times of infection in fibroblasts, endothelial, and epithelial cells. At these late times, 

US28
YFP

 was integrated into cellular membranes, further validating its presence at the interface of 

infected cells. A US28 mutant (TB40/E-FLAG
YFP

) produced increased levels of extracellular virus as 

assayed by both multi-step and single-step growth kinetics. Extracellular virus produced by the US28 

mutant could be neutralized by the addition of HCMV glycoprotein-specific antibodies and spread of 

TB40/E-FLAG
YFP

 by the cell-to-cell route was abrogated in fibroblasts and epithelial cells. These 

findings implicate the viral GPCR US28 as a factor contributing to cellular dissemination of HCMV.  

2. Results 

2.1. Generation of HCMV TB40/E US28 Variants 

To extend on studies of viral GPCRs as virulence factors, derivatives of the HCMV clinical isolate 

TB40/E were generated (Figure 1a). The wild type TB40/E bacterial artificial chromosome (BAC) 

(herein termed TB40/E wt) was altered to express a chimeric protein in which the carboxy terminus of 

the US28 coding region was amended with a yellow fluorescent protein tag (TB40/E-US28
YFP

) 

(Figure 1a). A second variant was generated in which the US28 coding region was replaced with a 

DNA cassette encoding a FLAG-tagged YFP chimera (TB40/E-FLAG
YFP

) (Figure 1a). To confirm 

abrogation of US28 message in the US28 (FLAG
YFP

) virus, MRC5 lung fibroblasts were 

mock-infected or infected with TB40/E wt, TB40/E-US28
YFP

 or TB40/E-FLAG
YFP

 and RNA harvested 

at 48 hours post-infection, a time when US28 should be abundantly transcribed [24]. RT-PCR analysis 

with primers specific to a region within US28 demonstrated that US28 messenger RNA continued to 

be generated during infection with TB40/E wt and TB40/E-US28
YFP

, but not with the US28 virus 

(Figure 1b, lanes 1–4). To further confirm expression of our TB40/E YFP chimeras, fibroblasts were 

either mock-infected or infected with TB40/E-US28
YFP

 or TB40/E-FLAG
YFP

, harvested at various 

times post-infection, and analyzed by immunoblot for expression of YFP (Figure 1c). Kinetic analysis 

confirmed US28
YFP

 expression throughout the time course, with maximal expression at 72 hours 

post-infection (Figure 1c, lanes 1–6). US28
YFP

 migrated as a broad polypeptide species of 

approximately 65 kD (Figure 1c, lanes 1–6). FLAG
YFP

 followed a similar time course of expression, 

peaking at 72 hours post-infection (Figure 1c, lanes 7–11). When visualized by fluorescence 

microscopy, the majority of US28
YFP

 localized intracellularly to vesicular structures concentrated 

around the nucleus (Figure 1d, center), confirming earlier data for US28 localization in transiently 

transfected cells [22]. A small portion of US28
YFP

 appeared to localize to the cell surface, as US28 

undergoes constitutive endocytosis and recycling [22]. TB40/E-FLAG
YFP

-infected cells expressed 

fluorescence throughout the cell (Figure 1d, right) while the TB40/E wt parental virus did not express 

YFP (Figure 1d, left). Taken together, the data demonstrates that TB40/E variants of the US28 coding 

region had been generated to ascertain its role in HCMV virulence. 
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Figure 1. Generation of TB40/E-US28 variants. (a) Using a bacterial artificial chromosome 

(BAC) recombineering approach Human cytomegalovirus (HCMV) TB40/E variants were 

generated that express either chimeric US28 containing a carboxy-terminal YFP tag 

(US28
YFP

) or a US28 deletion mutant where the US28 ORF has been replaced with an 

engineered FLAG-YFP cassette (FLAG
YFP

). YFP sequences are denoted by the diagonally 

hatched box; FLAG sequences are denoted by the horizontally striped box. TR, terminal 

repeat; U, unique sequences; IR, inverted repeat; L, long; S, short. (b) Fibroblasts  

mock-infected or infected (MOI = 5) with TB40/E wt or TB40/E-US28 variants were 

harvested 48 hours post-infection and subjected to RT-PCR with primers specific to US28 

(lanes 1–5) or β-actin (lanes 6–10). A sample lacking RNA ((−)RNA) was included as a 

negative control. HCMV US28, β-actin, and relative DNA standards are indicated. 

(c) Fibroblasts mock-infected or infected (MOI = 5) with TB40/E-US28
YFP

 or  

TB40/E-FLAG
YFP

 were harvested at the indicated times and subjected to SDS-PAGE and 

immunoblot analysis. US28
YFP

, FLAG
YFP

, GAPDH, and molecular weight standards are 

indicated. (d) Fibroblasts infected (MOI = 5) with TB40/E wt, TB40/E-US28
YFP

 or 

TB40/E-FLAG
YFP

 were harvested 48 hours post-infection and visualized using the EVOS 

Cell Imaging Systems at 60× magnification.  
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2.2. HCMV US28
YFP

 Localizes as Large Vesicular Structures at Late Times of Infection 

To visualize a time course of US28
YFP

 expression, confocal microscopy was performed on 

fibroblasts infected with TB40/E-US28
YFP

 (Figure 2a). At early times post-infection, US28
YFP

 

localized diffusely throughout the cell (Figure 2a, left). As infection progressed, US28
YFP

 coalesced 

into intense fluorescent perinuclear structures focused on one side of the nucleus (Figure 2a, 48, 

72 hpi, arrows). By 72 hours post-infection, these large structures seemed to encroach on the nuclear 

space (Figure 2a, arrows). These organelles most likely represent viral assembly zones, as US28 has 

been proposed to be incorporated into assembling virions. 

To determine if US28
YFP

 localization into large perinuclear structures late during infection was 

cell-type specific, infections of human umbilical vein endothelial cells (HUVECs), human 

microvascular endothelial cells (HMVECs), and ARPE-19 epithelial cells were performed (Figure 2b). 

Infection with TB40/E-US28
YFP

 caused the formation of intense fluorescent granular structures in all 

cell types assayed (Figure 2b, left column). In comparison infection with TB40/E-FLAG
YFP

 resulted in 

diffuse fluorescence throughout the cell for each cell type (Figure 2b, right column). US28
YFP

 

expression in endothelial cells was similar to cell surface staining on smooth muscles cells expressing 

US28, in which the viral GPCR accumulated toward the leading edge of migrating cells [16]. 

Strikingly, in epithelial cells, US28
YFP

 also appeared to converge at the junction of neighboring 

infected cells (Figure 2b, bottom left, arrow). Taken together, the results demonstrate that US28 

localizes to large perinuclear structures that may represent areas of infectious virus production.  

2.3. Characterization of US28
YFP

 in HCMV-Infected Cells 

2.3.1. HCMV US28
YFP

 Is Integrated into Dense Vesicular Bodies 

The viral GPCRs US27 and UL33 localize to virus-wrapping membranes on HCMV-infected 

cells [23]. To determine if US28, at late time points post-infection, also traffics to dense vesicles 

consisting of large complexes, subcellular fractionation was performed on TB40/E-US28
YFP

- and 

TB40/E-FLAG
YFP

-infected fibroblasts (Figure 3a). At 72 hours post-infection, cells were lysed using a 

ball-bearing homogenizer and subjected to two centrifugation steps: nuclei and heavy/dense organelles 

were spun down at 15,000 × g, followed by separation of cellular membrane and cytoplasm by  

high-speed centrifugation at 120,000 × g. A substantial amount of US28
YFP

 and FLAG
YFP

 localized to 

the 15,000 × g fraction containing heavy organelles (Figure 3a, lanes 1–3). As US28
YFP

 and FLAG
YFP

 

polypeptides are being abundantly synthesized at this late time point of infection (Figure 1c), their 

localization to this fraction may represent ER membranes contiguous with the nucleus, large protein 

complexes, and large dense membrane vesicles. Considering the levels of US28
YFP

 in the 15,000 × g 

fraction, only a small amount of two distinct US28
YFP

 species were localized to cellular membranes 

after high-speed centrifugation (Figure 3a, lane 5), suggesting that US28
YFP

 traffics with large protein 

complexes in dense membrane fractions. Interestingly, FLAG
YFP

 was also found in this membranous 

fraction (Figure 3a, lane 6). This may simply represent contamination from the cytoplasmic fraction, as 

the majority of FLAG
YFP

, and not US28
YFP

, localizes to the cytoplasm (Figure 3a, lane 8–9). As a 

control, immunoblot analysis of viral glycoproteins was also performed (Figure 3a, lanes 10–18). The 

glycoprotein gB also localized to the dense cellular membrane fraction (Figure 3a, lanes 10–15) and 
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not the cytoplasmic fraction (Figure 3a, lanes 16–18). A similar result was found for the viral 

glycoprotein gH (data not shown). Remarkably, US28
YFP

 trafficked within dense cellular membranes 

as early as 24 hours post-infection (Figure 3b, lane 2) probably due to active translation on large ER 

membranes. Alternatively, the localization of US28
YFP

 to the 15,000 × g fraction may be due to 

integration of US28 from the HCMV virion into the plasma membrane following infection, but 

additional experiments are needed to confirm this. Taken together, the data demonstrates that US28
YFP

 

is found in mostly large membrane complexes and localizes to dense vesicles, likely virus assembly 

zones late during infection.  

Figure 2. Formation of US28-expressing structures late during HCMV infection.  

(a) Confocal microscopy was performed on fibroblasts either mock-infected or infected 

with TB40/E-US28
YFP

 (MOI = 5). At various times post-infection cells were fixed and 

analyzed using an ImageXpress Ultra plate-scanning confocal microscope. (b) Endothelial 

and epithelial cells were infected with either TB40/E-US28
YFP

 (left) or -FLAG
YFP

 (right) 

(MOI = 25) and visualized at 4 days post-infection using the EVOS Cell Imaging Systems 

at 60× magnification.  

 



Viruses 2014, 6 1208 

 

 

Figure 3. HCMV US28 is a non-glycosylated membrane protein incorporated into infected 

cells. Fibroblasts mock-infected or infected (MOI = 5) with either TB40/E-US28
YFP

 or 

TB40/E-FLAG
YFP

 were subjected to subcellular fractionation at 72 (a) or 24 (b) hours 

post-infection. Cell pellets from the 15,000 and 120,000 × g centrifugations (15 k × g 

pellet, 120 k × g pellet) and the 120,000 × g supernatant (120 k × g supe) were resolved by 

SDS-PAGE and subjected to immunoblot analysis. US28
YFP

, FLAG
YFP

, gB, and molecular 

weight standards are indicated. gB* indicates the mature form of glycoprotein B.  

(c) Fibroblasts infected with TB40/E-US28
YFP

 (MOI = 5) were harvested at the indicated 

time points and left non-treated (NT) or treated with EndoH (H) or PNGaseF (F). US28
YFP

, 

glycosylated MHC class I heavy chains (HC(+)CHO), deglycosylated MHC class I heavy 

chains (HC(−)CHO), GAPDH, and molecular weight standards are indicated. 
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2.3.2. HMCV US28 Is a Non-Glycosylated Membrane Protein 

As integral membrane proteins, the extracellular portions of GPCRs have the potential to be 

glycosylated. Both US27 and UL33 are heavily glycosylated while present in infected cell membranes 

[10,11]. The US28 protein annotated from the HCMV genome contains a possible N-linked 

glycosylation site (amino acids 30–32, NQS). Therefore, to determine if US28 is a glycosylated 

membrane protein, lysates prepared from TB40/E-US28
YFP

-infected fibroblasts at various times 

post-infection were subjected to digestion by either endoglycosidase H (EndoH) or peptide: 

N-glycosidase F (PNGaseF) (Figure 3c). EndoH cleaves high mannose glycans from the core of N-linked 

glycoproteins while PNGaseF hydrolyzes nearly all types of N-linked glycans from proteins [25]. 

Unexpectedly, US28
YFP

 was insensitive to cleavage by either EndoH or PNGaseF throughout the time 

course (Figure 3c, lanes 1–9), suggesting that US28 is not glycosylated despite being a membrane 

protein and trafficking through the secretory compartment [22]. As a control, the sensitivity of the 

known glycoprotein major histocompatibility complex (MHC) class I heavy chain to cleavage by 

EndoH and PNGaseF was determined (Figure 3c, lanes 10–18). Class I heavy chains traffic rapidly 

through the ER, where high-mannose glycans are acquired and cleaved, and is therefore resistant to 

EndoH digestion [26] (Figure 3c, lanes 11, 14, 17). Class I heavy chains were completely sensitive to 

cleavage by PNGaseF, resulting in loss of its single glycan (Figure 3c, lanes 12, 15, 18). The findings 

reveal that HCMV US28 is a unique non-glycosylated membrane protein.  

2.4. Functional Analysis of TB40/E US28 Variants 

2.4.1. TB40/E US28 Accumulates Increased Amounts of Extracellular Virus in Fibroblasts 

To determine the growth properties of the TB40/E US28 variants, fibroblasts were infected at both 

high multiplicity, to study single step growth, and low multiplicity, to determine multi-step growth, 

and production of infectious extracellular progeny was measured (Figure 4a,b). At high multiplicity of 

infection (MOI), TB40/E wt and TB40/E-US28
YFP

 grew to comparable titers (Figure 4a, solid line vs. 

dotted line). In comparison, TB40/E-FLAG
YFP

 (US28) displayed a 10-fold increase in the 

accumulation of extracellular virus (Figure 4a, dashed line). This effect was amplified at low 

multiplicity of infection, where TB40/E-FLAG
YFP

 displayed a 100-fold increase in viral titers over 

TB40/E-US28
YFP

 (Figure 4b, solid line vs. dashed line). The data demonstrates that the loss of US28 

results in increased production of extracellular virus during HCMV infection. 

2.4.2. US28 Modulates HCMV Cell-to-Cell Dissemination  

An HCMV mutant virus lacking the tegument phosphoprotein pp28 fails to accumulate extracellular 

progeny yet mediates cell-to-cell spread of tegument-coated capsids [27]. The accumulation of 

extracellular virus seen during US28 infection could result from a blockade at the level of cell-to-cell 

spread, thus leading to re-routing of infectious virions into the extracellular milieu. To determine if the 

US28 virus has a defect in cell-to-cell spread of virus, infections were performed in epithelial cells, 

where spread of TB40/E is exclusively cell-associated [19]. ARPE-19 cells were infected at low 

multiplicity with either TB40/E-US28
YFP

 or TB40/E-FLAG
YFP

 and infectious progeny measured  
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by determining the titer of cell-associated virus (Figure 4c). In comparison to fibroblasts, where  

TB40/E-FLAG
YFP

 displayed increased growth properties, the US28 virus exhibited a growth defect in 

epithelial cells (Figure 4c, dashed line). In fact, while titers of cell-associated TB40/E-US28
YFP

 

increased over the time course, accumulation of intracellular virus became stagnant during TB40/E-

FLAG
YFP

 infection (Figure 4c, solid line vs. dashed line). Taken together, it appears that US28 may 

contribute to cell-to-cell dissemination during HCMV infection.  

Figure 4. HCMV US28 modulates cell-to-cell spread of virus. Infectious extracellular 

progeny from fibroblasts infected at 5 PFU/cell (a) or 0.1 PFU/cell (b) with TB40/E wt, 

TB40/E-US28
YFP

, or TB40/E-FLAG
YFP

 were measured by TCID50 assay. Viral titers were 

assayed in duplicate. Error bars represent standard deviation of the mean. (c) ARPE-19 

cells were infected at 0.1 PFU/cell with TB40/E-US28
YFP

 or TB40/E-FLAG
YFP

 and at the 

indicated times post-infection cell-associated virus was determined by TCID50 assay. Viral 

titers were assayed in duplicate. Error bars represent standard deviation of the mean.  
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2.5. Inhibition of TB40/E US28 Dissemination by Anti-HCMV Neutralizing Antibody 

When grown in fibroblasts TB40/E-FLAG
YFP

 produced substantial extracellular virus, suggesting 

that, in the absence of US28, the virus uses the extracellular route as the main route of dissemination. 

Therefore, an inhibition of infectious virus in the supernatant of US28-infected cells would result in a 

significant hindrance to dissemination. To determine if TB40/E-FLAG
YFP

 spread could be ablated in 

fibroblasts, infected cells were cultured in the presence of the HCMV neutralizing antibody 14-4b that 

recognizes glycoprotein H (gH) [28]. At approximately two weeks post-infection cells were analyzed 

by a fluorescence microplate cytometer (Figure 5a) and by fluorescence microscopy (Figure 5b). When 

grown in the presence of 14-4b, TB40/E-US28
YFP

 total fluorescence was slightly decreased (Figure 5a, 

left). In comparison, TB40/E-FLAG
YFP

 fluorescence was significantly reduced in the presence of 14-4b 

(Figure 5a, right). Fluorescence microscopy revealed that although TB40/E-US28
YFP

 grown in the 

presence of 14-4b created smaller plaques, cellular syncytia continued to be formed (Figure 5b).  

In contrast, TB40/E-FLAG
YFP

 growth was restricted to small pockets of infection in the presence  

of 14-4b, with the absence of plaque formation (Figure 5b). These findings demonstrate that US28 

impacts cell-to-cell spread of virus as TB40/E-US28 is hindered in its dissemination in culture upon 

addition of HCMV neutralizing antibodies. 

Figure 5. TB40/E US28 displays a growth defect when required to use the cell-to-cell 

route of dissemination. Fibroblasts infected (MOI = 0.01) with either TB40/E-US28YFP or 

TB40/E-FLAGYFP were cultured in the presence of the HCMV neutralizing antibody 14-4b. 

Two weeks post-infection cells were analyzed by fluorescent microplate reader (a) or by 

fluorescence microscopy (b). For (a) YFP fluorescence was assayed in triplicate. Error bars 

represent standard deviation of the mean; * p < 0.05, Student’s one tailed T-test. 
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3. Experimental Section  

3.1. Cells and Viruses  

Human lung fibroblasts (MRC5) were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) containing 8% fetal bovine serum (FBS), 1 mM HEPES, 100 U/mL penicillin, and 

100 μg/mL streptomycin. Human retinal pigmented epithelial cells (ARPE-19) were maintained in a 

1:1 mixture of complete DMEM (FBS, HEPES, penicillin, streptomycin) and Ham’s F-12 medium 

containing 8% FBS, 1mM HEPES, 100 U/mL penicillin, and 100µg/mL streptomycin. Human 

umbilical vein endothelial cells (HUVEC) were cultured in EBM medium supplemented with bovine 

brain extract (BBE), recombinant human epidermal growth factor (rhEGF), hydrocortisone, ascorbic 

acid, gentamicin sulfate/amphotericin-B (GA-1000) and 2% FBS (Lonza Clonetics). CD34
+
 CD31

+
 

human microvascular endothelial cells (HMVEC) were cultured in EBM-2 basal medium 

supplemented with rhEGF, hydrocortisone, recombinant human fibroblast growth factor-beta 

(rhFGF-B), vascular endothelial growth factor (VEGF), insulin-like growth factor (R
3
-IGF-1), ascorbic 

acid, GA-1000, and 5% FBS (Lonza Clonetics). Cells were maintained at 37 °C in a humidified 

atmosphere (95% air/5% CO2).  

The HCMV bacterial artificial chromosome (BAC) clone of the clinical isolate TB40/E (TB40-BAC4) 

was a kind gift of Dr. Christian Sinzger (Institute of Virology, University Medical Center Ulm, Ulm, 

Germany) and Dr. Felicia Goodrum (University of Arizona, Tucson, Arizona, AZ, USA). TB40-BAC4 

was used to generate variants expressing a chimeric US28 with a yellow fluorescent protein (YFP) tag 

(TB40/E-US28
YFP

) and a US28 deletion virus containing a FLAG-YFP cassette within the US28 open 

reading frame (TB40/E-FLAG
YFP

 (US28)). To generate these viruses TB40-BAC4 was modified 

using the galK recombineering system as previously described [29]. In brief, the galK gene was 

amplified by PCR using the following primers: Forward 5'-GTGCGTGGACCAGGCGGTGT 

CCATGCACCGAGGGCAGAACTGGTGCTACCCCTGTTGACAATTAATCATCGGCA-3'; Reverse 5'-

GAGGGGCGGACACGGGGTTTGTATGAAAAGGCCGAGGTAGCGATTTTTTATCAGCACTGTCCT

GCTCCTT-3', where the underlined sequences correspond to galK. The PCR product was transformed 

into recombination-competent E. coli SW105 cells containing TB40-BAC4. GalK-expressing clones 

were subsequently selected and electroporated with a PCR cassette specific to either US28
YFP

 or 

FLAG
YFP

 amplified from pcDEF-US28
YFP

. Primers used for reversion were as follows: US28
YFP

 

Forward 5'-GTGCGTGGACCAGGCGGTGTCCATGCACCGAGGGCAGAACTGGTGCTACCATGAC 

ACCGACGACGACGACCG-3'; US28
YFP

/FLAG
YFP

 Reverse 5'-GAGGGCGGACACGGGGTTTGTATG 

AAAAGGCCGAGGTAGCGCTTTTTTATTACTTGTACAGCTCGTCCATGC-3'; FLAG
YFP

 Forward 5'-

GTGCGTGGACCAGGCGGTGTCCATGCACCGAGGGCAGAACTGGTGCTACCATGGACTACAAG

GACGACGACGACACTAGTGCGGCCGCCATGGTGAGC-3'. The resultant clones were chosen 

following counter-selection against galK and subsequently sequenced to ensure incorporation of YFP 

and FLAG. Virus stocks were generated by electroporating low passage MRC5s with purified BAC 

DNA from the respective variants. Cultures were allowed to progress to full cytopathic effect (CPE) 

and virus was then harvested and purified by centrifugation through a 20% sorbitol cushion. Virus 

stocks were stored at −80 °C in DMEM containing 8% FBS plus 1.5% bovine serum albumin (BSA). 

Virus stock titers were determined by tissue culture infectious dose 50 (TCID50) assay.  
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3.2. Fluorescence Microscopy 

For fluorescence microscopy, fibroblasts infected at a multiplicity of infection (MOI) of 5 plaque 

forming units (PFU)/mL were visualized 2 days post-infection using the EVOS Cell Imaging Systems 

(Life Technologies, Grand Island, NY, USA). Images were analyzed using Adobe Photoshop CS5.1 

software [30]. ARPE-19 and endothelial cells were infected at an MOI of 25 PFU/mL and visualized 4 

days post-infection. For confocal microscopy, fibroblasts infected at an MOI of 5 PFU/mL were 

harvested at various times post-infection and fixed in Cytofix/Cytoperm solution (BD Biosciences, 

Franklin Lakes, NJ, USA) for 45 minutes at 4 °C. YFP fluorescence was visualized using a Molecular 

Devices ImageXpress Ultra (IXU) plate-scanning confocal microscope (Integrated Screening Core, 

Icahn School of Medicine at Mount Sinai, New York, NY, USA). Images were analyzed using 

MetaExpress software [31].  

3.3. Cell Fractionation and Immunoblot Analysis 

Subcellular fractionation was performed as previously described [32]. In brief, mock-infected and 

TB40/E-infected fibroblasts were resuspended in 1× homogenization buffer (100 mM Tris, 150 mM 

NaCl, 250 mM sucrose, 1.5 mg/mL aprotinin, and 1 μM leupeptin) and mechanically homogenized 

using a 12-μm ball bearing homogenizer (Isobiotec, Hiedelberg, Germany). Samples were centrifuged 

at 15,000 × g for 10 minutes at 4 °C and heavy organelles found in the pellet were lysed directly in 1× 

SDS sample buffer (50 mM Tris, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromphenol blue, 50 mM 

dithiothreitol). Supernatants were further centrifuged at 120,000 × g for 1 hour at 4 °C. Pellets 

containing cellular membranes and supernatants containing cytoplasm were lysed in SDS sample 

buffer and resolved using SDS-PAGE. Green fluorescent protein (GFP) polyclonal antibody was a 

kind gift of Dr. Hidde Ploegh (Whitehead Institute, MIT, Cambridge, MA, USA). Polyclonal major 

histocompatiblity class I heavy chain (MHC class I HC) antibody has been previously described [33]. 

Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was purchased from Upstate/Millipore. 

Monoclonal glycoprotein B (gB) antibody was a kind gift of Dr. William Britt (UAB, Birmingham, 

AL, USA).  

3.4. N-Linked Protein Glycosylation Analysis  

Endoglycosidase H (EndoH) and peptide: N-glycosidase F (PNGaseF) sensitivity was determined as 

per the manufacturer’s protocol (New England Biolabs, Ipswitch, MA, USA). In brief, polypeptide 

samples lysed in 1% SDS were incubated in 1× denaturing buffer (0.5% SDS, 0.04 M dithiothreitol) 

followed by the addition of 10× G5 buffer (0.5 M sodium citrate, pH 5.5, for EndoH) or 10× G7 buffer 

(0.5 M sodium citrate, pH 7.5, 10% Nonidet P-40, for PNGaseF) and 1000 units of EndoH or 500 units 

of PNGaseF. Enzymatic reactions were carried out at 37 °C for 2 hours.  

3.5. Analysis of Virus Growth and Spread 

Single step growth kinetics were determined by infecting fibroblasts at an MOI of 5 PFU/mL. 

At the indicated time points post-infection media was collected and virus titers in the supernatant were 

determined by TCID50 assay. Multistep growth kinetic analysis was performed at an MOI of 
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0.1 PFU/mL. For analysis of cell-associated virus yield, ARPE-19 cells were infected at an MOI of 0.1 

PFU/mL and samples harvested by scraping cells into media. Cells were lysed by subjecting them to a 

single freeze-thaw cycle and sonication. Cellular debris was pelleted by centrifugation and the amount 

of infectious virus in the resulting supernatant was determined by TCID50 assay. 

For neutralization of extracellular virus, fibroblasts were mock-infected or TB40/E-infected at an 

MOI of 0.01 PFU/mL for 1 hour at 37 °C and then placed into media containing 10 µg/mL of the 

monoclonal anti-gH antibody 14-4b (a kind gift of Dr. William Britt (UAB)). 2 weeks post-infection 

YFP fluorescence was analyzed using an Acumen 
e
X3 laser scanning fluorescence microplate 

cytometer (TTP LabTech, Cambridge, MA, USA) as previously described [34].  

4. Conclusions  

Many functions have been ascribed to the G protein-coupled receptors encoded by HCMV. In these 

studies we demonstrate that US28 impacts dissemination of virus by promoting cell-to-cell spread of 

infectious progeny. The generation of two fluorescent variants of the clinical isolate TB40/E, US28
YFP

 

and FLAG
YFP

 (US28), allowed us to investigate the role of US28 as a virulence factor during HCMV 

infection (Figure 1). Infection with TB40/E-US28
YFP

 resulted in the formation of intense perinuclear 

granular structures at late times in fibroblasts, endothelial, and epithelial cells (Figure 2). Interestingly, 

in epithelial cells, where TB40/E disseminates via the cell-to-cell route, US28
YFP

 localized to areas 

between infected cells (Figure 2b). During infection, US28
YFP

 traffics with mostly large dense 

complexes in the membranes of infected cells (Figure 3a,b). Surprisingly, US28
YFP

 did not acquire an 

N-linked glycan during infection (Figure 3c), ascribing a novel characteristic to this viral membrane 

protein. Infections with TB40/E-US28
YFP

 resulted in growth properties comparable to TB40/E wt 

(Figure 4a). Strikingly, infection with TB40/E-FLAG
YFP

, a virus lacking US28, resulted in increased 

production of extracellular infectious progeny (Figure 4a,b). However, when assayed in epithelial 

cells, where dissemination occurs via cell-to-cell spread, TB40/E-FLAG
YFP

 demonstrated a growth 

defect (Figure 4c) suggesting that US28 plays a role in inter-cellular dissemination of HCMV. 

Accordingly, when the virus lacking US28 was forced to utilize the cell-to-cell route in fibroblasts by 

culture in the presence of neutralizing antibodies, a substantial defect in dissemination was observed 

(Figure 5). Taken together, we can conclude that US28, an integral membrane protein present at the 

border of adjacent cells, plays a role in dissemination of infectious viral progeny from cell-to-cell.  

The scenario may occur during HCMV infection where, at late time points, US28 converges at the 

interface of viral assembly zones and adjoining cells in order to enhance virus spread to uninfected 

neighboring cells. The dissemination enhancing activity of US28 likely requires the interaction of this 

GPCR with a membrane component on adjacent cells. Due to US28’s high affinity binding to the 

chemokine fractalkine [35], this interaction might either promote cell-cell contact or membrane fusion 

in clinically relevant cell types expressing this CX3C membrane-bound chemokine (i.e., endothelial 

cells). In fact, fusion-enhancing activity has been reported for US28 when expressed together with the 

HIV Env protein and the G protein of vesicular stomatitis virus (VSV-G) [36]. Heteromerization of 

US28 and other HCMV GPCRs [37] may alter the physical properties of membranes in a way 

favorable to fusion with neighboring infected cells. Interestingly, HCMV US27 and UL33 or MCMV 

M33 did not seem to enhance cell fusion in a way comparable to US28 [36], suggesting a novel role 
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for this GPCR in dissemination of HCMV in the host. The pattern of US28
YFP

 trafficking and its 

membrane association would be well-suited to incorporation of this protein into the viral lipid 

envelope. As a component of the virion, US28 could have a direct role in HCMV entry through its 

ability to bind target cells and mediate dissemination. This would be most advantageous during latent 

infection of HCMV when US28, shown to be expressed during latency [38], could mediate adhesion of 

latently-infected monocytes to activated endothelial cells, where high levels of fractalkine are 

expressed [39], to potentiate dissemination in the host. Conceivably, virion-bound GPCR US28  

could also bind to cells and induce signaling networks to facilitate infection. However, further 

experiments are necessary to define whether US28 is present in virions and whether it can play a role 

in virus-cell interaction.  

HCMV dissemination can occur via two routes: through production of extracellular virus progeny 

that subsequently bind and enter new cells to propagate infection or directly from cell to cell with 

limited exposure of virus to the extracellular environment [27]. Here we define US28 as a factor 

contributing to cell-to-cell dissemination of HCMV. Our data strongly supports the role of  

viral-encoded GPCRs as virulence factors in vitro and further adds to our understanding of the 

multifunctional US28 protein. We also identify US28 as a novel target for anti-HCMV therapeutics to 

inhibit viral dissemination in the host.  
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